Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 3/2023

19.07.2022 | Research Article-Mechanical Engineering

Mixed Bioconvective Flow of Williamson Nanofluid Over a Rough Vertical Cone

verfasst von: P. M. Patil, Sunil Benawadi, V. T. Muttannavar

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the mixed bio-convection in a flow of Williamson nanofluid with liquid oxygen diffusion. The main innovation is to study the bio-convection and surface roughness in a flow of non-Newtonian Williamson nanofluid via a nonsimilar approach. The applications of bio-convection in boundary layer analysis include biological sciences, drugs and biotechnology, wastewater treatment, biofuels processing, and food production. The nonlinear coupled partial differential equations are the governing equations of the given problem. Mangler’s nonsimilar transformations are utilized to get a non-dimensional form of governing equations. For mathematical simplifications, implicit finite difference scheme and Quasilinearization technique are used. Further, an analysis is carried out for various controlled parameters, and the results are depicted through graphs. The heat transfer rate for nanofluid is approximately about 4% more than that of Williamson nanofluid. Moreover, the heat transfer rate for a permeable surface (suction case) is about 44% more than for an impermeable surface. The wall suction augments the mass transfer rate of liquid oxygen, and it is about 140% for rough surface compared to the smooth surface. Microorganism’s density in the fluid is more for lower values of bio-convection Lewis and Peclet numbers. The microorganism’s density number enhances by about 78% when the value of the Peclet number increases from 1 to 2. The results are compared to earlier published papers and have an excellent agreement with each other.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Platt, J.R.: Bioconvection patterns in cultures of free swimming organisms. Science 133, 1766–1767 (1961)CrossRef Platt, J.R.: Bioconvection patterns in cultures of free swimming organisms. Science 133, 1766–1767 (1961)CrossRef
2.
Zurück zum Zitat Pedley, T.J.; Hill, N.A.; Kessler, J.O.: The growth of bioconvection patterns in a uniform suspension of gyrotactic microorganisms. J. Fluid Mech. 195, 223–237 (1988)MathSciNetCrossRefMATH Pedley, T.J.; Hill, N.A.; Kessler, J.O.: The growth of bioconvection patterns in a uniform suspension of gyrotactic microorganisms. J. Fluid Mech. 195, 223–237 (1988)MathSciNetCrossRefMATH
3.
5.
Zurück zum Zitat Xu, H.; Pop, I.: Mixed convection flow of a nanofluid over a stretching surface with uniform free stream in the presence of both nanoparticles and gyrotactic microorganisms. Int. J. Heat Mass Transf. 75, 610–623 (2014)CrossRef Xu, H.; Pop, I.: Mixed convection flow of a nanofluid over a stretching surface with uniform free stream in the presence of both nanoparticles and gyrotactic microorganisms. Int. J. Heat Mass Transf. 75, 610–623 (2014)CrossRef
6.
Zurück zum Zitat Zadeh, S.M.H.; Mehryan, S.A.M.; Sheremet, M.A.; Izadi, M.; Ghodrat, M.: Numerical study of mixed bio-convection associated with a micropolar fluid. Therm. Sci. Eng. Prog. 18, 100539 (2020)CrossRef Zadeh, S.M.H.; Mehryan, S.A.M.; Sheremet, M.A.; Izadi, M.; Ghodrat, M.: Numerical study of mixed bio-convection associated with a micropolar fluid. Therm. Sci. Eng. Prog. 18, 100539 (2020)CrossRef
7.
Zurück zum Zitat Sheremet, M.A.; Grosan, T.; Pop, I.: MHD free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms. Int. J. Numer. Method. H. 29, 4642–4659 (2019)CrossRef Sheremet, M.A.; Grosan, T.; Pop, I.: MHD free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms. Int. J. Numer. Method. H. 29, 4642–4659 (2019)CrossRef
9.
Zurück zum Zitat Habibishandiz, M.; Saghir, Z.: MHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder. Int. J. Thermofluid 14, 100151 (2022)CrossRef Habibishandiz, M.; Saghir, Z.: MHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder. Int. J. Thermofluid 14, 100151 (2022)CrossRef
10.
