Skip to main content
Erschienen in: Electrical Engineering 2/2022

14.06.2021 | Original Paper

Modeling and analysis of a multi-segmented linear permanent-magnet synchronous machine using a parametric magnetic equivalent circuit

verfasst von: Malihe Heidary, Peyman Naderi, Abbas Shiri

Erschienen in: Electrical Engineering | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an improved magnetic equivalent circuit (MEC) method for modeling linear permanent-magnet synchronous motors (LPMSMs) with adjustable accuracy. The performance of machine with different dimensions, poles and slot numbers can be studied by the proposed flexible MEC, where the core nonlinearity is fitted on the material B–H curve. End effect is modeled by considering two virtual zones with desired accuracy at both entrance and exit ends of the primary. A new structure based on magnets segmentation is also proposed to investigate its effect on the motor performance. Finally, the results of the proposed method are compared with 3D-FEM to show the effectiveness of the presented model. The results show improvement in processing time with good accuracy compared to previous classic methods. In general, introducing a new model based on an improved MEC approach for modeling LPMSMs considering slot effect, iron core saturation and segmented PMs with flexible accuracy by adjusting the number of flux tubes is the paper novelty which is studied in this work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gieras JF, Piech ZJ, Tomczuk B (2018) Linear synchronous motors: transportation and automation systems. CRC Press, Boca RatonCrossRef Gieras JF, Piech ZJ, Tomczuk B (2018) Linear synchronous motors: transportation and automation systems. CRC Press, Boca RatonCrossRef
2.
Zurück zum Zitat Yamazaki K, Fukushima Y, Sato M (2008) Loss analysis of permanent magnet motors with concentrated windings-variation of magnet eddy current loss due to stator and rotor shapes. In: 2008 IEEE industry applications society annual meeting. IEEE, pp 1–8 Yamazaki K, Fukushima Y, Sato M (2008) Loss analysis of permanent magnet motors with concentrated windings-variation of magnet eddy current loss due to stator and rotor shapes. In: 2008 IEEE industry applications society annual meeting. IEEE, pp 1–8
3.
Zurück zum Zitat Pfister P-D, Perriard Y (2009) Very-high-speed slotless permanent-magnet motors: analytical modeling, optimization, design, and torque measurement methods. IEEE Trans Ind Electron 57(1):296–303CrossRef Pfister P-D, Perriard Y (2009) Very-high-speed slotless permanent-magnet motors: analytical modeling, optimization, design, and torque measurement methods. IEEE Trans Ind Electron 57(1):296–303CrossRef
4.
Zurück zum Zitat Vaez-Zadeh S, Isfahani AH (2006) Enhanced modeling of linear permanent-magnet synchronous motors. IEEE Trans Magn 43(1):33–39CrossRef Vaez-Zadeh S, Isfahani AH (2006) Enhanced modeling of linear permanent-magnet synchronous motors. IEEE Trans Magn 43(1):33–39CrossRef
5.
Zurück zum Zitat Kang Gyu-Hong, Hong Jung-Pyo, Kim Gyu-Tak (2001) A novel design of an air-core type permanent magnet linear brushless motor by space harmonics field analysis. IEEE Trans Magn 37:3732–3736CrossRef Kang Gyu-Hong, Hong Jung-Pyo, Kim Gyu-Tak (2001) A novel design of an air-core type permanent magnet linear brushless motor by space harmonics field analysis. IEEE Trans Magn 37:3732–3736CrossRef
6.
Zurück zum Zitat Chung M-J, Gweon D-G (2002) Modeling of the armature slotting effect in the magnetic field distribution of a linear permanent magnet motor. Electr Eng 84:101–108CrossRef Chung M-J, Gweon D-G (2002) Modeling of the armature slotting effect in the magnetic field distribution of a linear permanent magnet motor. Electr Eng 84:101–108CrossRef
7.
Zurück zum Zitat Zarko D, Ban D, Lipo TA (2006) Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance. IEEE Trans Magn 42:1828–1837CrossRef Zarko D, Ban D, Lipo TA (2006) Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance. IEEE Trans Magn 42:1828–1837CrossRef
8.
Zurück zum Zitat Boldea I, Babescu M (1978) Multilayer approach to the analysis of single-sided linear induction motors. Proc Inst Electr Eng 125:01CrossRef Boldea I, Babescu M (1978) Multilayer approach to the analysis of single-sided linear induction motors. Proc Inst Electr Eng 125:01CrossRef
9.
