Skip to main content
Erschienen in: Engineering with Computers 4/2023

05.12.2022 | Original Article

Modeling of dendritic solidification and numerical analysis of the phase-field approach to model complex morphologies in alloys

verfasst von: Kunal Bhagat, Shiva Rudraraju

Erschienen in: Engineering with Computers | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dendrites are one of the most widely observed patterns in nature, and occur across a wide spectrum of physical phenomena—from snow flakes to river basins; from bacterial colonies to lungs and vascular systems; and in solidification and growth patterns in metals and crystals. The ubiquitous occurrence of these “tree-like” structures can be attributed to their excellent space-filling properties, and at times, dendritic structures also spatially manifest fractal-like distributions. As is the case with many fractal-like geometries, the complex multi-level branching structures in dendrites pose a modeling challenge, and a full resolution of dendritic structures is computationally very demanding. In the literature, extensive theoretical models of dendritic formation and evolution, essentially as extensions of the classical moving boundary Stefan problem exist. Much of this understanding is from the analysis of dendrites occurring during the solidification of metallic alloys, as this is critical for understanding microstructure evolution during metal manufacturing processes that involve solidification of a liquid melt. Motivated by the problem of modeling microstructure evolution from liquid melts of pure metals and metallic alloys during metal additive manufacturing, we developed a comprehensive numerical framework for modeling a large variety of dendritic structures that are relevant to metal solidification. In this work, we present a numerical framework encompassing the modeling of Stefan problem formulations relevant to dendritic evolution using a phase-field approach and a finite element method implementation. Using this framework, we model numerous complex dendritic morphologies that are physically relevant to the solidification of pure melts and binary alloys. The distinguishing aspects of this work are—a unified treatment of both pure metals and alloys; novel numerical error estimates of dendritic tip velocity; and the study of error convergence of the primal fields of temperature and the order parameter with respect to numerical discretization. To the best of our knowledge, this is a first of its kind study of numerical convergence of the phase-field equations of dendritic growth in a finite element method setting. Further, using this numerical framework, various types of physically relevant dendritic solidification patterns like single equiaxed, multi-equiaxed, single columnar and multi-columnar dendrites are modeled in two-dimensional and three-dimensional computational domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rubinstein LI (1971) The stefan problem, transl. math. Monographs 27:327–3 Rubinstein LI (1971) The stefan problem, transl. math. Monographs 27:327–3
2.
Zurück zum Zitat Meyer Gunter H (1978) The numerical solution of stefan problems with front-tracking and smoothing methods. Appl Math Comput 4(4):283–306MathSciNetMATH Meyer Gunter H (1978) The numerical solution of stefan problems with front-tracking and smoothing methods. Appl Math Comput 4(4):283–306MathSciNetMATH
3.
Zurück zum Zitat Marshall G (1986) A front tracking method for one-dimensional moving boundary problems. SIAM J Sci Stat Comput 7(1):252–263MathSciNetMATH Marshall G (1986) A front tracking method for one-dimensional moving boundary problems. SIAM J Sci Stat Comput 7(1):252–263MathSciNetMATH
4.
Zurück zum Zitat Dantzig Jonathan A, Michel R (2016) Solidification: -revised & expanded. EPFL press, Lausanne Dantzig Jonathan A, Michel R (2016) Solidification: -revised & expanded. EPFL press, Lausanne
5.
Zurück zum Zitat Chen S, Merriman B, Osher S, Smereka P (1997) A simple level set method for solving stefan problems. J Comput Phys 135(1):8–29MathSciNetMATH Chen S, Merriman B, Osher S, Smereka P (1997) A simple level set method for solving stefan problems. J Comput Phys 135(1):8–29MathSciNetMATH
6.
Zurück zum Zitat Fix G (1983) Phase field method for free boundary problems. In: Fasanao, Primicerio M (eds) Free boundary problems. Pit-mann, London Fix G (1983) Phase field method for free boundary problems. In: Fasanao, Primicerio M (eds) Free boundary problems. Pit-mann, London
7.
