Skip to main content

2021 | OriginalPaper | Buchkapitel

Mitigating Global Warming Through Carbonic Anhydrase-Mediated Carbon Sequestration

verfasst von : Himadri Bose, T. Satyanarayana

Erschienen in: Climate Change and Green Chemistry of CO2 Sequestration

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Industrial Revolution has led to an unprecedented rise in carbon dioxide concentrations in the atmosphere. Among various methods available for carbon capture from the industrial emissions such as flue gas, carbonic anhydrase (CA)-based carbon capture techniques have been evolved and gained immense attention in the recent years. Carbonic anhydrase (CA) is a zinc metalloenzyme, which is an essential biocatalyst for all living beings. It plays a role in accelerating the hydration and dehydration of carbon dioxide. This enzyme can be utilized in vitro for capturing carbon from industrial emissions. Thermo-alkali stable CAs from prokaryotes are the most promising candidates for biomimetic carbon sequestration owing to the high temperature of flue gas and alkaline condition needed for precipitation of calcium carbonate formed in the reaction. These CAs can be essentially immobilized on various solid supports and matrices for developing bioreactors and their continuous operation. This chapter reviews developments in utilizing CAs of prokaryotes in carbon capture technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40:321–348CrossRef Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40:321–348CrossRef
2.
Zurück zum Zitat Adams MR, Hurd HB, Lenhart S et al (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11:19–30CrossRef Adams MR, Hurd HB, Lenhart S et al (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11:19–30CrossRef
3.
Zurück zum Zitat Adler L, Brundell J, Falkbring SO, Nyman PO (1972) Carbonic anhydrase from Neisseria sicca, strain 6021 I. Bacterial growth and purification of the enzyme. Biochim Biophys Acta Enzym 284:298–310CrossRef Adler L, Brundell J, Falkbring SO, Nyman PO (1972) Carbonic anhydrase from Neisseria sicca, strain 6021 I. Bacterial growth and purification of the enzyme. Biochim Biophys Acta Enzym 284:298–310CrossRef
4.
Zurück zum Zitat Akdemir A, Vullo D, De Luca V et al (2013) The extremo-α-carbonic anhydrase (CA) from Sulfurihydrogenibium azorense, the fastest CA known, is highly activated by amino acids and amines. Bioorg Med Chem Lett 23:1087–1090CrossRef Akdemir A, Vullo D, De Luca V et al (2013) The extremo-α-carbonic anhydrase (CA) from Sulfurihydrogenibium azorense, the fastest CA known, is highly activated by amino acids and amines. Bioorg Med Chem Lett 23:1087–1090CrossRef
5.
Zurück zum Zitat Alber BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Nat Acad Sci U.S.A. 91:6909–6913 Alber BE, Ferry JG (1994) A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc Nat Acad Sci U.S.A. 91:6909–6913
6.
Zurück zum Zitat Alber BE, Ferry JG (1996) Characterization of heterologously produced carbonic Anhydrase from Methanosarcina thermophila J Bacteriol 178:3270–3274 Alber BE, Ferry JG (1996) Characterization of heterologously produced carbonic Anhydrase from Methanosarcina thermophila J Bacteriol 178:3270–3274
7.
Zurück zum Zitat Alvizo O, Nguyen LJ, Savile CK et al (2014) Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proc Nat Acad Sci USA 111:16436–16441CrossRef Alvizo O, Nguyen LJ, Savile CK et al (2014) Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proc Nat Acad Sci USA 111:16436–16441CrossRef
8.
Zurück zum Zitat Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17: 357–366 Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17: 357–366
9.
Zurück zum Zitat Angeli A, Del Prete S, Alasmary FA et al (2018) The first activation studies of the η-carbonic anhydrase from the malaria parasite Plasmodium falciparum with amines and amino acids. Bioorg Chem 80:94–98 Angeli A, Del Prete S, Alasmary FA et al (2018) The first activation studies of the η-carbonic anhydrase from the malaria parasite Plasmodium falciparum with amines and amino acids. Bioorg Chem 80:94–98
10.
Zurück zum Zitat Angeli A, Alasmary FA, Del Prete S et al (2018) The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom Thalassiosira weissflogii is effectively activated by amines and amino acids. J Enzyme Inhib Med Chem 33:680–685CrossRef Angeli A, Alasmary FA, Del Prete S et al (2018) The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom Thalassiosira weissflogii is effectively activated by amines and amino acids. J Enzyme Inhib Med Chem 33:680–685CrossRef
11.
Zurück zum Zitat Angeli A, Donald WA, Parkkila S, Supuran CT (2018) Activation studies with amines and amino acids of the β-carbonic anhydrase from the pathogenic protozoan Leishmania donovani chagasi. Bioorg Chem 78:406–410 Angeli A, Donald WA, Parkkila S, Supuran CT (2018) Activation studies with amines and amino acids of the β-carbonic anhydrase from the pathogenic protozoan Leishmania donovani chagasi. Bioorg Chem 78:406–410
12.
Zurück zum Zitat Aspelund A, Molnvik MJ, DeKoeijer G (2006) Ship transport of CO2, technical solutions and analysis of costs, energy utilization, energy efficiency and CO2 emissions. Chem Eng Res Des 84:847–855CrossRef Aspelund A, Molnvik MJ, DeKoeijer G (2006) Ship transport of CO2, technical solutions and analysis of costs, energy utilization, energy efficiency and CO2 emissions. Chem Eng Res Des 84:847–855CrossRef
13.
Zurück zum Zitat Badger MR, Price GD (2003) CO2 concentrating mechanisms in Cyanobacteria: Molecular components, their diversity and evolution. J Exp Bot 54:609–622CrossRef Badger MR, Price GD (2003) CO2 concentrating mechanisms in Cyanobacteria: Molecular components, their diversity and evolution. J Exp Bot 54:609–622CrossRef
14.
Zurück zum Zitat Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W H Freeman, New York Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W H Freeman, New York
15.
Zurück zum Zitat Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45:8624–8632CrossRef Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45:8624–8632CrossRef
16.
Zurück zum Zitat Boone CD, Gill S, Habibzadegan A et al (2013) Carbonic anhydrase: an efficient enzyme with possible global implications. Int J Chem Eng 1–7 Boone CD, Gill S, Habibzadegan A et al (2013) Carbonic anhydrase: an efficient enzyme with possible global implications. Int J Chem Eng 1–7
17.
