Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Modeling and Numerical Simulations in Nonlinear Acoustics Used for Damage Detection

verfasst von : Pawel Packo, Rafal Radecki, Michael J. Leamy, Tadeusz Uhl, Wieslaw J. Staszewski

Erschienen in: Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Structural damage detection is frequently accomplished by interrogation with elastic waves.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Stepinski, T. Uhl, W.J. Staszewski, Advanced Structural Damage Detection: From Theory to Engineering Applications, 1st edn. (Wiley, Chichester, 2013)CrossRef T. Stepinski, T. Uhl, W.J. Staszewski, Advanced Structural Damage Detection: From Theory to Engineering Applications, 1st edn. (Wiley, Chichester, 2013)CrossRef
2.
Zurück zum Zitat C. Boller, F.-K. Chang, Y. Fujino, Encyclopedia of Structural Health Monitoring (Wiley, Chichester, 2009)CrossRef C. Boller, F.-K. Chang, Y. Fujino, Encyclopedia of Structural Health Monitoring (Wiley, Chichester, 2009)CrossRef
3.
Zurück zum Zitat A.N. Norris, Finite-amplitude waves in solids, in Nonlinear Acoustics, ed. by M.F. Hamilton, D.T. Blackstock (Academic Press, San Diego, 1998), pp. 263–277 A.N. Norris, Finite-amplitude waves in solids, in Nonlinear Acoustics, ed. by M.F. Hamilton, D.T. Blackstock (Academic Press, San Diego, 1998), pp. 263–277
4.
Zurück zum Zitat N. Rauter, R. Lammering, Numerical simulation of elastic wave propagation in isotropic media considering material and geometrical nonlinearities. Smart Mater. Struct. 24(4), 045027 (2015)CrossRef N. Rauter, R. Lammering, Numerical simulation of elastic wave propagation in isotropic media considering material and geometrical nonlinearities. Smart Mater. Struct. 24(4), 045027 (2015)CrossRef
5.
Zurück zum Zitat V.K. Chillara, C.J. Lissenden, Review of nonlinear ultrasonic guided wave nondestructive evaluation: theory, numerics and experiments. Opt. Eng. 55(1), 011002 (2015)CrossRef V.K. Chillara, C.J. Lissenden, Review of nonlinear ultrasonic guided wave nondestructive evaluation: theory, numerics and experiments. Opt. Eng. 55(1), 011002 (2015)CrossRef
6.
Zurück zum Zitat K.-Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)CrossRef K.-Y. Jhang, Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)CrossRef
7.
Zurück zum Zitat M. Destrade, R.W. Ogden, On the third- and fourth-order constants of incompressible isotropic elasticity. J. Acoust. Soc. Am. 128, 3334–3343 (2010)CrossRef M. Destrade, R.W. Ogden, On the third- and fourth-order constants of incompressible isotropic elasticity. J. Acoust. Soc. Am. 128, 3334–3343 (2010)CrossRef
8.
Zurück zum Zitat M. Muller, A. Sutin, R. Guyer, M. Talmant, P. Laugier, P.A. Johnson, Nonlinear resonant ultrasound spectroscopy (nrus) applied to damage assessment in bone. J. Acoust. Soc. Am. 118(6), 3946–3952 (2005)CrossRef M. Muller, A. Sutin, R. Guyer, M. Talmant, P. Laugier, P.A. Johnson, Nonlinear resonant ultrasound spectroscopy (nrus) applied to damage assessment in bone. J. Acoust. Soc. Am. 118(6), 3946–3952 (2005)CrossRef
9.
Zurück zum Zitat W.J.N. de Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)CrossRef W.J.N. de Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)CrossRef
10.
Zurück zum Zitat A. Klepka, W.J. Staszewski, R.B. Jenal, M. Szwedo, J. Iwaniec, Nonlinear acoustics for fatigue crack detection - experimental investigations of vibroacoustic wave modulations. Struct. Health Monit. 11, 197–211 (2012)CrossRef A. Klepka, W.J. Staszewski, R.B. Jenal, M. Szwedo, J. Iwaniec, Nonlinear acoustics for fatigue crack detection - experimental investigations of vibroacoustic wave modulations. Struct. Health Monit. 11, 197–211 (2012)CrossRef
12.