Zurück zum Zitat Collins JB, Levine H (1985) Diffuse interface model of diffusion-limited crystal growth. Phys Rev B 31(9):6119 Collins JB, Levine H (1985) Diffuse interface model of diffusion-limited crystal growth. Phys Rev B 31(9):6119
8.
Zurück zum Zitat Caginalp G (1986) An analysis of a phase field model of a free boundary. Arch Ration Mech Anal 92(3):205–245MathSciNetMATH Caginalp G (1986) An analysis of a phase field model of a free boundary. Arch Ration Mech Anal 92(3):205–245MathSciNetMATH
9.
Zurück zum Zitat Caginalp G (1989) Stefan and hele-shaw type models as asymptotic limits of the phase-field equations. Phys Rev A 39(11):5887MathSciNetMATH Caginalp G (1989) Stefan and hele-shaw type models as asymptotic limits of the phase-field equations. Phys Rev A 39(11):5887MathSciNetMATH
10.
Zurück zum Zitat Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Phys D 63(3–4):410–423MATH Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Phys D 63(3–4):410–423MATH
11.
Zurück zum Zitat Karma A, Rappel W-J (1996) Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys Rev E 53(4):R3017 Karma A, Rappel W-J (1996) Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys Rev E 53(4):R3017
12.
Zurück zum Zitat Karma A, Rappel W-J (1999) Phase-field model of dendritic sidebranching with thermal noise. Phys Rev E 60(4):3614 Karma A, Rappel W-J (1999) Phase-field model of dendritic sidebranching with thermal noise. Phys Rev E 60(4):3614
13.
Zurück zum Zitat Plapp M, Karma A (2000) Multiscale finite-difference-diffusion-monte-carlo method for simulating dendritic solidification. J Comput Phys 165(2):592–619MathSciNetMATH Plapp M, Karma A (2000) Multiscale finite-difference-diffusion-monte-carlo method for simulating dendritic solidification. J Comput Phys 165(2):592–619MathSciNetMATH
14.
Zurück zum Zitat Warren JA, Boettinger WJ (1995) Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall Mater 43(2):689–703 Warren JA, Boettinger WJ (1995) Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall Mater 43(2):689–703
15.
Zurück zum Zitat Loginova I, Amberg G, Ågren J (2001) Phase-field simulations of non-isothermal binary alloy solidification. Acta Mater 49(4):573–581 Loginova I, Amberg G, Ågren J (2001) Phase-field simulations of non-isothermal binary alloy solidification. Acta Mater 49(4):573–581
16.
Zurück zum Zitat Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87(11):115701 Karma A (2001) Phase-field formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87(11):115701
17.
Zurück zum Zitat Ramirez JC, Beckermann C, Karma A, Diepers H-J (2004) Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Phys Rev E 69(5):051607 Ramirez JC, Beckermann C, Karma A, Diepers H-J (2004) Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Phys Rev E 69(5):051607
18.
Zurück zum Zitat Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70(6):061604 Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70(6):061604
19.
Zurück zum Zitat Almgren RF (1999) Second-order phase field asymptotics for unequal conductivities. SIAM J Appl Math 59(6):2086–2107MathSciNetMATH Almgren RF (1999) Second-order phase field asymptotics for unequal conductivities. SIAM J Appl Math 59(6):2086–2107MathSciNetMATH
20.
Zurück zum Zitat Ohno M, Matsuura K (2009) Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid. Phys Rev E 79(3):031603 Ohno M, Matsuura K (2009) Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid. Phys Rev E 79(3):031603
21.
Zurück zum Zitat Feng X, Prohl A (2004) Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math Comput 73(246):541–567MathSciNetMATH Feng X, Prohl A (2004) Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math Comput 73(246):541–567MathSciNetMATH
22.
Zurück zum Zitat Gonzalez-Ferreiro B, Gómez H, Romero I (2014) A thermodynamically consistent numerical method for a phase field model of solidification. Commun Nonlinear Sci Numer Simul 19(7):2309–2323MathSciNetMATH Gonzalez-Ferreiro B, Gómez H, Romero I (2014) A thermodynamically consistent numerical method for a phase field model of solidification. Commun Nonlinear Sci Numer Simul 19(7):2309–2323MathSciNetMATH
23.