Zurück zum Zitat Bose H, Satyanarayana T (2016) Suitability of the alkalistable carbonic anhydrase from a polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic carbon sequestration. Bioprocess Biosyst Eng 39:1515–1525CrossRef Bose H, Satyanarayana T (2016) Suitability of the alkalistable carbonic anhydrase from a polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic carbon sequestration. Bioprocess Biosyst Eng 39:1515–1525CrossRef
18.
Zurück zum Zitat Bose H, Satyanarayana T (2017a) Utility of thermo-alkali-stable γ-CA from polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic sequestration of CO2 and as a virtual peroxidase. Environ Sci Pollut R 24:10869–10884CrossRef Bose H, Satyanarayana T (2017a) Utility of thermo-alkali-stable γ-CA from polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic sequestration of CO2 and as a virtual peroxidase. Environ Sci Pollut R 24:10869–10884CrossRef
19.
Zurück zum Zitat Bose H, Satyanarayana T (2017b) Microbial carbonic anhydrases in biomimetic carbon sequestration for mitigating global warming: prospects and perspectives. Front Microbiol 8:1615CrossRef Bose H, Satyanarayana T (2017b) Microbial carbonic anhydrases in biomimetic carbon sequestration for mitigating global warming: prospects and perspectives. Front Microbiol 8:1615CrossRef
20.
Zurück zum Zitat Bose H, Satyanarayana T (2018) Carbonic anhydrases of extremophilic microbes and their applicability in mitigating global warming through carbon sequestration. In: Durvasula VR, Subba Rao DV (eds) Extremophiles. CRC Press, pp 249–276 Bose H, Satyanarayana T (2018) Carbonic anhydrases of extremophilic microbes and their applicability in mitigating global warming through carbon sequestration. In: Durvasula VR, Subba Rao DV (eds) Extremophiles. CRC Press, pp 249–276
21.
Zurück zum Zitat Braus-Stromeyer SA, Schnappauf G, Braus GH et al (1997) Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria. J Bacteriol 179:7197–7200 Braus-Stromeyer SA, Schnappauf G, Braus GH et al (1997) Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria. J Bacteriol 179:7197–7200
22.
Zurück zum Zitat Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279CrossRef Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279CrossRef
23.
Zurück zum Zitat Capasso C, De Luca V, Carginalea V et al (2012) Characterization and properties of a new thermoactive and thermostable carbonic anhydrase. Chem Eng 27:271–276 Capasso C, De Luca V, Carginalea V et al (2012) Characterization and properties of a new thermoactive and thermostable carbonic anhydrase. Chem Eng 27:271–276
24.
Zurück zum Zitat Chirică LC, Elleby B, Jonsson BH et al (1997) The complete sequence, expression in Escherichia coli, purification and some properties of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem 24:55–760 Chirică LC, Elleby B, Jonsson BH et al (1997) The complete sequence, expression in Escherichia coli, purification and some properties of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem 24:55–760
25.
Zurück zum Zitat Christer J, Wullschleger D, Stan KC et al (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696CrossRef Christer J, Wullschleger D, Stan KC et al (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696CrossRef
27.
Zurück zum Zitat Cowan RM, Ge JJ, Qin YJ et al (2003) CO2 capture by means of an enzyme-based reactor. Ann N Y Acad Sci 984:453–469CrossRef Cowan RM, Ge JJ, Qin YJ et al (2003) CO2 capture by means of an enzyme-based reactor. Ann N Y Acad Sci 984:453–469CrossRef
28.
Zurück zum Zitat Cronk JD, Endrizzi JA, Cronk MR et al (2001) Crystal structure of E. coli β–carbonic anhydrase, an enzyme with an unusual pH–dependent activity. Prot Sci 10:911–922CrossRef Cronk JD, Endrizzi JA, Cronk MR et al (2001) Crystal structure of E. coli β–carbonic anhydrase, an enzyme with an unusual pH–dependent activity. Prot Sci 10:911–922CrossRef
29.
Zurück zum Zitat Da Silva EF, Booth AM (2013) Emissions from post-combustion CO2 capture plants. Environ Sci Technol 47:659–660CrossRef Da Silva EF, Booth AM (2013) Emissions from post-combustion CO2 capture plants. Environ Sci Technol 47:659–660CrossRef
30.
Zurück zum Zitat Dahlberg L, Hoist O, Kristjansson KJ (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68 Dahlberg L, Hoist O, Kristjansson KJ (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68
31.
Zurück zum Zitat De Luca V, Vullo D, Scozzafava A et al (2013) An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorg Med Chem 21:1465–1469 De Luca V, Vullo D, Scozzafava A et al (2013) An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorg Med Chem 21:1465–1469
32.
Zurück zum Zitat Di Fiore A, Capasso C, De Luca V et al (2013) X-ray structure of the firstextremo-α-carbonic anhydrase’, a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Acta Crystallogr D 69:1150–1159CrossRef Di Fiore A, Capasso C, De Luca V et al (2013) X-ray structure of the firstextremo-α-carbonic anhydrase’, a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Acta Crystallogr D 69:1150–1159CrossRef
33.
Zurück zum Zitat Dutreuil S, Bopp L, Tagliabue A (2009) Impact of enhanced vertical mixing on marine biogeochemistry: lessons for geo-engineering and natural variability. Biogeosciences 6:901–912CrossRef Dutreuil S, Bopp L, Tagliabue A (2009) Impact of enhanced vertical mixing on marine biogeochemistry: lessons for geo-engineering and natural variability. Biogeosciences 6:901–912CrossRef
34.
Zurück zum Zitat Elleby B, Chirica LC, Tu C et al (2001) Characterization of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem 268:1613–1619CrossRef Elleby B, Chirica LC, Tu C et al (2001) Characterization of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem 268:1613–1619CrossRef
35.
Zurück zum Zitat Faridi S, Satyanarayana T (2015) Bioconversion of industrial CO2 emissions into utilizable products. In: Chandra R (ed) Industrial waste management. CRC Press, New York, pp 111–156 Faridi S, Satyanarayana T (2015) Bioconversion of industrial CO2 emissions into utilizable products. In: Chandra R (ed) Industrial waste management. CRC Press, New York, pp 111–156
36.
Zurück zum Zitat Faridi S, Satyanarayana T (2016a) Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: Characteristics and applicability in flue gas CO2 sequestration. Environ Sci Pollut R 15:15236–15249 Faridi S, Satyanarayana T (2016a) Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: Characteristics and applicability in flue gas CO2 sequestration. Environ Sci Pollut R 15:15236–15249
37.
