Skip to main content
Erschienen in: Social Network Analysis and Mining 1/2021

01.12.2021 | Original Article

Mobility-based SIR model for complex networks: with case study Of COVID-19

verfasst von: Rahul Goel, Loïc Bonnetain, Rajesh Sharma, Angelo Furno

Erschienen in: Social Network Analysis and Mining | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last decade, humanity has faced many different pandemics such as SARS, H1N1, and presently novel coronavirus (COVID-19). On one side, scientists have developed vaccinations, and on the other side, there is a need to propose models that can help in understanding the spread of these pandemics as it can help governmental and other concerned agencies to be well prepared, especially for pandemics, which spreads faster like COVID-19. The main reason for some epidemic turning into pandemics is the connectivity among different regions of the world, which makes it easier to affect a wider geographical area, often worldwide. Also, the population distribution and social coherence in the different regions of the world are non-uniform. Thus, once the epidemic enters a region, then the local population distribution plays an important role. Inspired by these ideas, we propose two versions of our mobility-based SIR model, (i) fully mixed and (ii) for complex networks, which especially takes into account real-life interactions. To the best of our knowledge, this model is the first of its kind, which takes into account the population distribution, connectivity of different geographic locations across the globe, and individuals’ network connectivity information. In addition to presenting the mathematical proof of our models, we have performed extensive simulations using synthetic data to demonstrate the generalization capability of our models. Finally, to demonstrate the wider scope of our model, we applied our model to forecast the COVID-19 cases at county level (Estonia) and regional level (Rhône-Alpes region in France).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson RM, May RM (1979) Population biology of infectious diseases: part i. Nature 280(5721):361CrossRef Anderson RM, May RM (1979) Population biology of infectious diseases: part i. Nature 280(5721):361CrossRef
Zurück zum Zitat Anderson RM, May RM, Anderson B (1992) Infectious diseases of humans: dynamics and control, vol 28. Wiley, Hoboken Anderson RM, May RM, Anderson B (1992) Infectious diseases of humans: dynamics and control, vol 28. Wiley, Hoboken
Zurück zum Zitat Arenas A, Cota W, Gómez-Gardeñes J, Gómez S, Granell C, Matamalas JT, Soriano-Paños D, Steinegger B (2020) Modeling the spatiotemporal epidemic spreading of covid-19 and the impact of mobility and social distancing interventions. Phys Rev X 10(4):041055 Arenas A, Cota W, Gómez-Gardeñes J, Gómez S, Granell C, Matamalas JT, Soriano-Paños D, Steinegger B (2020) Modeling the spatiotemporal epidemic spreading of covid-19 and the impact of mobility and social distancing interventions. Phys Rev X 10(4):041055
Zurück zum Zitat Arquam M, Singh A, Sharma R (2018) Modelling and analysis of delayed sir model on complex network. In: International conference on complex networks and their applications. Springer, pp 418–430 Arquam M, Singh A, Sharma R (2018) Modelling and analysis of delayed sir model on complex network. In: International conference on complex networks and their applications. Springer, pp 418–430
Zurück zum Zitat Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A (2005) Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J Theor Biol 235(2):275–288MathSciNetCrossRef Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A (2005) Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J Theor Biol 235(2):275–288MathSciNetCrossRef
Zurück zum Zitat Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci 99(suppl 3):7280–7287CrossRef Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci 99(suppl 3):7280–7287CrossRef
