Skip to main content
Erschienen in: Microsystem Technologies 11/2017

11.01.2017 | Technical Paper

Modeling and analysis of touch on flexible ultra-thin touch sensor panels for AMOLED displays employing finite element methods

verfasst von: Kuo-Yu Chou, Paul C.-P. Chao, Chuan-Xin Chen, Chang-Xian Wu, Sheng-Chieh Huang

Erschienen in: Microsystem Technologies | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The work employs the finite element method (FEM) to model the touch on the flexible ultra-thin touch sensor panel for analyzing touch characteristics and signals. Touch sensor panel readout circuits typically depend on touch signals to determine whether the touch sensor panel is touched or not. However, the ultra-thin touch sensor panel encountered a problem which cannot correctly recognize touch points on this type of touch sensor panel (TSP) on active-matrix organic light emitting diodes (AMOLED) displays since its electrical characteristics are different from the one of the conventional TSP. The modeling techniques for the flexible ultra-thin touch sensor panel on an AMOLED display is used to analyze touch signals from the influence of the thickness of top over layer of the flexible ultra-thin TSP and to observe the variations of mutual capacitance from touch on the flexible ultra-thin TSP. When the flexible ultra-thin touch sensor panel with the thickness of the top over layer less than the threshold thickness of the top over layer is on multi-touch, the phenomenon of the ghost points are generated. The simulation to find the threshold thickness of the top over layer based on the FEM model is conducted, and the simulation results show the top layer thickness should be larger than 107 µm to eliminate the ghost points. Furthermore, a new solution that is an optimization of the electrode pattern of transmitters and receivers in the ultra-thin touch sensor panel to further minimize the threshold thickness of the top over layer of TSP without changing the physical structure of TSP is proposed. The results conducted by using this proposed solution show that TSP top over layer threshold thickness can be reduced to 65 µm without appearance of the ghost points.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abileah A, Boer W et al (2004) Integrated optical touch panel in a 14.1 AMLCD. SID Symp Dig Tech Pap 35(1):1544–1547CrossRef Abileah A, Boer W et al (2004) Integrated optical touch panel in a 14.1 AMLCD. SID Symp Dig Tech Pap 35(1):1544–1547CrossRef
Zurück zum Zitat Baharav I, Kakarala R (2011) Capacitive touch sensing: signal and image processing algorithms. IS&T/SPIE electronic imaging. International Society for Optics and Photonics, pp 78730H–78730H-12 Baharav I, Kakarala R (2011) Capacitive touch sensing: signal and image processing algorithms. IS&T/SPIE electronic imaging. International Society for Optics and Photonics, pp 78730H–78730H-12
Zurück zum Zitat Barrett G, Omote R (2010) Projected-capacitive touch technology. Inf Disp 26(3):16–21 Barrett G, Omote R (2010) Projected-capacitive touch technology. Inf Disp 26(3):16–21
Zurück zum Zitat Dieulesaint E, Royer D, Legras O, Chaabi A (1991) Acoustic plate mode touch screen. Electron Lett 27(1):49–51CrossRef Dieulesaint E, Royer D, Legras O, Chaabi A (1991) Acoustic plate mode touch screen. Electron Lett 27(1):49–51CrossRef
Zurück zum Zitat Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24(22):2945–2986CrossRef Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24(22):2945–2986CrossRef
Zurück zum Zitat Hecht DS, Thomas D, Hu L, Ladous C, Lam T, Park Y, Irvin G, Drzaic P (2009) Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J SID 17(11):941–946 Hecht DS, Thomas D, Hu L, Ladous C, Lam T, Park Y, Irvin G, Drzaic P (2009) Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J SID 17(11):941–946
Zurück zum Zitat Hung NX, Han HR, Liao WT, Hung CH, Wang WC, Shiau MS, Cheng CH, Wu HC, Hsu HS, Liu JJ, Liao SS, Sun RC, Lu GB, Liu DG (2013) Integrated amorphous-Si TFT circuit for gate driver on LCD panels. IEEE 10th international conference on ASIC (ASICON), pp 1–4 Hung NX, Han HR, Liao WT, Hung CH, Wang WC, Shiau MS, Cheng CH, Wu HC, Hsu HS, Liu JJ, Liao SS, Sun RC, Lu GB, Liu DG (2013) Integrated amorphous-Si TFT circuit for gate driver on LCD panels. IEEE 10th international conference on ASIC (ASICON), pp 1–4
Zurück zum Zitat Lee J, Cole MT, Lai JCS, Nathan A (2014) An analysis of electrode patterns in capacitive touch screen panels. J Display Technol 10(5):362–366CrossRef Lee J, Cole MT, Lai JCS, Nathan A (2014) An analysis of electrode patterns in capacitive touch screen panels. J Display Technol 10(5):362–366CrossRef
Zurück zum Zitat Martin SJ, Verschoor GLB, Webster MA, Walker AB (2002) The internal electric field distribution in bilayer organic light emitting diodes. Org Electron 3(3–4):129–141CrossRef Martin SJ, Verschoor GLB, Webster MA, Walker AB (2002) The internal electric field distribution in bilayer organic light emitting diodes. Org Electron 3(3–4):129–141CrossRef
Zurück zum Zitat Park Y-S, Chung B-Y, Kang C-K, Park S-I, Im K-J, Jeong JH, Kim B-H, Kim SS (2011) Oxide TFT scan driver with dynamic threshold voltage control. SID Symp Dig Tech Pap 42(1):718–721CrossRef Park Y-S, Chung B-Y, Kang C-K, Park S-I, Im K-J, Jeong JH, Kim B-H, Kim SS (2011) Oxide TFT scan driver with dynamic threshold voltage control. SID Symp Dig Tech Pap 42(1):718–721CrossRef
Zurück zum Zitat Song E, Kang B, Han I, Oh K, Kim B, Nam H (2015) Depletion mode oxide TFT shift register for variable frame rate AMOLED display. IEEE Electron Device Lett 36(3):247–294CrossRef Song E, Kang B, Han I, Oh K, Kim B, Nam H (2015) Depletion mode oxide TFT shift register for variable frame rate AMOLED display. IEEE Electron Device Lett 36(3):247–294CrossRef
Zurück zum Zitat Tai Y-H, Chiu H-L, Chou L-S (2013) Large-area capacitive active touch panel using the method of pulse overlapping detection. J Disp Technol 9(3):170–175CrossRef Tai Y-H, Chiu H-L, Chou L-S (2013) Large-area capacitive active touch panel using the method of pulse overlapping detection. J Disp Technol 9(3):170–175CrossRef
Metadaten
Titel
Modeling and analysis of touch on flexible ultra-thin touch sensor panels for AMOLED displays employing finite element methods
verfasst von
Kuo-Yu Chou
Paul C.-P. Chao
Chuan-Xin Chen
Chang-Xian Wu
Sheng-Chieh Huang
Publikationsdatum
11.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 11/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3241-4

Weitere Artikel der Ausgabe 11/2017

Microsystem Technologies 11/2017 Zur Ausgabe

Foreword

Foreword

Neuer Inhalt