Zurück zum Zitat Faridi S, Satyanarayana T (2016b) Characteristics of recombinant α-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1. Int J Biol Macromol 89:659–668 Faridi S, Satyanarayana T (2016b) Characteristics of recombinant α-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1. Int J Biol Macromol 89:659–668
38.
Zurück zum Zitat Faridi S, Satyanarayana T (2018) Thermo-alkali-stable α-carbonic anhydrase of Bacillus halodurans: heterologous expression in Pichia pastoris and applicability in carbon sequestration. Environ Sci Pollut R 25:6838–6849 Faridi S, Satyanarayana T (2018) Thermo-alkali-stable α-carbonic anhydrase of Bacillus halodurans: heterologous expression in Pichia pastoris and applicability in carbon sequestration. Environ Sci Pollut R 25:6838–6849
39.
Zurück zum Zitat Faridi S, Bose H, Satyanarayana T (2017) Utility of immobilized recombinant carbonic anhydrase of Bacillus halodurans TSLV1 on the surface of modified iron magnetic nanoparticles in Carbon Sequestration. Energ Fuel 31:3002–3009 Faridi S, Bose H, Satyanarayana T (2017) Utility of immobilized recombinant carbonic anhydrase of Bacillus halodurans TSLV1 on the surface of modified iron magnetic nanoparticles in Carbon Sequestration. Energ Fuel 31:3002–3009
40.
Zurück zum Zitat Farrell A (2011) Carbon dioxide storage in stable carbonate minerals. Basalt laboratory studies of interest to carbon capture and storage. Advisor MN Evans University of Maryland Geology 1–24 Farrell A (2011) Carbon dioxide storage in stable carbonate minerals. Basalt laboratory studies of interest to carbon capture and storage. Advisor MN Evans University of Maryland Geology 1–24
41.
Zurück zum Zitat Favre N, Christ ML, Pierre AC (2009) Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. J Mol Catal B Enzym 60:163–170 Favre N, Christ ML, Pierre AC (2009) Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. J Mol Catal B Enzym 60:163–170
42.
Zurück zum Zitat Feinstein CH (1998) Pessimism perpetuated: real wages and the standard of living in Britain during and after the industrial revolution. J Econ Hist 58:625–658 Feinstein CH (1998) Pessimism perpetuated: real wages and the standard of living in Britain during and after the industrial revolution. J Econ Hist 58:625–658
43.
Zurück zum Zitat Ferrer M, Martínez-Martínez M, Bargiela R et al (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9:22–34CrossRef Ferrer M, Martínez-Martínez M, Bargiela R et al (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9:22–34CrossRef
44.
Zurück zum Zitat Ferry JG (2010) The gamma class of carbonic anhydrases. Biochim Biophys Acta 1804:374–381CrossRef Ferry JG (2010) The gamma class of carbonic anhydrases. Biochim Biophys Acta 1804:374–381CrossRef
45.
Zurück zum Zitat Fisher Z, Boone CD, Biswas SM, Venkatakrishnan B, Aggarwal M, Tu C, Agbandje-McKenna M, Silverman D, McKenna R (2012) Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II. Protein Eng Des Sel 25:347–355 Fisher Z, Boone CD, Biswas SM, Venkatakrishnan B, Aggarwal M, Tu C, Agbandje-McKenna M, Silverman D, McKenna R (2012) Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II. Protein Eng Des Sel 25:347–355
46.
Zurück zum Zitat Frost SC, McKenna R (eds) (2013) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer Science & Business Media Frost SC, McKenna R (eds) (2013) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer Science & Business Media
47.
Zurück zum Zitat Fujita N, Mori H, Yura T et al (1994) Systematic sequencing of the Escherichia coli genome: analysis of the 2.4–4.1 min (110,917–193,643 bp) region. Nucleic Acids Res 22:1637–1639CrossRef Fujita N, Mori H, Yura T et al (1994) Systematic sequencing of the Escherichia coli genome: analysis of the 2.4–4.1 min (110,917–193,643 bp) region. Nucleic Acids Res 22:1637–1639CrossRef
48.
Zurück zum Zitat Garg A, Shukla PR, Kankal B et al (2017) CO2 emission in India: trends and management at sectoral, sub-regional and plant levels. Carbon Manag 8:111–123CrossRef Garg A, Shukla PR, Kankal B et al (2017) CO2 emission in India: trends and management at sectoral, sub-regional and plant levels. Carbon Manag 8:111–123CrossRef
49.
Zurück zum Zitat Gill SR, Fedorka-Cray PJ et al (1984) Purification and properties of the carbonic anhydrase of Rhodospirillum rubrum. Arch Microbiol 138:113–118 Gill SR, Fedorka-Cray PJ et al (1984) Purification and properties of the carbonic anhydrase of Rhodospirillum rubrum. Arch Microbiol 138:113–118
50.
Zurück zum Zitat Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371CrossRef Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371CrossRef
51.
Zurück zum Zitat Hart A, Gnanendran N (2009) Cryogenic CO2 capture in natural gas. Energy Proc 1:697–706CrossRef Hart A, Gnanendran N (2009) Cryogenic CO2 capture in natural gas. Energy Proc 1:697–706CrossRef
52.
Zurück zum Zitat Haszeldine SR (2009) Carbon capture and storage: how green can black be. Science 325:1647–1652CrossRef Haszeldine SR (2009) Carbon capture and storage: how green can black be. Science 325:1647–1652CrossRef
53.
Zurück zum Zitat Herzog HJ (1998) Ocean sequestration of CO2—an overview. In: fourth international conference on greenhouse gas control technologies August 30–September 2 Interlaken, Switzerland 1–5 Herzog HJ (1998) Ocean sequestration of CO2—an overview. In: fourth international conference on greenhouse gas control technologies August 30–September 2 Interlaken, Switzerland 1–5
54.
Zurück zum Zitat Hicks N, Vik U, Taylor P et al (2017) Using prokaryotes for carbon capture storage. Trends Biotechnol 35:22–32CrossRef Hicks N, Vik U, Taylor P et al (2017) Using prokaryotes for carbon capture storage. Trends Biotechnol 35:22–32CrossRef
55.