Zurück zum Zitat Burke DS, Epstein JM, Cummings DA, Parker JI, Cline KC, Singa RM, Chakravarty S (2006) Individual-based computational modeling of smallpox epidemic control strategies. Acad Emerg Med 13(11):1142–1149CrossRef Burke DS, Epstein JM, Cummings DA, Parker JI, Cline KC, Singa RM, Chakravarty S (2006) Individual-based computational modeling of smallpox epidemic control strategies. Acad Emerg Med 13(11):1142–1149CrossRef
Zurück zum Zitat Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, YPiontti AP, Mu K, Rossi L, Sun K, et al. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395-400. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, YPiontti AP, Mu K, Rossi L, Sun K, et al. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395-400.
Zurück zum Zitat CSSE, J. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. 2020. CSSE, J. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. 2020.
Zurück zum Zitat Crooks AT, Hailegiorgis AB (2014) An agent-based modeling approach applied to the spread of cholera. Environ Model Softw 62:164–177CrossRef Crooks AT, Hailegiorgis AB (2014) An agent-based modeling approach applied to the spread of cholera. Environ Model Softw 62:164–177CrossRef
Zurück zum Zitat CSSE J (2020) Coronavirus covid-19 global cases by the center for systems science and engineering (csse) at johns hopkins university (jhu) CSSE J (2020) Coronavirus covid-19 global cases by the center for systems science and engineering (csse) at johns hopkins university (jhu)
Zurück zum Zitat Centers for Disease Control C, Prevention et al. (2012) First global estimates of 2009 h1n1 pandemic mortality released by cdc-led collaboration Centers for Disease Control C, Prevention et al. (2012) First global estimates of 2009 h1n1 pandemic mortality released by cdc-led collaboration
Zurück zum Zitat Epstein JM (2009) Modelling to contain pandemics. Nature 460(7256):687–687CrossRef Epstein JM (2009) Modelling to contain pandemics. Nature 460(7256):687–687CrossRef
Zurück zum Zitat Estonia S (2018) Quarterly bulletin of statistics Estonia. An overview of social and economic developments in Estonia. Statistics Estonia, Tallinn 25 Estonia S (2018) Quarterly bulletin of statistics Estonia. An overview of social and economic developments in Estonia. Statistics Estonia, Tallinn 25
Zurück zum Zitat Eubank S, Guclu H, Kumar VA, Marathe MV, Srinivasan A, Toroczkai Z, Wang N (2004) Modelling disease outbreaks in realistic urban social networks. Nature 429(6988):180–184CrossRef Eubank S, Guclu H, Kumar VA, Marathe MV, Srinivasan A, Toroczkai Z, Wang N (2004) Modelling disease outbreaks in realistic urban social networks. Nature 429(6988):180–184CrossRef
Zurück zum Zitat Fekih M, Bellemans T, Smoreda Z, Bonnel P, Furno A, Galland S (2020) A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France). Transportation, pp 1–32 Fekih M, Bellemans T, Smoreda Z, Bonnel P, Furno A, Galland S (2020) A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France). Transportation, pp 1–32
Zurück zum Zitat Goel R, Sharma R, Aasa A (2021) Understanding gender segregation through call data records: an Estonian case study. PLoS ONE 16(3):e0248212CrossRef Goel R, Sharma R, Aasa A (2021) Understanding gender segregation through call data records: an Estonian case study. PLoS ONE 16(3):e0248212CrossRef
Zurück zum Zitat Goel R, Singh A, Ghanbarnejad F (2019) Modeling competitive marketing strategies in social networks. Phys A Stat Mech Appl 518:50–70CrossRef Goel R, Singh A, Ghanbarnejad F (2019) Modeling competitive marketing strategies in social networks. Phys A Stat Mech Appl 518:50–70CrossRef
Zurück zum Zitat Gojovic MZ, Sander B, Fisman D, Krahn MD, Bauch CT (2009) Modelling mitigation strategies for pandemic (h1n1). CMAJ 181(10):673–680CrossRef Gojovic MZ, Sander B, Fisman D, Krahn MD, Bauch CT (2009) Modelling mitigation strategies for pandemic (h1n1). CMAJ 181(10):673–680CrossRef
