Skip to main content
Erschienen in: Natural Computing 3/2017

10.05.2016

Minimal reversible circuit synthesis on a DNA computer

verfasst von: Mayukh Sarkar, Prasun Ghosal, Saraju P. Mohanty

Erschienen in: Natural Computing | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

DNA computing has attracted the attention of many a researcher in recent years for its applicability to solve computationally hard problems. It can over-perform conventional computers with its inherent massively parallelism nature. On the other hand, proper synthesis of reversible circuit is a well researched computing problem in recent days for its extremely low power consumption (ideally zero) and inherent reversible nature of reversible logic. Minimum synthesis of a reversible truth table means finding the reversible circuit made up of reversible gates satisfying given truth table with minimum cost. But none of the approaches running on conventional computers can perform minimum synthesis till date without using brute-force DFS tree search. On the other hand, DFS tree-search approach can not be reasonably implemented for larger circuits as searching a DFS tree is extremely costly on a conventional computer. In this paper, first, a procedure to search a DFS tree in constant time has been proposed to run on a DNA computer. Second, another procedure has also been proposed to apply a reversible gate on a reversible truth table in linear time that can be used to generate a DFS tree library. Finally, the generated library can then be searched in constant time to get minimum reversible circuit given a reversible truth table. An analytical feasibility study has been done and a novel methodology has been developed that can extend enormous scope of future research in this area. To the best of authors’ knowledge this is a pioneering approach to bridge reversible computing and DNA computing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024CrossRef Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024CrossRef
Zurück zum Zitat Al-Rabadi AN (2004) Reversible logic synthesis: from fundamentals to quantum computing. Springer, New YorkCrossRefMATH Al-Rabadi AN (2004) Reversible logic synthesis: from fundamentals to quantum computing. Springer, New YorkCrossRefMATH
Zurück zum Zitat Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429CrossRef Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429CrossRef
Zurück zum Zitat Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340(6132):599–603CrossRef Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340(6132):599–603CrossRef
Zurück zum Zitat Boneh D, Dunworth C, Lipton RJ (1995) Breaking DES using a molecular computer. In: DIMACS workshop on DNA computing Boneh D, Dunworth C, Lipton RJ (1995) Breaking DES using a molecular computer. In: DIMACS workshop on DNA computing
Zurück zum Zitat Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296:499–503CrossRef Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296:499–503CrossRef
Zurück zum Zitat De Vos A (2011) Reversible computing: fundamentals, quantum computing, and applications. Wiley, New YorkMATH De Vos A (2011) Reversible computing: fundamentals, quantum computing, and applications. Wiley, New YorkMATH
Zurück zum Zitat Fujiwara A, Matsumoto K, Chen W (2003) Addressable procedures for logic and arithmetic operations with DNA strands. In: International Parallel and Distributed Processing Symposium, 2003 Fujiwara A, Matsumoto K, Chen W (2003) Addressable procedures for logic and arithmetic operations with DNA strands. In: International Parallel and Distributed Processing Symposium, 2003
Zurück zum Zitat Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E (2013) Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494:77–80CrossRef Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E (2013) Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494:77–80CrossRef
Zurück zum Zitat Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co., San Francisco Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co., San Francisco
Zurück zum Zitat Gupta P, Agrawal A, Jha N (2006) An algorithm for synthesis of reversible logic circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 25(11):2317–2330CrossRef Gupta P, Agrawal A, Jha N (2006) An algorithm for synthesis of reversible logic circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 25(11):2317–2330CrossRef
Zurück zum Zitat Harlan Wood D, Chen J (2004) Fredkin gate circuits via recombination enzymes. In: Congress on evolutionary computation, 2004, vol 2. CEC2004, pp 1896–1900 Harlan Wood D, Chen J (2004) Fredkin gate circuits via recombination enzymes. In: Congress on evolutionary computation, 2004, vol 2. CEC2004, pp 1896–1900
Zurück zum Zitat Huang PJJ, Liu J (2013) Separation of short single- and double-stranded DNA based on their adsorption kinetics difference on graphene oxide. Nanomaterials 3(2):221–228CrossRef Huang PJJ, Liu J (2013) Separation of short single- and double-stranded DNA based on their adsorption kinetics difference on graphene oxide. Nanomaterials 3(2):221–228CrossRef
Zurück zum Zitat Lipton RJ (1995) DNA solution of hard computational problems. Science 268:542–545CrossRef Lipton RJ (1995) DNA solution of hard computational problems. Science 268:542–545CrossRef
Zurück zum Zitat Liu Y, Xu J, Pan L, Wang S (2002) DNA solution of a graph coloring problem. J Chem Inf Comput Sci 42:524–528CrossRef Liu Y, Xu J, Pan L, Wang S (2002) DNA solution of a graph coloring problem. J Chem Inf Comput Sci 42:524–528CrossRef