Zurück zum Zitat Horn J, Rosenband LN and Smith MR (eds) (2010) Reconceptualizing the industrial revolution. MIT press Horn J, Rosenband LN and Smith MR (eds) (2010) Reconceptualizing the industrial revolution. MIT press
56.
57.
Zurück zum Zitat Hu H, Gao K (2008) Impacts of CO2 enrichment on growth and photosynthesis in freshwater and marine diatoms. Chin J Oceanol Limnol 26:407–414CrossRef Hu H, Gao K (2008) Impacts of CO2 enrichment on growth and photosynthesis in freshwater and marine diatoms. Chin J Oceanol Limnol 26:407–414CrossRef
58.
Zurück zum Zitat Huijgen WJ, Comans RN, Witkamp GJ (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers Manag 48:1923–1935CrossRef Huijgen WJ, Comans RN, Witkamp GJ (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers Manag 48:1923–1935CrossRef
60.
Zurück zum Zitat Iliuta I, Larachi F (2012) New scrubber concept for catalytic CO2 hydration by immobilized carbonic anhydrase II & in-situ inhibitor removal in three-phase monolith slurry reactor. Sep Purif Technol 86:199–214CrossRef Iliuta I, Larachi F (2012) New scrubber concept for catalytic CO2 hydration by immobilized carbonic anhydrase II & in-situ inhibitor removal in three-phase monolith slurry reactor. Sep Purif Technol 86:199–214CrossRef
61.
Zurück zum Zitat IPCC (Inter-governmental Panel on Climate Change) (2014) Climate change 2014 synthesis report. Cambridge University Press, Cambridge IPCC (Inter-governmental Panel on Climate Change) (2014) Climate change 2014 synthesis report. Cambridge University Press, Cambridge
63.
Zurück zum Zitat IPCC (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, New York IPCC (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, New York
64.
Zurück zum Zitat Jahn A, Vreeland WN, DeVoe DL et al (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293CrossRef Jahn A, Vreeland WN, DeVoe DL et al (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293CrossRef
65.
Zurück zum Zitat Jeyakanthan J, Rangarajan S, Mridula P et al (2008) Observation of a calcium-binding site in the γ-class carbonic anhydrase from Pyrococcus horikoshii. Acta Crystallogr. D 64:1012–1019CrossRef Jeyakanthan J, Rangarajan S, Mridula P et al (2008) Observation of a calcium-binding site in the γ-class carbonic anhydrase from Pyrococcus horikoshii. Acta Crystallogr. D 64:1012–1019CrossRef
66.
Zurück zum Zitat Jin X, Gruber N, Frenzel H et al (2008) The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. Biogeosciences 5:385–406CrossRef Jin X, Gruber N, Frenzel H et al (2008) The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. Biogeosciences 5:385–406CrossRef
67.
Zurück zum Zitat Jo BH, Kang DG, Kim CS, Choi YS, Cha HJ (2012) Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere 87:1091–1096 Jo BH, Kang DG, Kim CS, Choi YS, Cha HJ (2012) Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere 87:1091–1096
68.
Zurück zum Zitat Jo BH, Kim IG, Seo JH et al (2013) Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl Environ Microbiol 79:6697–6705 Jo BH, Kim IG, Seo JH et al (2013) Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl Environ Microbiol 79:6697–6705
69.
Zurück zum Zitat Jo BH, Seo JH, Cha JC (2014) Bacterial extremo- α-carbonic anhydrases from deep-sea hydrothermal vents as potential biocatalysts for CO2 sequestration. J Mol Catal B Enzym 109:31–39CrossRef Jo BH, Seo JH, Cha JC (2014) Bacterial extremo- α-carbonic anhydrases from deep-sea hydrothermal vents as potential biocatalysts for CO2 sequestration. J Mol Catal B Enzym 109:31–39CrossRef
70.
Zurück zum Zitat Kanbar B, Ozdemir E (2010) Thermal stability of carbonic anhydrase immobilized within polyurethane foam. Biotechnol Prog 26:1474−1480 Kanbar B, Ozdemir E (2010) Thermal stability of carbonic anhydrase immobilized within polyurethane foam. Biotechnol Prog 26:1474−1480
71.
Zurück zum Zitat Kanth BK, Min K, Kumari S et al (2012) Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO2 sequestration application. Appl Biochem Biotechnol 167:2341–2356CrossRef Kanth BK, Min K, Kumari S et al (2012) Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO2 sequestration application. Appl Biochem Biotechnol 167:2341–2356CrossRef
72.
Zurück zum Zitat Kanth BK, Jun SY, Kumari S (2014) Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: its expression and characterization for CO2 sequestration applications. Process Biochem 49:2114–2121CrossRef Kanth BK, Jun SY, Kumari S (2014) Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: its expression and characterization for CO2 sequestration applications. Process Biochem 49:2114–2121CrossRef
73.
Zurück zum Zitat Ki MR, Min K, Kanth BK et al (2013) Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO2 sequestration application. Bioprocess Biosyst Eng 36:375–381CrossRef Ki MR, Min K, Kanth BK et al (2013) Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO2 sequestration application. Bioprocess Biosyst Eng 36:375–381CrossRef
74.
Zurück zum Zitat Kikutani S, Nakajima K, Nagasato C et al (2016) Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Nat Acad Sci USA 113:9828–9833CrossRef Kikutani S, Nakajima K, Nagasato C et al (2016) Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Nat Acad Sci USA 113:9828–9833CrossRef
75.
Zurück zum Zitat Kindermann G, Obersteiner M, Sohngen B et al (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Nat Acad Sci USA 105:10302–10307CrossRef Kindermann G, Obersteiner M, Sohngen B et al (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Nat Acad Sci USA 105:10302–10307CrossRef
76.
Zurück zum Zitat Knudsen JN, Jensen JN, Vilhelmsen PJ, Biede O (2009) Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents. Energy Proc 1:783–790CrossRef Knudsen JN, Jensen JN, Vilhelmsen PJ, Biede O (2009) Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents. Energy Proc 1:783–790CrossRef
77.
Zurück zum Zitat Kubler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ 22:1303–1310CrossRef Kubler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ 22:1303–1310CrossRef
78.
Zurück zum Zitat Kumar RSS, Ferry JG (2014) Prokaryotic carbonic anhydrases of Earth’s environment. In: Frost S, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer, Dordrecht, pp 77–87 Kumar RSS, Ferry JG (2014) Prokaryotic carbonic anhydrases of Earth’s environment. In: Frost S, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer, Dordrecht, pp 77–87
79.