Zurück zum Zitat Chen C, Yang X (2019) Efficient numerical scheme for a dendritic solidification phase field model with melt convection. J Comput Phys 388:41–62MathSciNetMATH Chen C, Yang X (2019) Efficient numerical scheme for a dendritic solidification phase field model with melt convection. J Comput Phys 388:41–62MathSciNetMATH
24.
Zurück zum Zitat Kessler D, Scheid J-F (2002) A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J Numer Anal 22(2):281–305MathSciNetMATH Kessler D, Scheid J-F (2002) A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J Numer Anal 22(2):281–305MathSciNetMATH
25.
Zurück zum Zitat Xianliang H, Li R, Tang T (2009) A multi-mesh adaptive finite element approximation to phase field models. Commun Comput Phys 5(5):1012–1029MathSciNetMATH Xianliang H, Li R, Tang T (2009) A multi-mesh adaptive finite element approximation to phase field models. Commun Comput Phys 5(5):1012–1029MathSciNetMATH
26.
Zurück zum Zitat Rosam J, Jimack PK, Mullis A (2007) A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification. J Comput Phys 225(2):1271–1287MathSciNetMATH Rosam J, Jimack PK, Mullis A (2007) A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification. J Comput Phys 225(2):1271–1287MathSciNetMATH
27.
Zurück zum Zitat Damien T, Hong L, Javier LL (2022) Phase-field modeling of microstructure evolution: recent applications, perspectives and challenges. Progress Mater Sci 123:100810 Damien T, Hong L, Javier LL (2022) Phase-field modeling of microstructure evolution: recent applications, perspectives and challenges. Progress Mater Sci 123:100810
28.
Zurück zum Zitat Wang Z, Li J, Wang J, Zhou Y (2012) Phase field modeling the selection mechanism of primary dendritic spacing in directional solidification. Acta Mater 60(5):1957–1964 Wang Z, Li J, Wang J, Zhou Y (2012) Phase field modeling the selection mechanism of primary dendritic spacing in directional solidification. Acta Mater 60(5):1957–1964
29.
Zurück zum Zitat Fallah V, Amoorezaei M, Provatas N, Corbin SF, Khajepour A (2012) Phase-field simulation of solidification morphology in laser powder deposition of ti-nb alloys. Acta Mater 60(4):1633–1646 Fallah V, Amoorezaei M, Provatas N, Corbin SF, Khajepour A (2012) Phase-field simulation of solidification morphology in laser powder deposition of ti-nb alloys. Acta Mater 60(4):1633–1646
30.
Zurück zum Zitat Tourret D, Karma A (2015) Growth competition of columnar dendritic grains: a phase-field study. Acta Mater 82:64–83 Tourret D, Karma A (2015) Growth competition of columnar dendritic grains: a phase-field study. Acta Mater 82:64–83
31.
Zurück zum Zitat Takaki T, Ohno M, Shimokawabe T, Aoki T (2014) Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal. Acta Mater 81:272–283 Takaki T, Ohno M, Shimokawabe T, Aoki T (2014) Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal. Acta Mater 81:272–283
32.
Zurück zum Zitat Geng S, Jiang P, Shao X, Mi G, Han W, Ai Y, Wang C, Han C, Chen R, Liu W et al (2018) Effects of back-diffusion on solidification cracking susceptibility of al-mg alloys during welding: a phase-field study. Acta Mater 160:85–96 Geng S, Jiang P, Shao X, Mi G, Han W, Ai Y, Wang C, Han C, Chen R, Liu W et al (2018) Effects of back-diffusion on solidification cracking susceptibility of al-mg alloys during welding: a phase-field study. Acta Mater 160:85–96
33.
Zurück zum Zitat Farzadi A, Minh Do-Quang S, Serajzadeh AHK, Amberg G (2008) Phase-field simulation of weld solidification microstructure in an al-cu alloy. Modell Simul Mater Sci Eng 16(6):065005 Farzadi A, Minh Do-Quang S, Serajzadeh AHK, Amberg G (2008) Phase-field simulation of weld solidification microstructure in an al-cu alloy. Modell Simul Mater Sci Eng 16(6):065005
34.