Zurück zum Zitat Azzouzi J, Barakat G, Dakyo B (2005) Analytical modeling of an axial flux permanent magnet synchronous generator for wind energy application. IEEE Int Conf Electric Mach Drives 2005:1255–1260CrossRef Azzouzi J, Barakat G, Dakyo B (2005) Analytical modeling of an axial flux permanent magnet synchronous generator for wind energy application. IEEE Int Conf Electric Mach Drives 2005:1255–1260CrossRef
10.
Zurück zum Zitat Hosseini MS, Vaez-Zadeh S (2010) Modeling and analysis of linear synchronous motors in high-speed maglev vehicles. IEEE Trans Magn 46:2656–2664CrossRef Hosseini MS, Vaez-Zadeh S (2010) Modeling and analysis of linear synchronous motors in high-speed maglev vehicles. IEEE Trans Magn 46:2656–2664CrossRef
11.
Zurück zum Zitat Min SG, Sarlioglu B (2017) 3-d performance analysis and multiobjective optimization of coreless-type pm linear synchronous motors. IEEE Trans Industr Electron 65(2):1855–1864CrossRef Min SG, Sarlioglu B (2017) 3-d performance analysis and multiobjective optimization of coreless-type pm linear synchronous motors. IEEE Trans Industr Electron 65(2):1855–1864CrossRef
12.
Zurück zum Zitat Chi S, Yan J, Shan L, Wang P (2019) Detent force minimizing for moving-magnet-type linear synchronous motor. IEEE Trans Magn 55(6):1–5CrossRef Chi S, Yan J, Shan L, Wang P (2019) Detent force minimizing for moving-magnet-type linear synchronous motor. IEEE Trans Magn 55(6):1–5CrossRef
13.
Zurück zum Zitat Kumar RS, Umadevi K, Anup C (2016) Performance analysis of permanent magnet linear synchronous motors using finite element method. In: 2016 international conference on electrical, electronics, and optimization techniques (ICEEOT). IEEE, pp 1–7 Kumar RS, Umadevi K, Anup C (2016) Performance analysis of permanent magnet linear synchronous motors using finite element method. In: 2016 international conference on electrical, electronics, and optimization techniques (ICEEOT). IEEE, pp 1–7
14.
Zurück zum Zitat Song J, Lee JH, Kim D, Kim Y, Jung S (2017) Analysis and modeling of concentrated winding variable flux memory motor using magnetic equivalent circuit method. IEEE Trans Magn 53:1–4 Song J, Lee JH, Kim D, Kim Y, Jung S (2017) Analysis and modeling of concentrated winding variable flux memory motor using magnetic equivalent circuit method. IEEE Trans Magn 53:1–4
15.
Zurück zum Zitat Ren Z, Fang X, Wang S, Qiu J, Zhu JG, Guo Y, Yang X, Ha J, Wang Z, Sun Y et al (2007) Design optimization of an interior-type permanent magnet BLDC motor using PSO and improved MEC. In: 2007 international conference on electrical machines and systems (ICEMS). IEEE, pp 1350–1353 Ren Z, Fang X, Wang S, Qiu J, Zhu JG, Guo Y, Yang X, Ha J, Wang Z, Sun Y et al (2007) Design optimization of an interior-type permanent magnet BLDC motor using PSO and improved MEC. In: 2007 international conference on electrical machines and systems (ICEMS). IEEE, pp 1350–1353
16.
Zurück zum Zitat Sheikh-Ghalavand B, Vaez-Zadeh S, Isfahani AH (2009) An improved magnetic equivalent circuit model for iron-core linear permanent-magnet synchronous motors. IEEE Trans Magn 46(1):112–120CrossRef Sheikh-Ghalavand B, Vaez-Zadeh S, Isfahani AH (2009) An improved magnetic equivalent circuit model for iron-core linear permanent-magnet synchronous motors. IEEE Trans Magn 46(1):112–120CrossRef
17.
Zurück zum Zitat Naderi P, Rostami M, Ramezannezhad A (2019) Phase-to-phase fault detection method for synchronous reluctance machine using MEC method. Electr Eng 101(2):575–586CrossRef Naderi P, Rostami M, Ramezannezhad A (2019) Phase-to-phase fault detection method for synchronous reluctance machine using MEC method. Electr Eng 101(2):575–586CrossRef
18.
Zurück zum Zitat Dziechciarz A, Martis C (2017) Simplified model of synchronous reluctance machine with optimized flux barriers. Electr Eng 99(4):1207–1216CrossRef Dziechciarz A, Martis C (2017) Simplified model of synchronous reluctance machine with optimized flux barriers. Electr Eng 99(4):1207–1216CrossRef
19.
Zurück zum Zitat Ghandehari R, Naderi P, Vandevelde L (2021) Performance analysis of a new type pm-resolver in healthy and eccentric cases by an improved parametric MEC method. IEEE Trans Instrum Meas 70:1–10CrossRef Ghandehari R, Naderi P, Vandevelde L (2021) Performance analysis of a new type pm-resolver in healthy and eccentric cases by an improved parametric MEC method. IEEE Trans Instrum Meas 70:1–10CrossRef
20.