Zurück zum Zitat Livshits GI, Stern A, Rotem D, Borovok N, Eidelshtein G, Migliore A, Penzo E, Wind SJ, Di Felice R, Skourtis SS, Cuevas JC, Gurevich L, Kotlyar AB, Porath D (2014) Long-range charge transport in single G-quadruplex DNA molecules. Nat Nanotechnol. doi:10.1038/nnano.2014.246 Livshits GI, Stern A, Rotem D, Borovok N, Eidelshtein G, Migliore A, Penzo E, Wind SJ, Di Felice R, Skourtis SS, Cuevas JC, Gurevich L, Kotlyar AB, Porath D (2014) Long-range charge transport in single G-quadruplex DNA molecules. Nat Nanotechnol. doi:10.​1038/​nnano.​2014.​246
Zurück zum Zitat Miller D, Maslov D, Dueck G (2003) A transformation based algorithm for reversible logic synthesis. In: Proceeding of design automation conference, pp 318–323 Miller D, Maslov D, Dueck G (2003) A transformation based algorithm for reversible logic synthesis. In: Proceeding of design automation conference, pp 318–323
Zurück zum Zitat Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278:446–449CrossRef Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278:446–449CrossRef
Zurück zum Zitat Reif JH (1995) Parallel biomolecular computation: models and simulations. Algorithmica 25(21):322–323MathSciNet Reif JH (1995) Parallel biomolecular computation: models and simulations. Algorithmica 25(21):322–323MathSciNet
Zurück zum Zitat Saeedi M, Zamani MS, Sedighi M, Sasanian Z (2010) Reversible circuit synthesis using a cycle-based approach. J Emerg Technol Comput Syst 6(4):13:1–13:26CrossRef Saeedi M, Zamani MS, Sedighi M, Sasanian Z (2010) Reversible circuit synthesis using a cycle-based approach. J Emerg Technol Comput Syst 6(4):13:1–13:26CrossRef
Zurück zum Zitat Sanches CAA, Soma NY (2009) A polynomial-time DNA computing solution for the bin-packing problem. Appl Math Comput 215:2055–2062MathSciNetMATH Sanches CAA, Soma NY (2009) A polynomial-time DNA computing solution for the bin-packing problem. Appl Math Comput 215:2055–2062MathSciNetMATH
Zurück zum Zitat Sarker A, Ahmed T, Rashid S, Anwar S, Jaman L, Tara N, Alam M, Babu H (2011) Realization of reversible logic in dna computing. In: 2011 IEEE 11th international conference on bioinformatics and bioengineering (BIBE), pp 261–265 Sarker A, Ahmed T, Rashid S, Anwar S, Jaman L, Tara N, Alam M, Babu H (2011) Realization of reversible logic in dna computing. In: 2011 IEEE 11th international conference on bioinformatics and bioengineering (BIBE), pp 261–265
Zurück zum Zitat Shende VV, Prasad AK, Markov IL, Hayes JP (2002) Reversible logic circuit synthesis. In: Proceedings of the 2002 IEEE/ACM international conference on computer-aided design. ACM, pp 353–360 Shende VV, Prasad AK, Markov IL, Hayes JP (2002) Reversible logic circuit synthesis. In: Proceedings of the 2002 IEEE/ACM international conference on computer-aided design. ACM, pp 353–360
Zurück zum Zitat Shende V, Prasad A, Markov I, Hayes J (2003) Synthesis of reversible logic circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 22(6):710–722CrossRef Shende V, Prasad A, Markov I, Hayes J (2003) Synthesis of reversible logic circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 22(6):710–722CrossRef
Zurück zum Zitat Song T, Wang S, Wang X (2008) The design of reversible gate and reversible sequential circuit based on DNA computing. In: 3rd international conference on intelligent system and knowledge engineering, 2008, vol 1. ISKE 2008, pp 114–118 Song T, Wang S, Wang X (2008) The design of reversible gate and reversible sequential circuit based on DNA computing. In: 3rd international conference on intelligent system and knowledge engineering, 2008, vol 1. ISKE 2008, pp 114–118
Zurück zum Zitat Tsai S, Chang WL, Ho SH (2007) Constructing bio-molecular parallel adder with basic logic operations in the Adleman–Liption model. In: International conference on convergence information technology 2007, pp 925–930 Tsai S, Chang WL, Ho SH (2007) Constructing bio-molecular parallel adder with basic logic operations in the Adleman–Liption model. In: International conference on convergence information technology 2007, pp 925–930
Zurück zum Zitat Wille R, Drechsler R (2009) BDD-based synthesis of reversible logic for large functions. In: Design automation conference, pp 270–275 Wille R, Drechsler R (2009) BDD-based synthesis of reversible logic for large functions. In: Design automation conference, pp 270–275
Zurück zum Zitat Wille R, Drechsler R (2010) Towards a design flow for reversible logic. Springer, New YorkCrossRefMATH Wille R, Drechsler R (2010) Towards a design flow for reversible logic. Springer, New YorkCrossRefMATH
Zurück zum Zitat Xiao D, Li W, Yu J, Zhang X, Zhang Z, He L (2006) Procedures for a dynamical system on \(\{0,1\}^n\) with DNA molecules. Biosystems 84(3):207–216CrossRef Xiao D, Li W, Yu J, Zhang X, Zhang Z, He L (2006) Procedures for a dynamical system on \(\{0,1\}^n\) with DNA molecules. Biosystems 84(3):207–216CrossRef
Zurück zum Zitat Yazdi SHT, Yuan Y, Ma J, Zhao H, Milenkovic O (2015) A rewritable, random-access DNA-based storage system. Sci Rep. doi:10.1038/srep14138 Yazdi SHT, Yuan Y, Ma J, Zhao H, Milenkovic O (2015) A rewritable, random-access DNA-based storage system. Sci Rep. doi:10.​1038/​srep14138
Metadaten
Titel
Minimal reversible circuit synthesis on a DNA computer
verfasst von
Mayukh Sarkar
Prasun Ghosal
Saraju P. Mohanty
Publikationsdatum
10.05.2016
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 3/2017
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-016-9553-6

Weitere Artikel der Ausgabe 3/2017

Natural Computing 3/2017 Zur Ausgabe

Premium Partner