Skip to main content
Erschienen in: Neural Computing and Applications 1/2017

01.06.2016 | Original Article

Modeling of deviation angle and performance losses in wet steam turbines using GMDH-type neural networks

verfasst von: Hamed Bagheri-Esfe, Hamed Safikhani

Erschienen in: Neural Computing and Applications | Sonderheft 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study group method of data handling (GMDH) type of artificial neural networks are used to model deviation angle (θ), total pressure loss coefficient (ω), and performance loss coefficient (ξ) in wet steam turbines. These parameters are modeled with respect to four input variables, i.e., stagnation pressure (P z ), stagnation temperature (T z ), back pressure (P b), and inflow angle (β). The required input and output data to train the neural networks has been taken from numerical simulations. An AUSM–Van Leer hybrid scheme is used to solve two-phase transonic steam flow numerically. Based on results of the paper, GMDH-type neural networks can successfully model and predict deviation angle, total pressure loss coefficient, and performance loss coefficient in wet steam turbines. Absolute fraction of variance (R 2 ) and root-mean-squared error related to total pressure loss coefficient (ω) are equal to 0.992 and 0.002, respectively. Thus GMDH models have enough accuracy for turbomachinery applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gerbar AG, Kermani MJ (2004) A pressure based Eulerian–Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int J Heat Mass Transf 47(10):2217–2231CrossRefMATH Gerbar AG, Kermani MJ (2004) A pressure based Eulerian–Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int J Heat Mass Transf 47(10):2217–2231CrossRefMATH
2.
Zurück zum Zitat Baumann K (1921) Some recent developments in large steam turbine practice. J Inst Electr Eng 59:565–570 Baumann K (1921) Some recent developments in large steam turbine practice. J Inst Electr Eng 59:565–570
3.
Zurück zum Zitat Mcdonald JE (1962) Homogeneous nucleating of vapor condensation I & II, kinetic & thermodynamic aspects. Am J Phys 30(870):870–877CrossRef Mcdonald JE (1962) Homogeneous nucleating of vapor condensation I & II, kinetic & thermodynamic aspects. Am J Phys 30(870):870–877CrossRef
4.
Zurück zum Zitat Moore MJ, Walters PT, Crane RI (1973) Predicting the fog-drop size in wet steam turbines. In: International mechanical engineering conference, Warwick Moore MJ, Walters PT, Crane RI (1973) Predicting the fog-drop size in wet steam turbines. In: International mechanical engineering conference, Warwick
5.
Zurück zum Zitat Skillings SA (1989) Condensation phenomena in a turbine blade passage. J Fluid Mech 200:409–424CrossRef Skillings SA (1989) Condensation phenomena in a turbine blade passage. J Fluid Mech 200:409–424CrossRef
6.
Zurück zum Zitat Skillings SA (1987) An analysis of the condensation phenomena occurring in wet steam turbines, PhD Thesis, CNAA, CERL Skillings SA (1987) An analysis of the condensation phenomena occurring in wet steam turbines, PhD Thesis, CNAA, CERL
7.
Zurück zum Zitat Bakhtar F, Mahpeykar MR (1997) On the performance of a cascade of turbine rotor tip section blading in nucleating steam, Part 3: theoretical treatment. Proc Inst Mech Eng Part C J Mech Eng Sci 211(3):195–210CrossRef Bakhtar F, Mahpeykar MR (1997) On the performance of a cascade of turbine rotor tip section blading in nucleating steam, Part 3: theoretical treatment. Proc Inst Mech Eng Part C J Mech Eng Sci 211(3):195–210CrossRef
8.
Zurück zum Zitat Bakhtar F, Mamat ZA, Jadayel OC (2009) On the performance of a cascade of improved turbine nozzle blades in nucleating steam. Part 1: surface pressure distributions. Proc Inst Mech Eng Part C J Mech Eng Sci 223(8):1903–1914CrossRef Bakhtar F, Mamat ZA, Jadayel OC (2009) On the performance of a cascade of improved turbine nozzle blades in nucleating steam. Part 1: surface pressure distributions. Proc Inst Mech Eng Part C J Mech Eng Sci 223(8):1903–1914CrossRef
9.