Zurück zum Zitat Hagberg A, Swart P, Chult SD (2008) Exploring network structure, dynamics, and function using networkx. Tech. rep., Los Alamos National Lab.(LANL), Los Alamos, NM (United States) Hagberg A, Swart P, Chult SD (2008) Exploring network structure, dynamics, and function using networkx. Tech. rep., Los Alamos National Lab.(LANL), Los Alamos, NM (United States)
Zurück zum Zitat Hiir H, Sharma R, Aasa A, Saluveer E (2019) Impact of natural and social events on mobile call data records–an estonian case study. In: International conference on complex networks and their applications, pp 415–426. Springer Hiir H, Sharma R, Aasa A, Saluveer E (2019) Impact of natural and social events on mobile call data records–an estonian case study. In: International conference on complex networks and their applications, pp 415–426. Springer
Zurück zum Zitat Huang X, Clements AC, Williams G, Mengersen K, Tong S, Hu W (2016) Bayesian estimation of the dynamics of pandemic (h1n1) 2009 influenza transmission in queensland: a space-time sir-based model. Environ Res 146:308–314CrossRef Huang X, Clements AC, Williams G, Mengersen K, Tong S, Hu W (2016) Bayesian estimation of the dynamics of pandemic (h1n1) 2009 influenza transmission in queensland: a space-time sir-based model. Environ Res 146:308–314CrossRef
Zurück zum Zitat Hurley M, Jacobs G, Gilbert M (2006) The basic si model. New Directions Teach Learn 2006(106):11–22CrossRef Hurley M, Jacobs G, Gilbert M (2006) The basic si model. New Directions Teach Learn 2006(106):11–22CrossRef
Zurück zum Zitat Jin Y, Wang W, Xiao S (2007) An sirs model with a nonlinear incidence rate. Chaos Solitons Fractals 34(5):1482–1497MathSciNetCrossRef Jin Y, Wang W, Xiao S (2007) An sirs model with a nonlinear incidence rate. Chaos Solitons Fractals 34(5):1482–1497MathSciNetCrossRef
Zurück zum Zitat Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences, vol 115, pp 700–721. The Royal Society Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences, vol 115, pp 700–721. The Royal Society
Zurück zum Zitat Khalil KM, Abdel-Aziz M, Nazmy TT, Salem ABM (2012) An agent-based modeling for pandemic influenza in Egypt. In: Handbook on decision making, pp 205–218. Springer Khalil KM, Abdel-Aziz M, Nazmy TT, Salem ABM (2012) An agent-based modeling for pandemic influenza in Egypt. In: Handbook on decision making, pp 205–218. Springer
Zurück zum Zitat Kiskowski MA (2014) A three-scale network model for the early growth dynamics of 2014 west Africa Ebola epidemic. PLoS Curr 6 Kiskowski MA (2014) A three-scale network model for the early growth dynamics of 2014 west Africa Ebola epidemic. PLoS Curr 6
Zurück zum Zitat Li X, Wang X (2006) Controlling the spreading in small-world evolving networks: stability, oscillation, and topology. IEEE Trans Autom Control 51(3):534–540MathSciNetCrossRef Li X, Wang X (2006) Controlling the spreading in small-world evolving networks: stability, oscillation, and topology. IEEE Trans Autom Control 51(3):534–540MathSciNetCrossRef
Zurück zum Zitat Moreno Y, Pastor-Satorras R, Vespignani A (2002) Epidemic outbreaks in complex heterogeneous networks. Eur Phys J B-Condens Matter Complex Syst 26(4):521–529 Moreno Y, Pastor-Satorras R, Vespignani A (2002) Epidemic outbreaks in complex heterogeneous networks. Eur Phys J B-Condens Matter Complex Syst 26(4):521–529
Zurück zum Zitat Nåsell I (1996) The quasi-stationary distribution of the closed endemic sis model. Adv Appl Probab 28(3):895–932MathSciNetCrossRef Nåsell I (1996) The quasi-stationary distribution of the closed endemic sis model. Adv Appl Probab 28(3):895–932MathSciNetCrossRef
Zurück zum Zitat Organization WH, et al. (2009) Pandemic h1n1 2009. Tech. rep, WHO Regional Office for South-East Asia Organization WH, et al. (2009) Pandemic h1n1 2009. Tech. rep, WHO Regional Office for South-East Asia
Zurück zum Zitat Organization WH, et al. (2020) Coronavirus disease 2019 (covid-19): situation report 46 Organization WH, et al. (2020) Coronavirus disease 2019 (covid-19): situation report 46