Zurück zum Zitat G.B. Santoni, L. Yu, B. Xu, V. Giurgiutiu, Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring. J. Vib. Acoust. 129(6), 752–762 (2007)CrossRef G.B. Santoni, L. Yu, B. Xu, V. Giurgiutiu, Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring. J. Vib. Acoust. 129(6), 752–762 (2007)CrossRef
13.
Zurück zum Zitat P.Y. Moghadam, N. Quaegebeur, P. Masson, Mode selective generation of guided waves by systematic optimization of the interfacial shear stress profile. Smart Mater. Struct. 24(1), 015003 (2015)CrossRef P.Y. Moghadam, N. Quaegebeur, P. Masson, Mode selective generation of guided waves by systematic optimization of the interfacial shear stress profile. Smart Mater. Struct. 24(1), 015003 (2015)CrossRef
14.
Zurück zum Zitat P. Packo, T. Bielak, A.B. Spencer, W.J. Staszewski, T. Uhl, K. Worden, Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards. Smart Mater. Struct. 21(7), 075001 (2012)CrossRef P. Packo, T. Bielak, A.B. Spencer, W.J. Staszewski, T. Uhl, K. Worden, Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards. Smart Mater. Struct. 21(7), 075001 (2012)CrossRef
15.
Zurück zum Zitat P. Packo, T. Bielak, A.B. Spencer, T. Uhl, W.J. Staszewski, K. Worden, T. Barszcz, P. Russek, K. Wiatr, Numerical simulations of elastic wave propagation using graphical processing units—comparative study of high-performance computing capabilities. Comput. Methods Appl. Mech. Eng. 290, 98–126 (2015)MathSciNetCrossRef P. Packo, T. Bielak, A.B. Spencer, T. Uhl, W.J. Staszewski, K. Worden, T. Barszcz, P. Russek, K. Wiatr, Numerical simulations of elastic wave propagation using graphical processing units—comparative study of high-performance computing capabilities. Comput. Methods Appl. Mech. Eng. 290, 98–126 (2015)MathSciNetCrossRef
16.
Zurück zum Zitat G. Noh, S. Ham, K.-J. Bathe, Performance of an implicit time integration scheme in the analysis of wave propagations. Comput. Struct. 123, 93–105 (2013)CrossRef G. Noh, S. Ham, K.-J. Bathe, Performance of an implicit time integration scheme in the analysis of wave propagations. Comput. Struct. 123, 93–105 (2013)CrossRef
17.
Zurück zum Zitat K.-T. Kim, K.-J. Bathe, Transient implicit wave propagation dynamics with the method of finite spheres. Comput. Struct. 173, 50–60 (2016)CrossRef K.-T. Kim, K.-J. Bathe, Transient implicit wave propagation dynamics with the method of finite spheres. Comput. Struct. 173, 50–60 (2016)CrossRef
18.
Zurück zum Zitat J.C. Strickwerda, Finite Difference Schemes and Partial Differential Equations (Wadsworth-Brooks, Belmont, 1989) J.C. Strickwerda, Finite Difference Schemes and Partial Differential Equations (Wadsworth-Brooks, Belmont, 1989)
19.
Zurück zum Zitat J. Virieux, P-sv wave propagation in heterogeneous media: velocity-stress finite difference method. Geophysics 51, 889–901 (1986)CrossRef J. Virieux, P-sv wave propagation in heterogeneous media: velocity-stress finite difference method. Geophysics 51, 889–901 (1986)CrossRef
20.
Zurück zum Zitat P. Fellinger, R. Marklein, K.J. Langenberg, S. Klaholz, Numerical modeling of elastic wave propagation and scattering with efit - elastodynamic finite integration technique. Wave Motion 21(1), 47–66 (1995)CrossRef P. Fellinger, R. Marklein, K.J. Langenberg, S. Klaholz, Numerical modeling of elastic wave propagation and scattering with efit - elastodynamic finite integration technique. Wave Motion 21(1), 47–66 (1995)CrossRef
21.