Zurück zum Zitat Kumar V, Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol Lett 33: 2279–2285 Kumar V, Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol Lett 33: 2279–2285
80.
Zurück zum Zitat Kupriyanova EV, Villarejo A, Markelova AG et al (2007) Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Microbiology 153:1149–1156 Kupriyanova EV, Villarejo A, Markelova AG et al (2007) Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Microbiology 153:1149–1156
81.
Zurück zum Zitat Kupriyanova EV, Sinetova MA, Markelova AG et al (2011) Extracellular β_class carbonic anhydrase of the alka-liphilic cyanobacterium Microcoleus chthonoplastes. J Photochem Photobiol B 103:78–86CrossRef Kupriyanova EV, Sinetova MA, Markelova AG et al (2011) Extracellular β_class carbonic anhydrase of the alka-liphilic cyanobacterium Microcoleus chthonoplastes. J Photochem Photobiol B 103:78–86CrossRef
82.
Zurück zum Zitat Kusian B, Sultemeyer D, Bowien B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184:5018–5026CrossRef Kusian B, Sultemeyer D, Bowien B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184:5018–5026CrossRef
83.
Zurück zum Zitat Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRef Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRef
84.
Zurück zum Zitat Lee MH, Lee SW (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genome Inform 11:114CrossRef Lee MH, Lee SW (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genome Inform 11:114CrossRef
85.
Zurück zum Zitat Li M, Su ZG, Janson, JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10 Li M, Su ZG, Janson, JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10
86.
Zurück zum Zitat Li S, An L, Duan Q et al (2018) Determining the rate of carbonic anhydrase reaction in the human brain. Sci Rep 8:2328 Li S, An L, Duan Q et al (2018) Determining the rate of carbonic anhydrase reaction in the human brain. Sci Rep 8:2328
87.
Zurück zum Zitat Lim X (2015) How to make most of carbon dioxide. Nature 526:629–630CrossRef Lim X (2015) How to make most of carbon dioxide. Nature 526:629–630CrossRef
88.
Zurück zum Zitat Liu N, Bond GM, Abel TA et al (2005) Biomimetic sequestration of CO2 in carbonate form: role of produced waters and other brines. Fuel Process Technol 86:1615–1625CrossRef Liu N, Bond GM, Abel TA et al (2005) Biomimetic sequestration of CO2 in carbonate form: role of produced waters and other brines. Fuel Process Technol 86:1615–1625CrossRef
89.
Zurück zum Zitat Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510CrossRef Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510CrossRef
90.
Zurück zum Zitat Lucas RE (ed) (2002) Lectures on economic growth. Harvard University Press Lucas RE (ed) (2002) Lectures on economic growth. Harvard University Press
91.
Zurück zum Zitat MacAuley SR, Zimmerman SA, Apolinario EE et al (2009) The archetype γ-class carbonic anhydrase (cam) contains iron when synthesized in vivo. Biochemistry 48:817–819 MacAuley SR, Zimmerman SA, Apolinario EE et al (2009) The archetype γ-class carbonic anhydrase (cam) contains iron when synthesized in vivo. Biochemistry 48:817–819
92.
Zurück zum Zitat McCloskey D (2004) Review of the Cambridge economic history of modern Britain. In: Floud R, Paul J (eds) Times higher education supplement, 15 Jan 2004 McCloskey D (2004) Review of the Cambridge economic history of modern Britain. In: Floud R, Paul J (eds) Times higher education supplement, 15 Jan 2004
93.
Zurück zum Zitat Meldrum NU, Roughton FJ (1933) Carbonic anhydrase. Its preparation and properties. J Physiol 80:113 Meldrum NU, Roughton FJ (1933) Carbonic anhydrase. Its preparation and properties. J Physiol 80:113
94.
Zurück zum Zitat Merlin C, Masters M, McAteer S (2003) Why is carbonic anhydrase essential to Escherichia coli. J Bacteriol 185:6415–6424CrossRef Merlin C, Masters M, McAteer S (2003) Why is carbonic anhydrase essential to Escherichia coli. J Bacteriol 185:6415–6424CrossRef
95.
Zurück zum Zitat Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082CrossRef Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082CrossRef
96.
Zurück zum Zitat Migliardini F, De Luca V, Carginale V et al (2014) Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam. J Enzyme Inhib Med Chem 29:146–150CrossRef Migliardini F, De Luca V, Carginale V et al (2014) Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam. J Enzyme Inhib Med Chem 29:146–150CrossRef
97.
Zurück zum Zitat Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46:921–926CrossRef Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46:921–926CrossRef
98.
Zurück zum Zitat Monastersky R (1995) Iron versus the greenhouse: Oceanographers cautiously explore a global warming therapy. Sci News 148:220CrossRef Monastersky R (1995) Iron versus the greenhouse: Oceanographers cautiously explore a global warming therapy. Sci News 148:220CrossRef
99.
Zurück zum Zitat Nakagawa S, Shtaih Z, Banta A, Beveridge TJ et al (2005) Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. Int J Syst Evol Microbiol 55:2263–2268 Nakagawa S, Shtaih Z, Banta A, Beveridge TJ et al (2005) Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. Int J Syst Evol Microbiol 55:2263–2268
100.
Zurück zum Zitat Nara TY, Togashi H, Sekikawa C et al (2009) Use of zeolite to refold a disulfide-bonded protein. Colloids Surf B 68:68–73CrossRef Nara TY, Togashi H, Sekikawa C et al (2009) Use of zeolite to refold a disulfide-bonded protein. Colloids Surf B 68:68–73CrossRef
101.
Zurück zum Zitat Nielsen CJ, Herrmann H, Weller C (2012) Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chem Soc Rev 41:6684–6704CrossRef Nielsen CJ, Herrmann H, Weller C (2012) Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chem Soc Rev 41:6684–6704CrossRef
103.
Zurück zum Zitat Norici A, Dalsass A, Giordano M (2002) Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. Physiol Plant 116:186–191CrossRef Norici A, Dalsass A, Giordano M (2002) Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. Physiol Plant 116:186–191CrossRef
104.
Zurück zum Zitat Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications–a review. Energy 35:2610–2628CrossRef Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications–a review. Energy 35:2610–2628CrossRef
105.
Zurück zum Zitat Peña KL, Castel SE, de Araujo C et al (2010) Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proc Nat Acad Sci USA 107:2455–2460CrossRef Peña KL, Castel SE, de Araujo C et al (2010) Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proc Nat Acad Sci USA 107:2455–2460CrossRef
106.
