Skip to main content

2020 | OriginalPaper | Buchkapitel

Minimizing Material Consumption of 3D Printing with Stress-Guided Optimization

verfasst von : Anzong Zheng, Shaojun Bian, Ehtzaz Chaudhry, Jian Chang, Habibollah Haron, Lihua You, Jianjun Zhang

Erschienen in: Computational Science – ICCS 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

3D printing has been widely used in daily life, industry, architecture, aerospace, crafts, art, etc. Minimizing 3D printing material consumption can greatly reduce the costs. Therefore, how to design 3D printed objects with less materials while maintain structural soundness is an important problem. The current treatment is to use thin shells. However, thin shells have low strength. In this paper, we use stiffeners to stiffen 3D thin-shell objects for increasing the strength of the objects and propose a stress guided optimization framework to achieve minimum material consumption. First, we carry out finite element calculations to determine stress distribution in 3D objects and use the stress distribution to guide random generation of some points called seeds. Then we map the 3D objects and seeds to a 2D space and create a Voronoi Diagram from the seeds. The stiffeners are taken to be the edges of the Voronoi Diagram whose intersections with the edges of each of the triangles used to represent the polygon models of the 3D objects are used to define stiffeners. The obtained intersections are mapped back to 3D polygon models and the cross-section size of stiffeners is minimized under the constraint of the required strength. Monte-Carlo simulation is finally introduced to repeat the process from random seed generation to cross-section size optimization of stiffeners. Many experiments are presented to demonstrate the proposed framework and its advantages.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., Gross, M.: Computational design of actuated deformable characters. ACM Trans. Graph. 32(4), 82 (2013)CrossRef Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., Gross, M.: Computational design of actuated deformable characters. ACM Trans. Graph. 32(4), 82 (2013)CrossRef
2.
3.
Zurück zum Zitat Zhu, L., et al.: Motion-guided mechanical toy modeling. ACM Trans. Graph 31(6), 1–10 (2012)CrossRef Zhu, L., et al.: Motion-guided mechanical toy modeling. ACM Trans. Graph 31(6), 1–10 (2012)CrossRef
4.
Zurück zum Zitat Coros, S., et al.: Computational design of mechanical characters. ACM Trans. Graph. 32(4), 1–12 (2013)CrossRef Coros, S., et al.: Computational design of mechanical characters. ACM Trans. Graph. 32(4), 1–12 (2013)CrossRef
5.
Zurück zum Zitat Dong, Y., Wang, J., Pellacini, F., Tong, X., Guo, B.: Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29(4), 62 (2013) Dong, Y., Wang, J., Pellacini, F., Tong, X., Guo, B.: Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29(4), 62 (2013)
6.
Zurück zum Zitat Chen, D., Levin, D.I., Didyk, P., Sitthi-Amorn, P., Matusik, W.: Spec2Fab: a reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. 32(4), 135 (2013) Chen, D., Levin, D.I., Didyk, P., Sitthi-Amorn, P., Matusik, W.: Spec2Fab: a reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. 32(4), 135 (2013)
7.
Zurück zum Zitat Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method For Solid And Structural Mechanics. Elsevier, Amsterdam (2005) Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method For Solid And Structural Mechanics. Elsevier, Amsterdam (2005)
8.
Zurück zum Zitat Rao, D.V., Sheikh, A.H., Mukhopadhyay, M.: A finite element large displacement analysis of stiffened plates. Comput. Struct. 47(6), 987–993 (1993)CrossRef Rao, D.V., Sheikh, A.H., Mukhopadhyay, M.: A finite element large displacement analysis of stiffened plates. Comput. Struct. 47(6), 987–993 (1993)CrossRef
9.
Zurück zum Zitat Samanta, A., Mukhopadhyay, M.: Finite element large deflection static analysis of shallow and deep stiffened shells. Finite Elem. Anal. Des. 33(3), 187–208 (1999)CrossRef Samanta, A., Mukhopadhyay, M.: Finite element large deflection static analysis of shallow and deep stiffened shells. Finite Elem. Anal. Des. 33(3), 187–208 (1999)CrossRef