Zurück zum Zitat P.P. Delsanto, R.S. Schechter, H.H. Chaskelis, R.B. Mignogna, R. Kline, Connection machine simulation of ultrasonic wave propagation in materials. II: the two-dimensional case. Wave Motion 20(4), 295–314 (1994)MATH P.P. Delsanto, R.S. Schechter, H.H. Chaskelis, R.B. Mignogna, R. Kline, Connection machine simulation of ultrasonic wave propagation in materials. II: the two-dimensional case. Wave Motion 20(4), 295–314 (1994)MATH
22.
Zurück zum Zitat P. Packo, R. Radecki, P. Kijanka, W.J. Staszewski, T. Uhl, M.J. Leamy, Local numerical modelling of ultrasonic guided waves in linear and nonlinear media, in Proceedings of SPIE Health Monitoring of Structural and Biological Systems 2017, vol. 10170 (2017), pp. 1017023–1017023-10 P. Packo, R. Radecki, P. Kijanka, W.J. Staszewski, T. Uhl, M.J. Leamy, Local numerical modelling of ultrasonic guided waves in linear and nonlinear media, in Proceedings of SPIE Health Monitoring of Structural and Biological Systems 2017, vol. 10170 (2017), pp. 1017023–1017023-10
23.
Zurück zum Zitat M.J. Leamy, Application of cellular automata modeling to seismic elastodynamics. Int. J. Solids Struct. 45(17), 4835–4849 (2008)CrossRef M.J. Leamy, Application of cellular automata modeling to seismic elastodynamics. Int. J. Solids Struct. 45(17), 4835–4849 (2008)CrossRef
24.
Zurück zum Zitat R.K. Hopman, M.J. Leamy, Triangular cellular automata for computing two-dimensional elastodynamic response on arbitrary domains. J. Appl. Mech. 78(2), 021020 (2011)CrossRef R.K. Hopman, M.J. Leamy, Triangular cellular automata for computing two-dimensional elastodynamic response on arbitrary domains. J. Appl. Mech. 78(2), 021020 (2011)CrossRef
25.
Zurück zum Zitat M.J. Leamy, T.B. Autrusson, W.J. Staszewski, T. Uhl, P. Packo, Local computational strategies for predicting wave propagation in nonlinear media, in Proceedings of SPIE Health Monitoring of Structural and Biological Systems 2014, vol. 9064 (2014), pp. 90641J–90641J-15 M.J. Leamy, T.B. Autrusson, W.J. Staszewski, T. Uhl, P. Packo, Local computational strategies for predicting wave propagation in nonlinear media, in Proceedings of SPIE Health Monitoring of Structural and Biological Systems 2014, vol. 9064 (2014), pp. 90641J–90641J-15
26.
Zurück zum Zitat K.J. Bathe, Finite Element Procedures in Engineering Analysis (Prentice-Hall, Englewood Cliff, 1982) K.J. Bathe, Finite Element Procedures in Engineering Analysis (Prentice-Hall, Englewood Cliff, 1982)
27.
Zurück zum Zitat O.C. Zienkiewicz, The Finite Element Method (McGraw-Hill, London, 1989) O.C. Zienkiewicz, The Finite Element Method (McGraw-Hill, London, 1989)
28.
Zurück zum Zitat A.A. Becker, The Boundary Element Method in Engineering: A Complete Course (McGraw-Hill, London, 1992) A.A. Becker, The Boundary Element Method in Engineering: A Complete Course (McGraw-Hill, London, 1992)
29.
Zurück zum Zitat A.T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)CrossRef A.T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)CrossRef
30.
Zurück zum Zitat S. Gopalakrishnan, A. Chakraborty, D.R. Mahapatra, Spectral Finite Element Method (Springer, Berlin, 2008)MATH S. Gopalakrishnan, A. Chakraborty, D.R. Mahapatra, Spectral Finite Element Method (Springer, Berlin, 2008)MATH
31.