Zurück zum Zitat Rashad, A.M.; Nabwey, H.A.: Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition. J. Taiwan Inst. Chem. Eng. 99, 9–17 (2019)CrossRef Rashad, A.M.; Nabwey, H.A.: Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition. J. Taiwan Inst. Chem. Eng. 99, 9–17 (2019)CrossRef
11.
Zurück zum Zitat Patil, P.M.; Benawadi, S.; Shanker, B.: Influence of mixed convection nanofluid flow over a rotating sphere in the presence of diffusion of liquid hydrogen and ammonia. Math. Comput. Simul. 194, 764–781 (2022)MathSciNetCrossRefMATH Patil, P.M.; Benawadi, S.; Shanker, B.: Influence of mixed convection nanofluid flow over a rotating sphere in the presence of diffusion of liquid hydrogen and ammonia. Math. Comput. Simul. 194, 764–781 (2022)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Sheikholeslami, M.; Ebrahimpur, Z.: Thermal improvement of linear Fresnel solar system utilizing water nanofluid and multi-way twisted tape. Int. J. Therm. Sci. 176, 107505 (2022)CrossRef Sheikholeslami, M.; Ebrahimpur, Z.: Thermal improvement of linear Fresnel solar system utilizing water nanofluid and multi-way twisted tape. Int. J. Therm. Sci. 176, 107505 (2022)CrossRef
13.
Zurück zum Zitat Shang, Y.; Dehkordi, R.B.; Chupradit, S.; Toghraie, D.; Sevibitov, A.; Hekmatifar, M.; Suksatan, W.; Sabetvand, R.: The computational study of microchannel thickness effects on nanofluid flow with molecular dynamics simulations. J. Mol. Liq. 345, 118240 (2022)CrossRef Shang, Y.; Dehkordi, R.B.; Chupradit, S.; Toghraie, D.; Sevibitov, A.; Hekmatifar, M.; Suksatan, W.; Sabetvand, R.: The computational study of microchannel thickness effects on nanofluid flow with molecular dynamics simulations. J. Mol. Liq. 345, 118240 (2022)CrossRef
14.
Zurück zum Zitat Ekiciler, R.; Ali, M.S.: Cetinkaya: A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs. Therm. Sci. Eng. Prog. 23, 100913 (2021)CrossRef Ekiciler, R.; Ali, M.S.: Cetinkaya: A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs. Therm. Sci. Eng. Prog. 23, 100913 (2021)CrossRef
15.
Zurück zum Zitat Choi, S.U.S.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles, p. 99–105. ASME Int. Mech. Eng. Cong. Exp, San Francisco CA (1995) Choi, S.U.S.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles, p. 99–105. ASME Int. Mech. Eng. Cong. Exp, San Francisco CA (1995)
16.
Zurück zum Zitat Eid, M.R.: Chemical reaction effect on MHD boundary layer flow of two – phase nanofluid model over an exponentially stretching sheet with heat generation. J. Mol. Liq. 220, 718–725 (2016)CrossRef Eid, M.R.: Chemical reaction effect on MHD boundary layer flow of two – phase nanofluid model over an exponentially stretching sheet with heat generation. J. Mol. Liq. 220, 718–725 (2016)CrossRef
17.
Zurück zum Zitat Patil, P.M.; Kulkarni, M.; Hiremath, P.S.: Effects of surface roughness on mixed convective nanoliquid flow past an exponentially stretching permeable surface. Chin. J. Phys. 64, 203–218 (2020)CrossRef Patil, P.M.; Kulkarni, M.; Hiremath, P.S.: Effects of surface roughness on mixed convective nanoliquid flow past an exponentially stretching permeable surface. Chin. J. Phys. 64, 203–218 (2020)CrossRef
18.