Zurück zum Zitat Wang X, Liu PW, Ji Y, Liu Y, Horstemeyer MH, Chen L (2019) Investigation on microsegregation of in718 alloy during additive manufacturing via integrated phase-field and finite-element modeling. J Mater Eng Perform 28(2):657–665 Wang X, Liu PW, Ji Y, Liu Y, Horstemeyer MH, Chen L (2019) Investigation on microsegregation of in718 alloy during additive manufacturing via integrated phase-field and finite-element modeling. J Mater Eng Perform 28(2):657–665
35.
Zurück zum Zitat Rolchigo MR, Mendoza MY, Samimi P, Brice DA, Martin B, Collins PC, LeSar R (2017) Modeling of ti-w solidification microstructures under additive manufacturing conditions. Metall and Mater Trans A 48(7):3606–3622 Rolchigo MR, Mendoza MY, Samimi P, Brice DA, Martin B, Collins PC, LeSar R (2017) Modeling of ti-w solidification microstructures under additive manufacturing conditions. Metall and Mater Trans A 48(7):3606–3622
36.
Zurück zum Zitat Ghosh S, Ma L, Ofori-Opoku N, Guyer JE (2017) On the primary spacing and microsegregation of cellular dendrites in laser deposited ni-nb alloys. Modell Simul Mater Sci Eng 25(6):065002 Ghosh S, Ma L, Ofori-Opoku N, Guyer JE (2017) On the primary spacing and microsegregation of cellular dendrites in laser deposited ni-nb alloys. Modell Simul Mater Sci Eng 25(6):065002
37.
Zurück zum Zitat Gong X, Chou K (2015) Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM 67(5):1176–1182 Gong X, Chou K (2015) Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM 67(5):1176–1182
38.
Zurück zum Zitat Sahoo S, Chou K (2016) Phase-field simulation of microstructure evolution of ti-6al-4v in electron beam additive manufacturing process. Addit Manuf 9:14–24 Sahoo S, Chou K (2016) Phase-field simulation of microstructure evolution of ti-6al-4v in electron beam additive manufacturing process. Addit Manuf 9:14–24
39.
Zurück zum Zitat Keller T, Lindwall G, Ghosh S, Ma L, Lane BM, Zhang F, Kattner UR, Lass EA, Heigel JC, Idell Y et al (2017) Application of finite element, phase-field, and calphad-based methods to additive manufacturing of ni-based superalloys. Acta Mater 139:244–253 Keller T, Lindwall G, Ghosh S, Ma L, Lane BM, Zhang F, Kattner UR, Lass EA, Heigel JC, Idell Y et al (2017) Application of finite element, phase-field, and calphad-based methods to additive manufacturing of ni-based superalloys. Acta Mater 139:244–253
40.
Zurück zum Zitat Vladimir S, Stefka D, Oleg I (2003) Phase-field method for 2d dendritic growth. In: International conference on large-scale scientific computing. Springer, pp 404–411 Vladimir S, Stefka D, Oleg I (2003) Phase-field method for 2d dendritic growth. In: International conference on large-scale scientific computing. Springer, pp 404–411
41.
Zurück zum Zitat Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Rev Mater Res 32(1):163–194 Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Rev Mater Res 32(1):163–194
42.
Zurück zum Zitat Karma A, Rappel W-J (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57(4):4323MATH Karma A, Rappel W-J (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57(4):4323MATH
43.
Zurück zum Zitat Hieram NH (2017) Phase-field modeling of solidification and coarsening effects in dendrite morphology evolution and fragmentation. PhD thesis, Technical University of Dresden, Dresden, Technical University of Dresden, Dresden, 8 2017. An optional note Hieram NH (2017) Phase-field modeling of solidification and coarsening effects in dendrite morphology evolution and fragmentation. PhD thesis, Technical University of Dresden, Dresden, Technical University of Dresden, Dresden, 8 2017. An optional note
44.