Zurück zum Zitat Naderi P, Ghandehari R, Heidary M (2021) A comprehensive analysis on the healthy and faulty two types vr-resolvers with eccentricity and inter-turn faults. IEEE Trans Energy Convers 1–1 Naderi P, Ghandehari R, Heidary M (2021) A comprehensive analysis on the healthy and faulty two types vr-resolvers with eccentricity and inter-turn faults. IEEE Trans Energy Convers 1–1
21.
Zurück zum Zitat Hendershot JR, Miller TJE (2010) Design of brushless permanent-magnet machines. Motor Design Books Venice, Florida Hendershot JR, Miller TJE (2010) Design of brushless permanent-magnet machines. Motor Design Books Venice, Florida
22.
Zurück zum Zitat Chen Y-M, Fan S-Y, Lu W-S (2004) Performance analysis of linear permanent magnet motors for optimal design considerations, In: Nineteenth annual IEEE applied power electronics conference and exposition, 2004. APEC’04, vol 3. IEEE, pp 1584–1589 Chen Y-M, Fan S-Y, Lu W-S (2004) Performance analysis of linear permanent magnet motors for optimal design considerations, In: Nineteenth annual IEEE applied power electronics conference and exposition, 2004. APEC’04, vol 3. IEEE, pp 1584–1589
23.
Zurück zum Zitat Kano Y, Kosaka T, Matsui N (2005) Simple nonlinear magnetic analysis for permanent-magnet motors. IEEE Trans Ind Appl 41(5):1205–1214CrossRef Kano Y, Kosaka T, Matsui N (2005) Simple nonlinear magnetic analysis for permanent-magnet motors. IEEE Trans Ind Appl 41(5):1205–1214CrossRef
24.
Zurück zum Zitat Hwang C-C, Cho Y (2001) Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors. IEEE Trans Magn 37(4):3021–3024CrossRef Hwang C-C, Cho Y (2001) Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors. IEEE Trans Magn 37(4):3021–3024CrossRef
25.
Zurück zum Zitat Qu R, Lipo TA (2004) Analysis and modeling of air-gap and zigzag leakage fluxes in a surface-mounted permanent-magnet machine. IEEE Trans Ind Appl 40(1):121–127CrossRef Qu R, Lipo TA (2004) Analysis and modeling of air-gap and zigzag leakage fluxes in a surface-mounted permanent-magnet machine. IEEE Trans Ind Appl 40(1):121–127CrossRef
26.
Zurück zum Zitat Chen X, Zhu Z-Q, Howe D (2009) Modeling and analysis of a tubular oscillating permanent-magnet actuator. IEEE Trans Ind Appl 45(6):1961–1970CrossRef Chen X, Zhu Z-Q, Howe D (2009) Modeling and analysis of a tubular oscillating permanent-magnet actuator. IEEE Trans Ind Appl 45(6):1961–1970CrossRef
27.
Zurück zum Zitat Wakiwaka H (2019) Magnetic application in linear motor. In: Magnetic material for motor drive systems. Springer, pp 423–437 Wakiwaka H (2019) Magnetic application in linear motor. In: Magnetic material for motor drive systems. Springer, pp 423–437
28.
Zurück zum Zitat Naderi P, Shiri A (2018) Modeling of ladder-secondary-linear induction machine using magnetic equivalent circuit. IEEE Trans Veh Technol 67(12):11411–11419CrossRef Naderi P, Shiri A (2018) Modeling of ladder-secondary-linear induction machine using magnetic equivalent circuit. IEEE Trans Veh Technol 67(12):11411–11419CrossRef
29.
Zurück zum Zitat Naderi P, Heydari M, Vahedi M (2020) Performance analysis of ladder secondary linear induction motor with two different secondary types using magnetic equivalent circuit. ISA Trans 103:355–365CrossRef Naderi P, Heydari M, Vahedi M (2020) Performance analysis of ladder secondary linear induction motor with two different secondary types using magnetic equivalent circuit. ISA Trans 103:355–365CrossRef
30.
Zurück zum Zitat Wang Y, Ma J, Liu C, Lei G, Guo Y, Zhu J (2019) Reduction of magnet eddy current loss in PMSM by using partial magnet segment method. IEEE Trans Magn 55(7):1–5 Wang Y, Ma J, Liu C, Lei G, Guo Y, Zhu J (2019) Reduction of magnet eddy current loss in PMSM by using partial magnet segment method. IEEE Trans Magn 55(7):1–5
31.
Zurück zum Zitat Lu Q, Wu B, Yao Y, Shen Y, Jiang Q (2019) Analytical model of permanent magnet linear synchronous machines considering end effect and slotting effect. IEEE Trans Energy Convers 35(1):139–148CrossRef Lu Q, Wu B, Yao Y, Shen Y, Jiang Q (2019) Analytical model of permanent magnet linear synchronous machines considering end effect and slotting effect. IEEE Trans Energy Convers 35(1):139–148CrossRef
Metadaten
Titel
Modeling and analysis of a multi-segmented linear permanent-magnet synchronous machine using a parametric magnetic equivalent circuit
verfasst von
Malihe Heidary
Peyman Naderi
Abbas Shiri
Publikationsdatum
14.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 2/2022
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-021-01334-1

Weitere Artikel der Ausgabe 2/2022

Electrical Engineering 2/2022 Zur Ausgabe

Neuer Inhalt