Zurück zum Zitat Patil, P.M.; Shashikant, A.; Hiremath, P.S.: Influence of liquid hydrogen and nitrogen on MHD triple diffusive mixed convection nanoliquid flow in presence of surface roughness. Int. J. Hydrog. Energy. 43, 20101–20117 (2018)CrossRef Patil, P.M.; Shashikant, A.; Hiremath, P.S.: Influence of liquid hydrogen and nitrogen on MHD triple diffusive mixed convection nanoliquid flow in presence of surface roughness. Int. J. Hydrog. Energy. 43, 20101–20117 (2018)CrossRef
19.
Zurück zum Zitat Patil, P.M.; Kulkarni, M.; Tonannavar, J.R.: Influence of applied magnetic field on nonlinear mixed convective nanoliquid flow past a permeable rough cone. Indian J. Phys. 96, 1453–1464 (2022)CrossRef Patil, P.M.; Kulkarni, M.; Tonannavar, J.R.: Influence of applied magnetic field on nonlinear mixed convective nanoliquid flow past a permeable rough cone. Indian J. Phys. 96, 1453–1464 (2022)CrossRef
20.
Zurück zum Zitat Patil, P.M.: Effects of free convection on the oscillatory flow of a polar fluid through a porous medium in the presence of variable wall heat flux. J. Eng. Phys. Thermophys. 81, 905–922 (2008)CrossRef Patil, P.M.: Effects of free convection on the oscillatory flow of a polar fluid through a porous medium in the presence of variable wall heat flux. J. Eng. Phys. Thermophys. 81, 905–922 (2008)CrossRef
21.
Zurück zum Zitat Kho, Y.B.; Hussanan, A.; Mohamed, M.K.A.; Salleh, M.Z.: Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model. Propuls. Power Res. 8, 243–252 (2019)CrossRef Kho, Y.B.; Hussanan, A.; Mohamed, M.K.A.; Salleh, M.Z.: Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model. Propuls. Power Res. 8, 243–252 (2019)CrossRef
22.
Zurück zum Zitat Ishak, A.; Lok, Y.Y.; Pop, I.: Non-Newtonian Power- law fluid flow past a shrinking sheet with suction. Chem. Eng. Commun. 199, 142–150 (2012)CrossRef Ishak, A.; Lok, Y.Y.; Pop, I.: Non-Newtonian Power- law fluid flow past a shrinking sheet with suction. Chem. Eng. Commun. 199, 142–150 (2012)CrossRef
23.
Zurück zum Zitat Nadeem, S.; Hussain, S.T.: Flow and heat transfer analysis of Williamson nanofluid. Appl. Nanosci. 4, 1005–1012 (2014)CrossRef Nadeem, S.; Hussain, S.T.: Flow and heat transfer analysis of Williamson nanofluid. Appl. Nanosci. 4, 1005–1012 (2014)CrossRef
24.
Zurück zum Zitat Kumar, A.; Tripathi, R.; Singh, R.; Chaurasiya, V.K.: Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation. Physica A. 551, 123972 (2020)MathSciNetCrossRefMATH Kumar, A.; Tripathi, R.; Singh, R.; Chaurasiya, V.K.: Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation. Physica A. 551, 123972 (2020)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Ahmad, I. Aziz, S., Ali, N., Ullah Khan, S.: Significance of bioconvection in flow of Williamson nano-material confined by a porous radioactive Riga surface with convective Nield constrains. Numer. Methods Partial Differ. Eq. 1–22 (2020). Ahmad, I. Aziz, S., Ali, N., Ullah Khan, S.: Significance of bioconvection in flow of Williamson nano-material confined by a porous radioactive Riga surface with convective Nield constrains. Numer. Methods Partial Differ. Eq. 1–22 (2020).
26.
Zurück zum Zitat Khan, S.U.; Shehzad, S.A.; Ali, N.: Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity. Appl. Nanosci. 10, 3325–3336 (2020)CrossRef Khan, S.U.; Shehzad, S.A.; Ali, N.: Bioconvection flow of magnetized Williamson nanoliquid with motile organisms and variable thermal conductivity. Appl. Nanosci. 10, 3325–3336 (2020)CrossRef
27.