Zurück zum Zitat Bakhtar F, Mamat ZA, Jadayel OC (2009) On the performance of a cascade of improved turbine nozzle blades in nucleating steam. Part 2: wake traverses. Proc Inst Mech Eng Part C J Mech Eng Sci 223(8):1915–1929CrossRef Bakhtar F, Mamat ZA, Jadayel OC (2009) On the performance of a cascade of improved turbine nozzle blades in nucleating steam. Part 2: wake traverses. Proc Inst Mech Eng Part C J Mech Eng Sci 223(8):1915–1929CrossRef
10.
Zurück zum Zitat Bakhtar F, Zamri MY, Rodriguez-Lelis JM (2007) A comparative study of treatment of two-dimensional two-phase flows of steam by a Runge–Kutta and by Denton’s methods. Proc Inst Mech Eng Part C J Mech Eng Sci 221(6):689–706CrossRef Bakhtar F, Zamri MY, Rodriguez-Lelis JM (2007) A comparative study of treatment of two-dimensional two-phase flows of steam by a Runge–Kutta and by Denton’s methods. Proc Inst Mech Eng Part C J Mech Eng Sci 221(6):689–706CrossRef
11.
Zurück zum Zitat Young JB (1984) Critical conditions and the chocking mass flow rate in non-equilibrium wet steam flows. J Fluids Eng 106(4):452–458CrossRef Young JB (1984) Critical conditions and the chocking mass flow rate in non-equilibrium wet steam flows. J Fluids Eng 106(4):452–458CrossRef
12.
Zurück zum Zitat Young JB (1992) Two-dimensional, non-equilibrium, wet-steam calculations for nozzles and turbine cascades. J Turbomach 114:569–579CrossRef Young JB (1992) Two-dimensional, non-equilibrium, wet-steam calculations for nozzles and turbine cascades. J Turbomach 114:569–579CrossRef
13.
Zurück zum Zitat White AJ, Young JB (1993) Time-marching method for the prediction of two-dimensional unsteady flows of condensing steam. J Propul Power 9(2):579–587CrossRef White AJ, Young JB (1993) Time-marching method for the prediction of two-dimensional unsteady flows of condensing steam. J Propul Power 9(2):579–587CrossRef
14.
Zurück zum Zitat White AJ (2000) Numerical investigation of condensing steam flow in boundary layers. Int J Heat Fluid Flow 21(6):727–734CrossRef White AJ (2000) Numerical investigation of condensing steam flow in boundary layers. Int J Heat Fluid Flow 21(6):727–734CrossRef
15.
Zurück zum Zitat White AJ, Hounslow MJ (2000) Modeling droplet size distributions in polydispersed wet-steam flows. Int J Heat Mass Transf 43(11):1873–1884CrossRefMATH White AJ, Hounslow MJ (2000) Modeling droplet size distributions in polydispersed wet-steam flows. Int J Heat Mass Transf 43(11):1873–1884CrossRefMATH
16.
Zurück zum Zitat White AJ (2003) A comparison of modeling methods for polydispersed wet-steam flow. Int J Numer Meth Eng 57(6):819–834CrossRefMATH White AJ (2003) A comparison of modeling methods for polydispersed wet-steam flow. Int J Numer Meth Eng 57(6):819–834CrossRefMATH
17.
Zurück zum Zitat Gerber AG (2002) Two-phase eulerian/lagrangian model for nucleating steam flow. J Fluids Eng 124(2):465–475CrossRef Gerber AG (2002) Two-phase eulerian/lagrangian model for nucleating steam flow. J Fluids Eng 124(2):465–475CrossRef
18.