Zurück zum Zitat S. Ham, K.J. Bathe, A finite element method enriched for wave propagation problems. Comput. Struct. 94–95, 1–12 (2012)CrossRef S. Ham, K.J. Bathe, A finite element method enriched for wave propagation problems. Comput. Struct. 94–95, 1–12 (2012)CrossRef
32.
Zurück zum Zitat P. Packo, T. Uhl, W.J. Staszewski, Generalized semi-analytical finite difference method for dispersion curves calculation and numerical dispersion analysis for Lamb waves. J. Acoust. Soc. Am. 136(3), 993 (2014)CrossRef P. Packo, T. Uhl, W.J. Staszewski, Generalized semi-analytical finite difference method for dispersion curves calculation and numerical dispersion analysis for Lamb waves. J. Acoust. Soc. Am. 136(3), 993 (2014)CrossRef
33.
Zurück zum Zitat P. Kijanka, W.J. Staszewski, P. Packo, Simulation of guided wave propagation near numerical brillouin zones, in Proceedings of SPIE Health Monitoring of Structural and Biological Systems 2016, vol. 9805 (2016), pp. 98050Q–98050Q-6 P. Kijanka, W.J. Staszewski, P. Packo, Simulation of guided wave propagation near numerical brillouin zones, in Proceedings of SPIE Health Monitoring of Structural and Biological Systems 2016, vol. 9805 (2016), pp. 98050Q–98050Q-6
34.
Zurück zum Zitat D. Broda, W.J. Staszewski, A. Martowicz, T. Uhl, V.V. Silberschmidt, Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound—a review. J. Sound Vib. 333(4), 1097–1118 (2014)CrossRef D. Broda, W.J. Staszewski, A. Martowicz, T. Uhl, V.V. Silberschmidt, Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound—a review. J. Sound Vib. 333(4), 1097–1118 (2014)CrossRef
35.
Zurück zum Zitat L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 2nd edn. (Pergamon Press, Oxford, 1970)MATH L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 2nd edn. (Pergamon Press, Oxford, 1970)MATH
36.
Zurück zum Zitat V. Gusev, V. Tournat, B. Castagnede, Nonlinear acoustic phenomena in micro-inhomogeneous media, in Materials and Acoustic Handbook, ed. by C. Potel, M. Bruneau (ISTE Ltd, London, 2009)MATH V. Gusev, V. Tournat, B. Castagnede, Nonlinear acoustic phenomena in micro-inhomogeneous media, in Materials and Acoustic Handbook, ed. by C. Potel, M. Bruneau (ISTE Ltd, London, 2009)MATH
37.
Zurück zum Zitat K. Worden, G.R. Tomlinson, Nonlinearity in Structural Dynamics: Detection, Identification and Modelling (IoP, Bristol, 2001) K. Worden, G.R. Tomlinson, Nonlinearity in Structural Dynamics: Detection, Identification and Modelling (IoP, Bristol, 2001)
38.
Zurück zum Zitat R. Ruotolo, C. Surace, P. Crespo, D. Storer, Harmonic analysis of the vibrations of a cantilevered beam with a closing crack. Comput. Struct. 61(6), 1057–1074 (1996)CrossRef R. Ruotolo, C. Surace, P. Crespo, D. Storer, Harmonic analysis of the vibrations of a cantilevered beam with a closing crack. Comput. Struct. 61(6), 1057–1074 (1996)CrossRef
39.
Zurück zum Zitat T.G. Chondros, A.D. Dimarogonas, J. Yao, Vibrations of a beam with a breathing crack. J. Sound Vib. 239(1), 57–67 (2001)CrossRef T.G. Chondros, A.D. Dimarogonas, J. Yao, Vibrations of a beam with a breathing crack. J. Sound Vib. 239(1), 57–67 (2001)CrossRef
40.
Zurück zum Zitat M.I. Friswell, J.E.T. Penny, Crack modeling for structural health monitoring. Struct. Health Monit. 1(2), 139–148 (2002)CrossRef M.I. Friswell, J.E.T. Penny, Crack modeling for structural health monitoring. Struct. Health Monit. 1(2), 139–148 (2002)CrossRef
41.