Zurück zum Zitat Smith, J.W.; Epstein, N.: Effect of wall heat transfer roughness on convective in commercial pipes. Am. J. Chem. Eng. 3, 249–254 (1975) Smith, J.W.; Epstein, N.: Effect of wall heat transfer roughness on convective in commercial pipes. Am. J. Chem. Eng. 3, 249–254 (1975)
28.
Zurück zum Zitat Savage, D.W.; Myers, J.E.: The effect of artificial surface roughness on heat and momentum transfer. Am. J. Chem. Eng. 9, 694–702 (1961) Savage, D.W.; Myers, J.E.: The effect of artificial surface roughness on heat and momentum transfer. Am. J. Chem. Eng. 9, 694–702 (1961)
29.
Zurück zum Zitat Lewis, M.J.: An elementary analysis for predicting the momentum and heat transfer characteristics of a hydraulically rough surface. J. Heat Transf. 97, 249–254 (1975)CrossRef Lewis, M.J.: An elementary analysis for predicting the momentum and heat transfer characteristics of a hydraulically rough surface. J. Heat Transf. 97, 249–254 (1975)CrossRef
30.
Zurück zum Zitat Patil, P.M.; Shashikant, A.; Hiremath, P.S.: Diffusion of liquid hydrogen and oxygen in nonlinear mixed convection nanofluid flow over vertical cone. Int. J. Hydrog. Energy 44, 17061–17071 (2019)CrossRef Patil, P.M.; Shashikant, A.; Hiremath, P.S.: Diffusion of liquid hydrogen and oxygen in nonlinear mixed convection nanofluid flow over vertical cone. Int. J. Hydrog. Energy 44, 17061–17071 (2019)CrossRef
31.
Zurück zum Zitat Patil, P.M.; Kulkarni, M.: Nonlinear mixed convective nanofluid flow along moving vertical rough plate. Rev. Mex. de Fis. 66, 153–161 (2020)MathSciNetCrossRef Patil, P.M.; Kulkarni, M.: Nonlinear mixed convective nanofluid flow along moving vertical rough plate. Rev. Mex. de Fis. 66, 153–161 (2020)MathSciNetCrossRef
32.
Zurück zum Zitat Patil, P.M.; Pop, I.: Effects of surface mass transfer on unsteady mixed convection flow over a vertical cone with chemical reaction. Heat Mass Transf. 47, 1453–1464 (2011)CrossRef Patil, P.M.; Pop, I.: Effects of surface mass transfer on unsteady mixed convection flow over a vertical cone with chemical reaction. Heat Mass Transf. 47, 1453–1464 (2011)CrossRef
33.
34.
Zurück zum Zitat Smith, D.G.: Numerical solutions of partial differential equations: finite difference methods, 3rd edn. Clerendon Press, Oxford, United Kingdom (1985) Smith, D.G.: Numerical solutions of partial differential equations: finite difference methods, 3rd edn. Clerendon Press, Oxford, United Kingdom (1985)
35.
Zurück zum Zitat Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)CrossRef Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)CrossRef
38.
Zurück zum Zitat Ravindran, R.; Roy, S.; Momoniat, E.: Effects of injection (suction) on a steady mixed convection boundary layer flow over a vertical cone. Int. J. Numer. Methods Heat Fluid Flow 19, 432e44 (2009)CrossRef Ravindran, R.; Roy, S.; Momoniat, E.: Effects of injection (suction) on a steady mixed convection boundary layer flow over a vertical cone. Int. J. Numer. Methods Heat Fluid Flow 19, 432e44 (2009)CrossRef
Metadaten
Titel
Mixed Bioconvective Flow of Williamson Nanofluid Over a Rough Vertical Cone
verfasst von
P. M. Patil
Sunil Benawadi
V. T. Muttannavar
Publikationsdatum
19.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 3/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07048-1

Weitere Artikel der Ausgabe 3/2023

Arabian Journal for Science and Engineering 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.