Zurück zum Zitat Gerber AG, Mousavi A (2007) Application of quadrature method of moments to the polydispersed droplet spectrum in transonic steam flows with primary and secondary nucleation. Appl Math Model 31(8):1518–1533CrossRef Gerber AG, Mousavi A (2007) Application of quadrature method of moments to the polydispersed droplet spectrum in transonic steam flows with primary and secondary nucleation. Appl Math Model 31(8):1518–1533CrossRef
19.
20.
Zurück zum Zitat Dykas S, Wroblewki W (2011) Single- and two-fluid models for steam condensing flow modeling. Int J Multiph Flow 37(9):1245–1253CrossRef Dykas S, Wroblewki W (2011) Single- and two-fluid models for steam condensing flow modeling. Int J Multiph Flow 37(9):1245–1253CrossRef
21.
Zurück zum Zitat Dykas S, Wroblewki W (2012) Numerical modeling of steam condensing flow in low and high-pressure nozzles. Int J Heat Mass Transf 55(21):6191–6199CrossRef Dykas S, Wroblewki W (2012) Numerical modeling of steam condensing flow in low and high-pressure nozzles. Int J Heat Mass Transf 55(21):6191–6199CrossRef
22.
Zurück zum Zitat Hamidi S, Kermani MJ (2013) Numerical solution of compressible two-phase moist-air flow with shocks. Eur J Mech B Fluids 42:20–29MathSciNetCrossRef Hamidi S, Kermani MJ (2013) Numerical solution of compressible two-phase moist-air flow with shocks. Eur J Mech B Fluids 42:20–29MathSciNetCrossRef
24.
Zurück zum Zitat Sanchez E, Shibata T, Zadeh LA (1997) Genetic algorithms and fuzzy logic systems: soft computing perspectives, vol 7. World Scientific, SingaporeMATH Sanchez E, Shibata T, Zadeh LA (1997) Genetic algorithms and fuzzy logic systems: soft computing perspectives, vol 7. World Scientific, SingaporeMATH
25.
Zurück zum Zitat Kristinson K, Dumont G (1992) System identification and control using genetic algorithms. IEEE Trans Syst Man Cybern 22:1033–1046CrossRefMATH Kristinson K, Dumont G (1992) System identification and control using genetic algorithms. IEEE Trans Syst Man Cybern 22:1033–1046CrossRefMATH
26.
27.
Zurück zum Zitat Farlow SJ (1984) Self-organizing method in modelling: GMDH type algorithm, vol 54. CRC Press, Boca RatonMATH Farlow SJ (1984) Self-organizing method in modelling: GMDH type algorithm, vol 54. CRC Press, Boca RatonMATH
28.
Zurück zum Zitat Amanifard N, Nariman-Zadeh N, Farahani MH, Khalkhali A (2008) Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. Energy Convers Manag 49:2588–2594CrossRef Amanifard N, Nariman-Zadeh N, Farahani MH, Khalkhali A (2008) Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. Energy Convers Manag 49:2588–2594CrossRef
29.
Zurück zum Zitat Nariman-Zadeh N, Darvizeh A, Ahmad-Zadeh R (2003) Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and prediction of the explosive cutting process. Proc Inst Mech Eng Part B J Eng Manuf 217:779–790CrossRefMATH Nariman-Zadeh N, Darvizeh A, Ahmad-Zadeh R (2003) Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and prediction of the explosive cutting process. Proc Inst Mech Eng Part B J Eng Manuf 217:779–790CrossRefMATH
30.
Zurück zum Zitat Sheikholeslami M, Bani Sheykholeslami F, Khoshhal S, Mola-Abasia H, Ganji D, Rokni H (2013) Effect of magnetic field on Cu–water nano fluid heat transfer using GMDH-type neural network. Neural Comput Appl 25:171–178CrossRef Sheikholeslami M, Bani Sheykholeslami F, Khoshhal S, Mola-Abasia H, Ganji D, Rokni H (2013) Effect of magnetic field on Cu–water nano fluid heat transfer using GMDH-type neural network. Neural Comput Appl 25:171–178CrossRef
31.