Zurück zum Zitat I.Y. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40(1–8), 621–625 (2002)CrossRef I.Y. Solodov, N. Krohn, G. Busse, CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40(1–8), 621–625 (2002)CrossRef
42.
Zurück zum Zitat I.Y. Solodov, N. Krohn, G. Busse, Nonlinear ultrasonic NDT for early defect recognition and imaging, in Proceedings of the 10th European Conference on Non-destructive Testing, Moscow (2010) I.Y. Solodov, N. Krohn, G. Busse, Nonlinear ultrasonic NDT for early defect recognition and imaging, in Proceedings of the 10th European Conference on Non-destructive Testing, Moscow (2010)
43.
Zurück zum Zitat F. Semperlotti, K.W. Wang, E.C. Smith, Localization of a breathing crack using super-harmonic signals due to system nonlinearity. AIAA J. 47(9), 2076–2086 (2009)CrossRef F. Semperlotti, K.W. Wang, E.C. Smith, Localization of a breathing crack using super-harmonic signals due to system nonlinearity. AIAA J. 47(9), 2076–2086 (2009)CrossRef
44.
Zurück zum Zitat V.E. Nazarov, L.A. Ostrovsky, I.A. Soustova, A.M. Sutin, Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Inter. 50(1), 65–73 (1988)CrossRef V.E. Nazarov, L.A. Ostrovsky, I.A. Soustova, A.M. Sutin, Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Inter. 50(1), 65–73 (1988)CrossRef
45.
Zurück zum Zitat V.E. Nazarov, A.V. Radostin, L.A. Ostrovsky, I.A. Soustova, Wave processes in media with hysteretic nonlinearity. Part I. Acoust. Phys. 49(3), 344–355 (2003)CrossRef V.E. Nazarov, A.V. Radostin, L.A. Ostrovsky, I.A. Soustova, Wave processes in media with hysteretic nonlinearity. Part I. Acoust. Phys. 49(3), 344–355 (2003)CrossRef
46.
Zurück zum Zitat K.R. McCall, R.A. Guyer, Equation of state and wave propagation in hysteretic nonlinear elastic materials. J. Geophys. Res. Solid Earth 99(B12), 23887–23897 (1994)CrossRef K.R. McCall, R.A. Guyer, Equation of state and wave propagation in hysteretic nonlinear elastic materials. J. Geophys. Res. Solid Earth 99(B12), 23887–23897 (1994)CrossRef
47.
Zurück zum Zitat R.A. Guyer, K.R. McCall, G.N. Boitnott, Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74, 3491–3494 (1995)CrossRef R.A. Guyer, K.R. McCall, G.N. Boitnott, Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74, 3491–3494 (1995)CrossRef
48.
Zurück zum Zitat L.A. Ostrovsky, S.N. Gurbatov, J.N. Didenkulov, Nonlinear acoustics in nizhni novgorod (a review). Acoust. Phys. 51(2), 114–127 (2005)CrossRef L.A. Ostrovsky, S.N. Gurbatov, J.N. Didenkulov, Nonlinear acoustics in nizhni novgorod (a review). Acoust. Phys. 51(2), 114–127 (2005)CrossRef
49.
Zurück zum Zitat I.Y. Belyaeva, V.Y. Zaitsev, L.A. Ostrovsky, Nonlinear acousto-elastic properties of granular media. Acoust. Phys. 39(1), 11–14 (1993) I.Y. Belyaeva, V.Y. Zaitsev, L.A. Ostrovsky, Nonlinear acousto-elastic properties of granular media. Acoust. Phys. 39(1), 11–14 (1993)
50.
Zurück zum Zitat V. Zaitsev, P. Sas, Dissipation in microinhomogeneous solids: inherent amplitude-dependent losses of a non-hysteretical and non-frictional type. Acta Acust. united Ac. 86(3), 429–445 (2000) V. Zaitsev, P. Sas, Dissipation in microinhomogeneous solids: inherent amplitude-dependent losses of a non-hysteretical and non-frictional type. Acta Acust. united Ac. 86(3), 429–445 (2000)
51.