Zurück zum Zitat Prabhu C, Valechha A, Wanjari S et al (2011) Carbon composite beads for immobilization of carbonic anhydrase. J Mol Catal B Enzym 71:71–78CrossRef Prabhu C, Valechha A, Wanjari S et al (2011) Carbon composite beads for immobilization of carbonic anhydrase. J Mol Catal B Enzym 71:71–78CrossRef
107.
Zurück zum Zitat Prabhu C, Wanjari S, Gawande S et al (2009) Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials. J Mol Catal B Enzym 60:13–21CrossRef Prabhu C, Wanjari S, Gawande S et al (2009) Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials. J Mol Catal B Enzym 60:13–21CrossRef
108.
Zurück zum Zitat Premkumar L, Bageshwar UK, Gokhman I et al (2003) An unusual halotolerant alpha-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli. Protein Expr Purif 28:151–157CrossRef Premkumar L, Bageshwar UK, Gokhman I et al (2003) An unusual halotolerant alpha-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli. Protein Expr Purif 28:151–157CrossRef
109.
Zurück zum Zitat Princiotta FT (2007) The role of power generation technology in mitigating global climate change. In: Cen K, Chi Y, Wang F (eds) Challenges of power engineering and environment. Springer, Berlin, pp 3–13CrossRef Princiotta FT (2007) The role of power generation technology in mitigating global climate change. In: Cen K, Chi Y, Wang F (eds) Challenges of power engineering and environment. Springer, Berlin, pp 3–13CrossRef
110.
Zurück zum Zitat Puri AK (2012) Carbon sequestration using heterotrophic bacteria Puri AK (2012) Carbon sequestration using heterotrophic bacteria
111.
Zurück zum Zitat Puri AK, Satyanarayana T (2010) Carbon sequestration for mitigating disastrous effects of global warming. In: Goel M (ed) Natural and Manmade Disasters. MD Publications, New Delhi, pp 229−252 Puri AK, Satyanarayana T (2010) Carbon sequestration for mitigating disastrous effects of global warming. In: Goel M (ed) Natural and Manmade Disasters. MD Publications, New Delhi, pp 229−252
112.
Zurück zum Zitat Ramanan R, Kannan K, Sivanesan SD et al (2009) Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World J Microbiol Biotechnol 25:981–987CrossRef Ramanan R, Kannan K, Sivanesan SD et al (2009) Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World J Microbiol Biotechnol 25:981–987CrossRef
113.
Zurück zum Zitat Rayalu S, Yadav R, Wanjari S et al (2012) Nanobiocatalysts for carbon capture, sequestration and valorisation. Top Catal 55:1217–1230CrossRef Rayalu S, Yadav R, Wanjari S et al (2012) Nanobiocatalysts for carbon capture, sequestration and valorisation. Top Catal 55:1217–1230CrossRef
114.
Zurück zum Zitat Reddy KJ, Weber H, Bhattacharya P et al (2010) Instantaneous capture and mineralization of flue gas carbon dioxide: pilot scale study. Nat Preceed 1–11 Reddy KJ, Weber H, Bhattacharya P et al (2010) Instantaneous capture and mineralization of flue gas carbon dioxide: pilot scale study. Nat Preceed 1–11
115.
Zurück zum Zitat Reynolds AJ, Verheyen TV, Adeloju SB et al (2012) Towards commercial scale post combustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol 46:3643–3654CrossRef Reynolds AJ, Verheyen TV, Adeloju SB et al (2012) Towards commercial scale post combustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol 46:3643–3654CrossRef
116.
Zurück zum Zitat Rowlett RS, Hoffmann KM, Failing H et al (2010) Evidence for a bicarbonate “escort” site in Haemophilus influenzae β-carbonic anhydrase. Biochemistry 49:3640–3647 Rowlett RS, Hoffmann KM, Failing H et al (2010) Evidence for a bicarbonate “escort” site in Haemophilus influenzae β-carbonic anhydrase. Biochemistry 49:3640–3647
117.
Zurück zum Zitat Russo ME, Olivieri G, Capasso C et al (2013) Kinetic study of a novel thermo-stable α-carbonic anhydrase for biomimetic CO2 capture. Enzym Microb Technol 53:271–277CrossRef Russo ME, Olivieri G, Capasso C et al (2013) Kinetic study of a novel thermo-stable α-carbonic anhydrase for biomimetic CO2 capture. Enzym Microb Technol 53:271–277CrossRef
118.
Zurück zum Zitat Sakono M, Kawashima YM, Ichinose H et al (2004) Direct refolding of inclusion bodies using reversed micelles. Biotechnol Prog 201783–1787 Sakono M, Kawashima YM, Ichinose H et al (2004) Direct refolding of inclusion bodies using reversed micelles. Biotechnol Prog 201783–1787
119.
Zurück zum Zitat Santos A, Toledo-Fernandez JA, Mendoza-Serna R et al (2007) Chemically active silica aerogel− wollastonite composites for CO2 fixation by carbonation reactions. Ind Eng Chem Res 46:103–107 Santos A, Toledo-Fernandez JA, Mendoza-Serna R et al (2007) Chemically active silica aerogel− wollastonite composites for CO2 fixation by carbonation reactions. Ind Eng Chem Res 46:103–107
120.
Zurück zum Zitat Shahbazi A, Nasab BR (2016) Carbon capture and storage (CCS) and its impacts on climate change and global warming. J Pet Environ Biotechnol 7:29 Shahbazi A, Nasab BR (2016) Carbon capture and storage (CCS) and its impacts on climate change and global warming. J Pet Environ Biotechnol 7:29
121.
Zurück zum Zitat Shakun JD, Clark PU, He F et al (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54CrossRef Shakun JD, Clark PU, He F et al (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54CrossRef
122.
Zurück zum Zitat Sharma A, Bhattacharya A (2010) Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J Mol Catal B Enzym 67:122–128CrossRef Sharma A, Bhattacharya A (2010) Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J Mol Catal B Enzym 67:122–128CrossRef
123.
Zurück zum Zitat Sharma A, Bhattacharya A, Shrivastava A (2011) Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials. Enzyme Microb Technol 48:416–426CrossRef Sharma A, Bhattacharya A, Shrivastava A (2011) Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials. Enzyme Microb Technol 48:416–426CrossRef
124.