10.
Zurück zum Zitat Samanta, A., Mukhopadhyay, M.: Free vibration analysis of stiffened shells by the finite element technique. Eur. J. Mech. -A/Solids 23(1), 159–179 (2004)CrossRef Samanta, A., Mukhopadhyay, M.: Free vibration analysis of stiffened shells by the finite element technique. Eur. J. Mech. -A/Solids 23(1), 159–179 (2004)CrossRef
11.
Zurück zum Zitat Ojeda, R., Prusty, B.G., Lawrence, N., Thomas, G.: A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners. Finite Elem. Anal. Des. 43(13), 989–1002 (2007)CrossRef Ojeda, R., Prusty, B.G., Lawrence, N., Thomas, G.: A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners. Finite Elem. Anal. Des. 43(13), 989–1002 (2007)CrossRef
12.
Zurück zum Zitat Cui, X.Y., Liu, G.R., Li, G.Y., Zhao, X., Nguyen-Thoi, T., Sun, G.Y.: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. Comput. Model. Eng. Sci. 28(2), 109–125 (2008)MathSciNetMATH Cui, X.Y., Liu, G.R., Li, G.Y., Zhao, X., Nguyen-Thoi, T., Sun, G.Y.: A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. Comput. Model. Eng. Sci. 28(2), 109–125 (2008)MathSciNetMATH
13.
Zurück zum Zitat Nguyen-Van, H., Nguyen-Hoai, N., Chau-Dinh, T., Tran-Cong, T.: Large deflection analysis of plates and cylindrical shells by an efficient four-node flat element with mesh distortions. Acta Mech. 226(8), 2693–2713 (2015)MathSciNetCrossRef Nguyen-Van, H., Nguyen-Hoai, N., Chau-Dinh, T., Tran-Cong, T.: Large deflection analysis of plates and cylindrical shells by an efficient four-node flat element with mesh distortions. Acta Mech. 226(8), 2693–2713 (2015)MathSciNetCrossRef
14.
Zurück zum Zitat Stava, O., Vanek, J., Benes, B., Carr, N., Měch, R.: Stress relief: improving structural strength of 3D printable objects. ACM Trans. Graph. 31(4), 48 (2012)CrossRef Stava, O., Vanek, J., Benes, B., Carr, N., Měch, R.: Stress relief: improving structural strength of 3D printable objects. ACM Trans. Graph. 31(4), 48 (2012)CrossRef
15.
Zurück zum Zitat Zhao, H., Xu, W., Zhou, K., Yang, Y., Jin, X., Wu, H.: Stress-constrained thickness optimization for shell object fabrication. Comput. Graph. Forum 36(6), 368–380 (2017)CrossRef Zhao, H., Xu, W., Zhou, K., Yang, Y., Jin, X., Wu, H.: Stress-constrained thickness optimization for shell object fabrication. Comput. Graph. Forum 36(6), 368–380 (2017)CrossRef
16.
Zurück zum Zitat Wang, W., et al.: Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32(6), 177 (2013) Wang, W., et al.: Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32(6), 177 (2013)
17.
Zurück zum Zitat Lu, L., et al.: Build-to-last: strength to weight 3D printed objects. ACM Trans. Graph. 33(4), 97 (2014)MATH Lu, L., et al.: Build-to-last: strength to weight 3D printed objects. ACM Trans. Graph. 33(4), 97 (2014)MATH
18.
Zurück zum Zitat Li, W., Zheng, A., You, L., Yang, X., Zhang, J., Liu, L.: Rib-reinforced Shell Structure. Comput. Graph. Forum 36(7), 15–27 (2017)CrossRef Li, W., Zheng, A., You, L., Yang, X., Zhang, J., Liu, L.: Rib-reinforced Shell Structure. Comput. Graph. Forum 36(7), 15–27 (2017)CrossRef
19.
Zurück zum Zitat Zheng, A.: Optimally Stiffened Thin Shell Structures in 3D Printing. Ph.D. Thesis, Bournemouth University (2019) Zheng, A.: Optimally Stiffened Thin Shell Structures in 3D Printing. Ph.D. Thesis, Bournemouth University (2019)
20.
Zurück zum Zitat Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)CrossRef Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)CrossRef
21.
Zurück zum Zitat Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)MathSciNetCrossRef Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)MathSciNetCrossRef
Metadaten
Titel
Minimizing Material Consumption of 3D Printing with Stress-Guided Optimization
verfasst von
Anzong Zheng
Shaojun Bian
Ehtzaz Chaudhry
Jian Chang
Habibollah Haron
Lihua You
Jianjun Zhang
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-50426-7_44