Zurück zum Zitat Daniel A, Wolfgang B, Bruno B, Marc F, Rene G, Timo H, Luca H, Uwe K, Martin K, Matthias M, Peter M, Jean-Paul P, Sebastian P, Konrad S, Bruno T, David W, Jiaqi Z (2021) The deal.II library, version 9.3. J Numer Math 29(3):171–186MathSciNetMATH Daniel A, Wolfgang B, Bruno B, Marc F, Rene G, Timo H, Luca H, Uwe K, Martin K, Matthias M, Peter M, Jean-Paul P, Sebastian P, Konrad S, Bruno T, David W, Jiaqi Z (2021) The deal.II library, version 9.3. J Numer Math 29(3):171–186MathSciNetMATH
46.
Zurück zum Zitat Wang Z, Rudraraju S, Garikipati K (2016) A three dimensional field formulation, and isogeometric solutions to point and line defects using toupin’s theory of gradient elasticity at finite strains. J Mech Phys Solids 94:336–361MathSciNet Wang Z, Rudraraju S, Garikipati K (2016) A three dimensional field formulation, and isogeometric solutions to point and line defects using toupin’s theory of gradient elasticity at finite strains. J Mech Phys Solids 94:336–361MathSciNet
47.
Zurück zum Zitat Tonghu J, Shiva R, Roy A, Van der Ven A, Garikipati K, Falk ML (2016) Multiphysics simulations of lithiation-induced stress in \(li_{1+x}ti_2o_4\) electrode particles. J Phys Chem C 120(49):27871–27881 Tonghu J, Shiva R, Roy A, Van der Ven A, Garikipati K, Falk ML (2016) Multiphysics simulations of lithiation-induced stress in \(li_{1+x}ti_2o_4\) electrode particles. J Phys Chem C 120(49):27871–27881
48.
Zurück zum Zitat Rudraraju S, Moulton DE, Chirat R, Goriely A, Garikipati K (2019) A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth. PLoS Comput Biol 15(7):e1007213 Rudraraju S, Moulton DE, Chirat R, Goriely A, Garikipati K (2019) A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth. PLoS Comput Biol 15(7):e1007213
50.
Zurück zum Zitat Zhu C, Sheng X, Feng L, Han D, Wang K (2019) Phase-field model simulations of alloy directional solidification and seaweed-like microstructure evolution based on adaptive finite element method. Comput Mater Sci 160:53–61 Zhu C, Sheng X, Feng L, Han D, Wang K (2019) Phase-field model simulations of alloy directional solidification and seaweed-like microstructure evolution based on adaptive finite element method. Comput Mater Sci 160:53–61
52.
Zurück zum Zitat Gibou F, Fedkiw R, Caflisch R, Osher S (2003) A level set approach for the numerical simulation of dendritic growth. J Sci Comput 19(1):183–199MathSciNetMATH Gibou F, Fedkiw R, Caflisch R, Osher S (2003) A level set approach for the numerical simulation of dendritic growth. J Sci Comput 19(1):183–199MathSciNetMATH
53.
Zurück zum Zitat Bieterman M, Babuška I (1982) The finite element method for parabolic equations. Numer Math 40(3):373–406MathSciNetMATH Bieterman M, Babuška I (1982) The finite element method for parabolic equations. Numer Math 40(3):373–406MathSciNetMATH
54.
Zurück zum Zitat Stephen DW, Shiva R, David M, Beck AW, Katsuyo T (2020) Prisms-pf: a general framework for phase-field modeling with a matrix-free finite element method. NPJ Comput Mater 6(1):1–12 Stephen DW, Shiva R, David M, Beck AW, Katsuyo T (2020) Prisms-pf: a general framework for phase-field modeling with a matrix-free finite element method. NPJ Comput Mater 6(1):1–12
Metadaten
Titel
Modeling of dendritic solidification and numerical analysis of the phase-field approach to model complex morphologies in alloys
verfasst von
Kunal Bhagat
Shiva Rudraraju
Publikationsdatum
05.12.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01767-7

Weitere Artikel der Ausgabe 4/2023

Engineering with Computers 4/2023 Zur Ausgabe

Neuer Inhalt