Zurück zum Zitat Shutova T, Kenneweg H, Buchta J et al (2008) The photosystem II_associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J 27:782–791CrossRef Shutova T, Kenneweg H, Buchta J et al (2008) The photosystem II_associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J 27:782–791CrossRef
125.
Zurück zum Zitat Silverman DN (1982) Carbonic anhydrase: Oxygen-18 exchange catalyzed by an enzyme with rate-contributing Proton-transfer steps. Methods Enzymol 87:732–752CrossRef Silverman DN (1982) Carbonic anhydrase: Oxygen-18 exchange catalyzed by an enzyme with rate-contributing Proton-transfer steps. Methods Enzymol 87:732–752CrossRef
126.
Zurück zum Zitat Silverman DN, Lindskog S (1988) The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting photolysis of water. Acc Chem Res 21:30–36CrossRef Silverman DN, Lindskog S (1988) The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting photolysis of water. Acc Chem Res 21:30–36CrossRef
127.
Zurück zum Zitat Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366CrossRef Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366CrossRef
128.
Zurück zum Zitat Smith KS, Cosper NJ, Stalhandske C et al (2000) Structural and kinetic characterization of an archaeal β-class carbonic anhydrase. J Bacteriol 182:6605–6613CrossRef Smith KS, Cosper NJ, Stalhandske C et al (2000) Structural and kinetic characterization of an archaeal β-class carbonic anhydrase. J Bacteriol 182:6605–6613CrossRef
129.
Zurück zum Zitat Smith KS, Jakubzick C, Whittam TS, Ferry JG (1999) Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc Nat Acad Sci 96:15184–15189CrossRef Smith KS, Jakubzick C, Whittam TS, Ferry JG (1999) Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc Nat Acad Sci 96:15184–15189CrossRef
130.
Zurück zum Zitat So AK, Espie GS, Williams EB et al (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. J Bacteriol 186:623–630CrossRef So AK, Espie GS, Williams EB et al (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. J Bacteriol 186:623–630CrossRef
131.
Zurück zum Zitat Solomon S, Plattner GK, Knutti R et al (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U.S.A. 106:17041709 Solomon S, Plattner GK, Knutti R et al (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U.S.A. 106:17041709
132.
Zurück zum Zitat Soltes-Rak E, Mulligan ME, Coleman JR (1997) Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bacteriol 179:769–774CrossRef Soltes-Rak E, Mulligan ME, Coleman JR (1997) Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bacteriol 179:769–774CrossRef
133.
Zurück zum Zitat Soong Y, Fauth DL, Howard BH (2006) CO2 sequestration with brine solution and fly ashes. Energy Converse Manage 47:1676–1685CrossRef Soong Y, Fauth DL, Howard BH (2006) CO2 sequestration with brine solution and fly ashes. Energy Converse Manage 47:1676–1685CrossRef
134.
Zurück zum Zitat Srivastava S, Bharti RK, Verma PK et al (2015) Cloning and expression of gamma carbonic anhydrase from Serratia sp. ISTD04 for sequestration of carbon dioxide and formation of calcite. Biores Technol 188:209–213 Srivastava S, Bharti RK, Verma PK et al (2015) Cloning and expression of gamma carbonic anhydrase from Serratia sp. ISTD04 for sequestration of carbon dioxide and formation of calcite. Biores Technol 188:209–213
135.
Zurück zum Zitat Stadie WC, O’Brien H (1933) The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by an enzyme isolated from red blood cells. J Biol Chem 103:521–529CrossRef Stadie WC, O’Brien H (1933) The catalysis of the hydration of carbon dioxide and dehydration of carbonic acid by an enzyme isolated from red blood cells. J Biol Chem 103:521–529CrossRef
136.
Zurück zum Zitat Sterling D, Alvarez BV, Casey JR (2002) The extracellular component of a transport metabolon. Extracellular loop 4 of the human AE1 Cl/HCO3 exchanger binds carbonic anhydrase IV. J Biol Chem 277:25239–25246CrossRef Sterling D, Alvarez BV, Casey JR (2002) The extracellular component of a transport metabolon. Extracellular loop 4 of the human AE1 Cl/HCO3 exchanger binds carbonic anhydrase IV. J Biol Chem 277:25239–25246CrossRef
137.
Zurück zum Zitat Sung YC, Fuchs JA (1988) Characterization of the cyn Operon in Escherichia coli K12. J Biol Chem 263:14769–14775CrossRef Sung YC, Fuchs JA (1988) Characterization of the cyn Operon in Escherichia coli K12. J Biol Chem 263:14769–14775CrossRef
138.
Zurück zum Zitat Supuran CT (2011) Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med Chem 3:1165–1180CrossRef Supuran CT (2011) Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med Chem 3:1165–1180CrossRef
139.
Zurück zum Zitat Supuran CT (2016) How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 31:345–360CrossRef Supuran CT (2016) How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 31:345–360CrossRef
140.
Zurück zum Zitat Svensson R, Odenberger M, Johnsson F, Strömberg L (2004) Transportation systems for CO2––application to carbon capture and storage. Energy Convers Manag 45: 2343–2353 Svensson R, Odenberger M, Johnsson F, Strömberg L (2004) Transportation systems for CO2––application to carbon capture and storage. Energy Convers Manag 45: 2343–2353
141.
Zurück zum Zitat Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12:195–201CrossRef Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12:195–201CrossRef
142.
Zurück zum Zitat Szreter S, Mooney G (1998) Urbanization, mortality, and the standard of living debate: new estimates of the expectation of life at birth in nineteenth—century British cities. Econ Hist Rev 51:84–112 Szreter S, Mooney G (1998) Urbanization, mortality, and the standard of living debate: new estimates of the expectation of life at birth in nineteenth—century British cities. Econ Hist Rev 51:84–112
143.
Zurück zum Zitat Takami H, Nishi S, Lu J, Shimamura S, Takaki Y (2004) Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8:351–356 Takami H, Nishi S, Lu J, Shimamura S, Takaki Y (2004) Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8:351–356
144.
Zurück zum Zitat Trachtenberg MC, Cowan M, Smith DA et al (2009) Membrane-based, enzyme facilitated, efficient carbon dioxide capture. Energy Proc 1:353–360CrossRef Trachtenberg MC, Cowan M, Smith DA et al (2009) Membrane-based, enzyme facilitated, efficient carbon dioxide capture. Energy Proc 1:353–360CrossRef
145.