Zurück zum Zitat Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Modern Phys 87(3):925MathSciNetCrossRef Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Epidemic processes in complex networks. Rev Modern Phys 87(3):925MathSciNetCrossRef
Zurück zum Zitat Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1(2):143–186CrossRef Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1(2):143–186CrossRef
Zurück zum Zitat Shi H, Duan Z, Chen G (2008) An sis model with infective medium on complex networks. Phys A Stat Mech Appl 387(8–9):2133–2144CrossRef Shi H, Duan Z, Chen G (2008) An sis model with infective medium on complex networks. Phys A Stat Mech Appl 387(8–9):2133–2144CrossRef
Zurück zum Zitat Singh A, Singh YN (22012) Nonlinear spread of rumor and inoculation strategies in the nodes with degree dependent tie strength in complex networks. arXiv:1208.6063 Singh A, Singh YN (22012) Nonlinear spread of rumor and inoculation strategies in the nodes with degree dependent tie strength in complex networks. arXiv:​1208.​6063
Zurück zum Zitat Sun R et al (2006) Cognition and multi-agent interaction: from cognitive modeling to social simulation. Cambridge University Press, Cambridge Sun R et al (2006) Cognition and multi-agent interaction: from cognitive modeling to social simulation. Cambridge University Press, Cambridge
Zurück zum Zitat Towers S, Geisse KV, Zheng Y, Feng Z (2011) Antiviral treatment for pandemic influenza: assessing potential repercussions using a seasonally forced sir model. J Theor Biol 289:259–268MathSciNetCrossRef Towers S, Geisse KV, Zheng Y, Feng Z (2011) Antiviral treatment for pandemic influenza: assessing potential repercussions using a seasonally forced sir model. J Theor Biol 289:259–268MathSciNetCrossRef
Zurück zum Zitat Tuomisto JT, Yrjölä J, Kolehmainen M, Bonsdorff J, Pekkanen J, Tikkanen T (2020) An agent-based epidemic model reina for covid-19 to identify destructive policies. medRxiv Tuomisto JT, Yrjölä J, Kolehmainen M, Bonsdorff J, Pekkanen J, Tikkanen T (2020) An agent-based epidemic model reina for covid-19 to identify destructive policies. medRxiv
Zurück zum Zitat Vespignani A (2012) Modelling dynamical processes in complex socio-technical systems. Nat Phys 8(1):32CrossRef Vespignani A (2012) Modelling dynamical processes in complex socio-technical systems. Nat Phys 8(1):32CrossRef
Zurück zum Zitat Viboud C, Simonsen L, Chowell G (2016) A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15:27–37CrossRef Viboud C, Simonsen L, Chowell G (2016) A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15:27–37CrossRef
Zurück zum Zitat Voitalov I, van der Hoorn P, Kitsak M, Papadopoulos F, Krioukov D (2020) Weighted hypersoft configuration model. Phys Rev Res 2(4):043157CrossRef Voitalov I, van der Hoorn P, Kitsak M, Papadopoulos F, Krioukov D (2020) Weighted hypersoft configuration model. Phys Rev Res 2(4):043157CrossRef
Zurück zum Zitat Xia C, Wang L, Sun S, Wang J (2012) An sir model with infection delay and propagation vector in complex networks. Nonlinear Dyn 69(3):927–934MathSciNetCrossRef Xia C, Wang L, Sun S, Wang J (2012) An sir model with infection delay and propagation vector in complex networks. Nonlinear Dyn 69(3):927–934MathSciNetCrossRef
Zurück zum Zitat Zhang JZ, Wang JJ, Su TX, Jin Z (2010) Analysis of a delayed sir epidemic model. In: 2010 international conference on computational aspects of social networks (CASoN), pp 192–195. IEEE Zhang JZ, Wang JJ, Su TX, Jin Z (2010) Analysis of a delayed sir epidemic model. In: 2010 international conference on computational aspects of social networks (CASoN), pp 192–195. IEEE
Metadaten
Titel
Mobility-based SIR model for complex networks: with case study Of COVID-19
verfasst von
Rahul Goel
Loïc Bonnetain
Rajesh Sharma
Angelo Furno
Publikationsdatum
01.12.2021
Verlag
Springer Vienna
Erschienen in
Social Network Analysis and Mining / Ausgabe 1/2021
Print ISSN: 1869-5450
Elektronische ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-021-00814-3

Weitere Artikel der Ausgabe 1/2021

Social Network Analysis and Mining 1/2021 Zur Ausgabe

Premium Partner