Zurück zum Zitat V.Y. Zaitsev, V. Gusev, B. Castagnède, Observation of the “luxemburg–gorky effect” for elastic waves. Ultrasonics 40(1), 627–631 (2002)CrossRef V.Y. Zaitsev, V. Gusev, B. Castagnède, Observation of the “luxemburg–gorky effect” for elastic waves. Ultrasonics 40(1), 627–631 (2002)CrossRef
52.
Zurück zum Zitat J. Lemaitre, R. Desmorat, Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures (Springer, Berlin, 2005) J. Lemaitre, R. Desmorat, Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures (Springer, Berlin, 2005)
53.
Zurück zum Zitat J. Rushchitsky, Nonlinear Elastic Waves in Materials (Springer, Berlin, 2014)CrossRef J. Rushchitsky, Nonlinear Elastic Waves in Materials (Springer, Berlin, 2014)CrossRef
54.
Zurück zum Zitat A. Jeffrey, J. Engelbrecht, Nonlinear Waves in Solids. CISM Courses and Lectures (Springer, Berlin, 1994)CrossRef A. Jeffrey, J. Engelbrecht, Nonlinear Waves in Solids. CISM Courses and Lectures (Springer, Berlin, 1994)CrossRef
55.
Zurück zum Zitat A.F. Bower, Applied Mechanics of Solids (CRC Press, Boca Raton, 2010) A.F. Bower, Applied Mechanics of Solids (CRC Press, Boca Raton, 2010)
56.
Zurück zum Zitat M. Destrade, G. Saccomandi, M. Vianello, Proper formulation of viscous dissipation for nonlinear waves in solids. Acoust. Soc. Am. J. 133, 1255 (2013)CrossRef M. Destrade, G. Saccomandi, M. Vianello, Proper formulation of viscous dissipation for nonlinear waves in solids. Acoust. Soc. Am. J. 133, 1255 (2013)CrossRef
57.
Zurück zum Zitat P. Packo, Numerical simulation of elasticwave propagation, in Advanced Structural Damage Detection: From Theory to Engineering Applications (Wiley, Chichester, 2013) P. Packo, Numerical simulation of elasticwave propagation, in Advanced Structural Damage Detection: From Theory to Engineering Applications (Wiley, Chichester, 2013)
58.
Zurück zum Zitat R. Courant, K. Friedrichs, H. Lewy, Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100(1), 32–74 (1928)MathSciNetCrossRef R. Courant, K. Friedrichs, H. Lewy, Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100(1), 32–74 (1928)MathSciNetCrossRef
59.
Zurück zum Zitat Y. Shen, C.E.S. Cesnik, Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach. Ultrasonics 74, 106–123 (2017)CrossRef Y. Shen, C.E.S. Cesnik, Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach. Ultrasonics 74, 106–123 (2017)CrossRef
60.
Zurück zum Zitat P.P. Delsanto, T. Whitcombe, H.H. Chaskelis, R.B. Mignogna, Connection machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case. Wave Motion 16(1), 65–80 (1992) P.P. Delsanto, T. Whitcombe, H.H. Chaskelis, R.B. Mignogna, Connection machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case. Wave Motion 16(1), 65–80 (1992)
61.
Zurück zum Zitat P. Packo, T. Bielak, A.B. Spencer, W.J. Staszewski, T. Uhl, K. Worden, Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards. Smart Mater. Struct. 21(7), 075001 (2012)CrossRef P. Packo, T. Bielak, A.B. Spencer, W.J. Staszewski, T. Uhl, K. Worden, Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards. Smart Mater. Struct. 21(7), 075001 (2012)CrossRef
62.
Zurück zum Zitat P. Packo, T. Bielak, A.B. Spencer, T. Uhl, W.J. Staszewski, K. Worden, T. Barszcz, P. Russek, K. Wiatr, Numerical simulations of elastic wave propagation using graphical processing units—comparative study of high-performance computing capabilities. Comput. Methods Appl. Mech. Eng. 290, 98–126 (2015)MathSciNetCrossRef P. Packo, T. Bielak, A.B. Spencer, T. Uhl, W.J. Staszewski, K. Worden, T. Barszcz, P. Russek, K. Wiatr, Numerical simulations of elastic wave propagation using graphical processing units—comparative study of high-performance computing capabilities. Comput. Methods Appl. Mech. Eng. 290, 98–126 (2015)MathSciNetCrossRef
63.