Zurück zum Zitat Amanifard N, Nariman-Zadeh N, Borji M, Khalkhali A, Habibdoust A (2008) Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms. Energy Convers Manag 49(2):311–325CrossRef Amanifard N, Nariman-Zadeh N, Borji M, Khalkhali A, Habibdoust A (2008) Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms. Energy Convers Manag 49(2):311–325CrossRef
32.
Zurück zum Zitat Ghanadzadeh H, Ganji M, Fallahi S (2012) Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm. Appl Math Model 36(9):4096–4105CrossRef Ghanadzadeh H, Ganji M, Fallahi S (2012) Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm. Appl Math Model 36(9):4096–4105CrossRef
33.
Zurück zum Zitat Atashrouza S, Pazukia G, Alimoradib Y (2014) Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system. Fluid Phase Equilib 372(25):43–48CrossRef Atashrouza S, Pazukia G, Alimoradib Y (2014) Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system. Fluid Phase Equilib 372(25):43–48CrossRef
34.
Zurück zum Zitat Ebtehaja I, Bonakdarib H, Zajia A, Azimi H (2015) GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Eng Sci Technol Int J 18(4):746–757CrossRef Ebtehaja I, Bonakdarib H, Zajia A, Azimi H (2015) GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Eng Sci Technol Int J 18(4):746–757CrossRef
35.
Zurück zum Zitat Sharifpur M, Adewale Adio S, Petrus Meyer J (2015) Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int Commun Heat Mass Transfer 68:208–219CrossRef Sharifpur M, Adewale Adio S, Petrus Meyer J (2015) Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int Commun Heat Mass Transfer 68:208–219CrossRef
36.
Zurück zum Zitat Hajmohammadi MR, Lorenzini G, Shariatzadeh OJ, Biserni C (2015) Evolution in the design of V-shaped highly conductive pathways embedded in a heat-generating piece. J Heat Transfer 137(6):061001CrossRef Hajmohammadi MR, Lorenzini G, Shariatzadeh OJ, Biserni C (2015) Evolution in the design of V-shaped highly conductive pathways embedded in a heat-generating piece. J Heat Transfer 137(6):061001CrossRef
37.
Zurück zum Zitat Hajmohammadi MR, Moulod M, Shariatzadeh OJ, Nourazar S (2014) Essential reformulations for optimization of highly conductive inserts embedded into a rectangular chip exposed to a uniform heat flux. Proc Inst Mech Eng Part C J Mech Eng Sci 228(13):2337–2346CrossRef Hajmohammadi MR, Moulod M, Shariatzadeh OJ, Nourazar S (2014) Essential reformulations for optimization of highly conductive inserts embedded into a rectangular chip exposed to a uniform heat flux. Proc Inst Mech Eng Part C J Mech Eng Sci 228(13):2337–2346CrossRef
38.
Zurück zum Zitat Hajmohammadi MR, Maleki H, Lorenzini G, Nourazar S (2015) Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces. Adv Powder Technol 26(1):193–199CrossRef Hajmohammadi MR, Maleki H, Lorenzini G, Nourazar S (2015) Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces. Adv Powder Technol 26(1):193–199CrossRef
39.
Zurück zum Zitat Hajmohammadi MR, Pouzesh A, Poozesh S (2012) Controlling the heat flux distribution by changing the thickness of heated wall. J Basic Appl Sci 2(7):7270–7275 Hajmohammadi MR, Pouzesh A, Poozesh S (2012) Controlling the heat flux distribution by changing the thickness of heated wall. J Basic Appl Sci 2(7):7270–7275
40.
Zurück zum Zitat Hajmohammadi MR, Nourazar S, Campo A, Poozesh S (2013) Optimal discrete distribution of heat flux elements for in-tube laminar forced convection. Int J Heat Fluid Flow 40:89–96CrossRef Hajmohammadi MR, Nourazar S, Campo A, Poozesh S (2013) Optimal discrete distribution of heat flux elements for in-tube laminar forced convection. Int J Heat Fluid Flow 40:89–96CrossRef
41.