Zurück zum Zitat Traufetter G (2009) Cold carbon sink: Slowing global warming with Antarctic iron. Spiegel Online Traufetter G (2009) Cold carbon sink: Slowing global warming with Antarctic iron. Spiegel Online
146.
Zurück zum Zitat Tripp BC, Ferry JG (2000) A structure-function study of a proton transport pathway in a novel γ-class carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39:9232–9240CrossRef Tripp BC, Ferry JG (2000) A structure-function study of a proton transport pathway in a novel γ-class carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39:9232–9240CrossRef
147.
Zurück zum Zitat Tripp BC, Smith K, Ferry JG (2001) Carbonic Anhydrase: New insights for an ancient enzyme. J Biol Chem 276:48615–48618CrossRef Tripp BC, Smith K, Ferry JG (2001) Carbonic Anhydrase: New insights for an ancient enzyme. J Biol Chem 276:48615–48618CrossRef
148.
Zurück zum Zitat Tsouris C, Aaron DS Williams KA (2010) Is carbon capture and storage really needed? Environ Sci Technol 44:4042–4045 Tsouris C, Aaron DS Williams KA (2010) Is carbon capture and storage really needed? Environ Sci Technol 44:4042–4045
149.
Zurück zum Zitat Ueda K, Nishida H, Beppu T (2012) Dispensabilities of carbonic anhydrase in proteobacteria. Int J Syst Evol Microbiol 2012 Ueda K, Nishida H, Beppu T (2012) Dispensabilities of carbonic anhydrase in proteobacteria. Int J Syst Evol Microbiol 2012
150.
Zurück zum Zitat Umetsu M, Tsumoto K, Hara M et al (2003) How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system spectroscopic evidence for highly efficient refolding of a single-chain fv fragment. J Biol Chem 278:8979–8987CrossRef Umetsu M, Tsumoto K, Hara M et al (2003) How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system spectroscopic evidence for highly efficient refolding of a single-chain fv fragment. J Biol Chem 278:8979–8987CrossRef
151.
Zurück zum Zitat Valdivia RH, Falkow S (1997) Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:2007–2011CrossRef Valdivia RH, Falkow S (1997) Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:2007–2011CrossRef
152.
Zurück zum Zitat Veitch FP, Blankenship LC (1963) Carbonic anhydrases in bacteria Nature 197:76–77 Veitch FP, Blankenship LC (1963) Carbonic anhydrases in bacteria Nature 197:76–77
153.
Zurück zum Zitat Vullo D, De Luca V, Scozzafava A et al (2012) Anion inhibition studies of the fastest carbonic anhydrase (CA) known, the extremo-CA from the bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem 22:7142–7145CrossRef Vullo D, De Luca V, Scozzafava A et al (2012) Anion inhibition studies of the fastest carbonic anhydrase (CA) known, the extremo-CA from the bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem 22:7142–7145CrossRef
154.
Zurück zum Zitat Wanjari S, Prabhu C, Yadav R (2011) Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction. Process Biochem 46:1010−1018 Wanjari S, Prabhu C, Yadav R (2011) Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction. Process Biochem 46:1010−1018
155.
Zurück zum Zitat Wanjari S, Prabhu C, Satyanarayana T et al (2012) Immobilization of carbonic anhydrase on mesoporous aluminosilicate for carbonation reaction. Micropor Mesopor Mat 160:151–158CrossRef Wanjari S, Prabhu C, Satyanarayana T et al (2012) Immobilization of carbonic anhydrase on mesoporous aluminosilicate for carbonation reaction. Micropor Mesopor Mat 160:151–158CrossRef
157.
Zurück zum Zitat Wood HG, Werkman CH, Hemingway A et al (1941) Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J Biol Chem 139:367–375 Wood HG, Werkman CH, Hemingway A et al (1941) Heavy carbon as a tracer in heterotrophic carbon dioxide assimilation. J Biol Chem 139:367–375
158.
Zurück zum Zitat Xu J, Sun J, Wang Y et al (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19:11465–11486CrossRef Xu J, Sun J, Wang Y et al (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19:11465–11486CrossRef
159.
Zurück zum Zitat Xu Y, Feng L, Jeffrey PD et al (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61 Xu Y, Feng L, Jeffrey PD et al (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61
160.
Zurück zum Zitat Yadav R, Satyanarayanan T, Kotwal S, Rayalu S (2011) Enhanced carbonation reaction using chitosan-based carbonic anhydrase nanoparticles. Curr Sci (Bangalore) 100:520–524 Yadav R, Satyanarayanan T, Kotwal S, Rayalu S (2011) Enhanced carbonation reaction using chitosan-based carbonic anhydrase nanoparticles. Curr Sci (Bangalore) 100:520–524
161.
Zurück zum Zitat Yadav RR, Mudliar SN, Shekh AY et al (2012) Immobilization of carbonic anhydrase in alginate and its influence on transformation of CO2 to calcite. Process Biochem 47:585–590CrossRef Yadav RR, Mudliar SN, Shekh AY et al (2012) Immobilization of carbonic anhydrase in alginate and its influence on transformation of CO2 to calcite. Process Biochem 47:585–590CrossRef
162.
Zurück zum Zitat Yamaguchi S, Yamamoto E, Mannen T et al (2013) Protein refolding using chemical refolding additives. Biotechnology J 8:17–31CrossRef Yamaguchi S, Yamamoto E, Mannen T et al (2013) Protein refolding using chemical refolding additives. Biotechnology J 8:17–31CrossRef
163.
Zurück zum Zitat Yoshimoto M, Walde P (2018) Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World J Microbiol Biotechnol 34:151CrossRef Yoshimoto M, Walde P (2018) Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World J Microbiol Biotechnol 34:151CrossRef
164.
Zurück zum Zitat Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalga. Energy Converse Manage 46:1868–1876CrossRef Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalga. Energy Converse Manage 46:1868–1876CrossRef
165.
Zurück zum Zitat Zhi W, Landry SJ, Gierasch LM et al (1992) Renaturation of citrate synthase: influence of denaturant and folding assistants. Prot Sci 1:522–529CrossRef Zhi W, Landry SJ, Gierasch LM et al (1992) Renaturation of citrate synthase: influence of denaturant and folding assistants. Prot Sci 1:522–529CrossRef
Metadaten
Titel
Mitigating Global Warming Through Carbonic Anhydrase-Mediated Carbon Sequestration
verfasst von
Himadri Bose
T. Satyanarayana
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-0029-6_13