Zurück zum Zitat D. Dutta, H. Sohn, K.A. Harries, P. Rizzo, A nonlinear acoustic technique for crack detection in metallic structures. Struct. Health Monit. 8(3), 251–262 (2009)CrossRef D. Dutta, H. Sohn, K.A. Harries, P. Rizzo, A nonlinear acoustic technique for crack detection in metallic structures. Struct. Health Monit. 8(3), 251–262 (2009)CrossRef
64.
Zurück zum Zitat M. Deng, Analysis of second-harmonic generation of lamb modes using a modal analysis approach. J. Appl. Phys. 94(6), 4152–4159 (2003)CrossRef M. Deng, Analysis of second-harmonic generation of lamb modes using a modal analysis approach. J. Appl. Phys. 94(6), 4152–4159 (2003)CrossRef
65.
Zurück zum Zitat C. Zhou, M. Hong, Z. Su, Q. Wang, L. Cheng, Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network. Smart Mater. Struct. 22(1), 015018 (2013)CrossRef C. Zhou, M. Hong, Z. Su, Q. Wang, L. Cheng, Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network. Smart Mater. Struct. 22(1), 015018 (2013)CrossRef
66.
Zurück zum Zitat I. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84(26), 5386–5388 (2004)CrossRef I. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84(26), 5386–5388 (2004)CrossRef
67.
Zurück zum Zitat F. Aymerich, W.J. Staszewski, Experimental study of impact-damage detection in composite laminates using a cross-modulation vibro-acoustic technique. Struct. Health Monit. 9(6), 541–553 (2010)CrossRef F. Aymerich, W.J. Staszewski, Experimental study of impact-damage detection in composite laminates using a cross-modulation vibro-acoustic technique. Struct. Health Monit. 9(6), 541–553 (2010)CrossRef
68.
Zurück zum Zitat D.T. Zeitvogel, K.H. Matlack, J.-Y. Kim, L.J. Jacobs, P.M. Singh, J. Qu, Characterization of stress corrosion cracking in carbon steel using nonlinear rayleigh surface waves. NDT & E Int. 62, 144–152 (2014)CrossRef D.T. Zeitvogel, K.H. Matlack, J.-Y. Kim, L.J. Jacobs, P.M. Singh, J. Qu, Characterization of stress corrosion cracking in carbon steel using nonlinear rayleigh surface waves. NDT & E Int. 62, 144–152 (2014)CrossRef
69.
Zurück zum Zitat J.-Y. Kim, V.A. Yakovlev, S.I. Rokhlin, Parametric modulation mechanism of surface acoustic wave on a partially closed crack. Appl. Phys. Lett. 82(19), 3203–3205 (2003)CrossRef J.-Y. Kim, V.A. Yakovlev, S.I. Rokhlin, Parametric modulation mechanism of surface acoustic wave on a partially closed crack. Appl. Phys. Lett. 82(19), 3203–3205 (2003)CrossRef
70.
Zurück zum Zitat T. Stratoudaki, R. Ellwood, S. Sharples, M. Clark, M.G. Somekh, I.J. Collison, Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J. Acoust. Soc. Am. 129(4), 1721–1728 (2011)CrossRef T. Stratoudaki, R. Ellwood, S. Sharples, M. Clark, M.G. Somekh, I.J. Collison, Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J. Acoust. Soc. Am. 129(4), 1721–1728 (2011)CrossRef
71.
Zurück zum Zitat Y. Shen, V. Giurgiutiu, Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 25(4), 506–520 (2014)CrossRef Y. Shen, V. Giurgiutiu, Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 25(4), 506–520 (2014)CrossRef
72.