Zurück zum Zitat Najafi H, Najafi B, Hoseinpoori P (2011) Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm. Appl Therm Eng 31(10):1839–1847CrossRef Najafi H, Najafi B, Hoseinpoori P (2011) Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm. Appl Therm Eng 31(10):1839–1847CrossRef
42.
Zurück zum Zitat Ko TH, Ting K (2006) Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube. Energy 31(12):2142–2152CrossRef Ko TH, Ting K (2006) Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube. Energy 31(12):2142–2152CrossRef
43.
Zurück zum Zitat Kermani MJ, Gerber AG (2003) A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow. Int J Heat Mass Transf 46(17):3265–3278CrossRefMATH Kermani MJ, Gerber AG (2003) A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow. Int J Heat Mass Transf 46(17):3265–3278CrossRefMATH
44.
Zurück zum Zitat Sislian JP (1975) Condensation of water vapor with or without a carrier gas in a shock tube, UTIAS Report 201, Toronto University Sislian JP (1975) Condensation of water vapor with or without a carrier gas in a shock tube, UTIAS Report 201, Toronto University
45.
Zurück zum Zitat Anderson JD (1995) Computational fluid dynamics. McGraw-Hill, The basics with applications Anderson JD (1995) Computational fluid dynamics. McGraw-Hill, The basics with applications
46.
Zurück zum Zitat Van Leer B (1979) Towards the ultimate conservation difference scheme. V. A second order sequel to Godunov’s method. J Comput Phys 32(1):101–136CrossRefMATH Van Leer B (1979) Towards the ultimate conservation difference scheme. V. A second order sequel to Godunov’s method. J Comput Phys 32(1):101–136CrossRefMATH
47.
Zurück zum Zitat Traupel W (1971) Die Grundlagen der Thermodynamik. G. Baun-Verlag, Karlsruhe Traupel W (1971) Die Grundlagen der Thermodynamik. G. Baun-Verlag, Karlsruhe
48.
Zurück zum Zitat Bakhtar F, Ebrahimi M, Webb RA (1995) On the performance of a cascade of turbine rotor tip section blading in nucleating steam, Part 1: surface pressure distributions. Proc. IMechE, Part C. J Mech Eng Sci 209(2):115–124CrossRef Bakhtar F, Ebrahimi M, Webb RA (1995) On the performance of a cascade of turbine rotor tip section blading in nucleating steam, Part 1: surface pressure distributions. Proc. IMechE, Part C. J Mech Eng Sci 209(2):115–124CrossRef
49.
Zurück zum Zitat Bakhtar F, Mahpeykar MR (1997) On the performance of a cascade of turbine rotor tip section blading in nucleating steam, Part 3: theoretical treatment. Proc Inst Mech Eng Part C J Mech Eng Sci 211(3):195–210CrossRef Bakhtar F, Mahpeykar MR (1997) On the performance of a cascade of turbine rotor tip section blading in nucleating steam, Part 3: theoretical treatment. Proc Inst Mech Eng Part C J Mech Eng Sci 211(3):195–210CrossRef
50.
Zurück zum Zitat Douglas Montgomery C (1991) Design and analysis experiments. Wiley, New YorkMATH Douglas Montgomery C (1991) Design and analysis experiments. Wiley, New YorkMATH
51.
Zurück zum Zitat Hou TH, Su CH, Liu WL (2007) Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technol 173(3):153–162CrossRef Hou TH, Su CH, Liu WL (2007) Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technol 173(3):153–162CrossRef
Metadaten
Titel
Modeling of deviation angle and performance losses in wet steam turbines using GMDH-type neural networks
verfasst von
Hamed Bagheri-Esfe
Hamed Safikhani
Publikationsdatum
01.06.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe Sonderheft 1/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2389-2

Weitere Artikel der Sonderheft 1/2017

Neural Computing and Applications 1/2017 Zur Ausgabe

Premium Partner