Zurück zum Zitat T.J.R. Hughes, R.L. Taylor, J.L. Sackman, A. Curnier, W. Kanoknukulchai, A finite element method for a class of contact-impact problems. Comput. Methods Appl. Mech. Eng. 8(3), 249–276 (1976)CrossRef T.J.R. Hughes, R.L. Taylor, J.L. Sackman, A. Curnier, W. Kanoknukulchai, A finite element method for a class of contact-impact problems. Comput. Methods Appl. Mech. Eng. 8(3), 249–276 (1976)CrossRef
73.
Zurück zum Zitat M.B. Obenchain, K.S. Nadella, C.E.S. Cesnik, Hybrid global matrix/local interaction simulation approach for wave propagation in composites. AIAA J. 53(2), 379–393 (2015)CrossRef M.B. Obenchain, K.S. Nadella, C.E.S. Cesnik, Hybrid global matrix/local interaction simulation approach for wave propagation in composites. AIAA J. 53(2), 379–393 (2015)CrossRef
74.
Zurück zum Zitat A. Martowicz, P. Packo, W.J. Staszewski, T. Uhl, Modelling of nonlinear vibro–acoustic wave interaction in cracked aluminium plates using local interaction simulation approach, in 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria (2012) A. Martowicz, P. Packo, W.J. Staszewski, T. Uhl, Modelling of nonlinear vibro–acoustic wave interaction in cracked aluminium plates using local interaction simulation approach, in 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria (2012)
75.
Zurück zum Zitat P.P. Delsanto, M. Scalerandi, A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces. J. Acoust. Soc. Am. 104(5), 2584–2591 (1998)CrossRef P.P. Delsanto, M. Scalerandi, A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces. J. Acoust. Soc. Am. 104(5), 2584–2591 (1998)CrossRef
76.
Zurück zum Zitat M. Scalerandi, V. Agostini, P.P. Delsanto, K. Van Den Abeele, P.A. Johnson, Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids. J. Acoust. Soc. Am. 113(6), 3049–3059 (2003)CrossRef M. Scalerandi, V. Agostini, P.P. Delsanto, K. Van Den Abeele, P.A. Johnson, Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids. J. Acoust. Soc. Am. 113(6), 3049–3059 (2003)CrossRef
77.
Zurück zum Zitat P. Kijanka, R. Radecki, P. Packo, W.J. Staszewski, T. Uhl, M.J. Leamy, Nonlinear dispersion effects in elastic plates: numerical modelling and validation, in Proceedings of SPIE Health Monitoring of Structural and Biological Systems 2017, vol. 10170 (2017), pp. 101701U–101701U-8 P. Kijanka, R. Radecki, P. Packo, W.J. Staszewski, T. Uhl, M.J. Leamy, Nonlinear dispersion effects in elastic plates: numerical modelling and validation, in Proceedings of SPIE Health Monitoring of Structural and Biological Systems 2017, vol. 10170 (2017), pp. 101701U–101701U-8
78.
Zurück zum Zitat P. Packo, T. Uhl, W.J. Staszewski, M.J. Leamy, Amplitude-dependent lamb wave dispersion in nonlinear plates. J. Acoust. Soc. Am. 140(2), 1319–1331 (2016)CrossRef P. Packo, T. Uhl, W.J. Staszewski, M.J. Leamy, Amplitude-dependent lamb wave dispersion in nonlinear plates. J. Acoust. Soc. Am. 140(2), 1319–1331 (2016)CrossRef
79.
Zurück zum Zitat M.F. Müller, J.-Y. Kim, J. Qu, L.J. Jacobs, Characteristics of second harmonic generation of lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127(4), 2141–2152 (2010)CrossRef M.F. Müller, J.-Y. Kim, J. Qu, L.J. Jacobs, Characteristics of second harmonic generation of lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127(4), 2141–2152 (2010)CrossRef
Metadaten
Titel
Modeling and Numerical Simulations in Nonlinear Acoustics Used for Damage Detection
verfasst von
Pawel Packo
Rafal Radecki
Michael J. Leamy
Tadeusz Uhl
Wieslaw J. Staszewski
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-94476-0_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.