Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2018

05.09.2017

Modeling of Powder Bed Manufacturing Defects

verfasst von: H.-W. Mindt, O. Desmaison, M. Megahed, A. Peralta, J. Neumann

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.F. Housholder, Molding Process. US Patent 4,247,508 (1981) R.F. Housholder, Molding Process. US Patent 4,247,508 (1981)
2.
Zurück zum Zitat I. Yadroitsev, Selective Laser Melting: Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders, LAP Lambert Academic Publishing, Saarbrücken, 2009 I. Yadroitsev, Selective Laser Melting: Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders, LAP Lambert Academic Publishing, Saarbrücken, 2009
4.
Zurück zum Zitat A.D. Peralta, M. Enright, M. Megahed, J. Gong, M. Roybal, and J. Craig, Towards Rapid Qualification of Powder-Bed Laser Additively Manufactured Parts, Integrating Materials and Manufacturing Innovation, 2016, doi:10.1186/s40192-016-0052-5 A.D. Peralta, M. Enright, M. Megahed, J. Gong, M. Roybal, and J. Craig, Towards Rapid Qualification of Powder-Bed Laser Additively Manufactured Parts, Integrating Materials and Manufacturing Innovation, 2016, doi:10.​1186/​s40192-016-0052-5
5.
Zurück zum Zitat M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing, J. Miner. Met. Mater. Soc. (JOM), 2016, doi:10.1007/s11837-015-1810-0 M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing, J. Miner. Met. Mater. Soc. (JOM), 2016, doi:10.​1007/​s11837-015-1810-0
7.
Zurück zum Zitat P. Papadakis, G. Branner, A. Schober, K.H. Richter, T. Uihlein, Numerical Modeling of Heat Effects During Thermal Manufacturing of Aero Engine Components. Proceedings of the World Congress on Engineering, London, UK (2012) P. Papadakis, G. Branner, A. Schober, K.H. Richter, T. Uihlein, Numerical Modeling of Heat Effects During Thermal Manufacturing of Aero Engine Components. Proceedings of the World Congress on Engineering, London, UK (2012)
9.
Zurück zum Zitat C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, A. Sisto, Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers Up to 400 W. LLNL-TR-648000 Lawrence Livermore National Laboratory (2013) C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, A. Sisto, Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers Up to 400 W. LLNL-TR-648000 Lawrence Livermore National Laboratory (2013)
10.
Zurück zum Zitat C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, and M.M. Attallah, On the Role of Melt Flow into the Surface Structure and Porosity Development During Selective Laser Melting, Acta Mater., 2015, 96, p 72–79. doi:10.1016/j.actamat.2015.06.004 CrossRef C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, and M.M. Attallah, On the Role of Melt Flow into the Surface Structure and Porosity Development During Selective Laser Melting, Acta Mater., 2015, 96, p 72–79. doi:10.​1016/​j.​actamat.​2015.​06.​004 CrossRef
11.
Zurück zum Zitat L. Rickenbacker, T. Etter, and S. Hobel, High Temperature Material Properties of IN738LV Processed by Selective Laser Melting (SLM) Technology, Rapid Prototyp. J., 2013, 19(4), p 282–290CrossRef L. Rickenbacker, T. Etter, and S. Hobel, High Temperature Material Properties of IN738LV Processed by Selective Laser Melting (SLM) Technology, Rapid Prototyp. J., 2013, 19(4), p 282–290CrossRef
12.
Zurück zum Zitat A. Aversa, M. Lorusso, G. Cattano, D. Manfredi, F. Calignano, E.P. Ambrosio, et al., A Study of the Microstructure and the Mechanical Properties of an Al-Si-Ni Alloy Produced Via Selective Laser Melting, J. Alloys Compd., 2017, 695, p 1470–1478 A. Aversa, M. Lorusso, G. Cattano, D. Manfredi, F. Calignano, E.P. Ambrosio, et al., A Study of the Microstructure and the Mechanical Properties of an Al-Si-Ni Alloy Produced Via Selective Laser Melting, J. Alloys Compd., 2017, 695, p 1470–1478
14.
Zurück zum Zitat S.J. Raab, R. Guschlbauer, M.A. Lodes, and C. Körner, Thermal and Electrical Conductivity of 99.9% Pure Copper Processed via Selective Electron Beam Melting, Adv. Eng., 2016, doi:10.1002/adem.201600078 S.J. Raab, R. Guschlbauer, M.A. Lodes, and C. Körner, Thermal and Electrical Conductivity of 99.9% Pure Copper Processed via Selective Electron Beam Melting, Adv. Eng., 2016, doi:10.​1002/​adem.​201600078
15.
Zurück zum Zitat M. Khan and P. Dickens, Selective Laser Melting (SLM) of Pure Gold, Gold Bull., 2010, 43(2), p 114–121CrossRef M. Khan and P. Dickens, Selective Laser Melting (SLM) of Pure Gold, Gold Bull., 2010, 43(2), p 114–121CrossRef
16.
Zurück zum Zitat J.A. Choren, S.M. Heinrich, and M.B. Silver-Thorn, Young’s Modulus and Volume Porosity Relationships for Additive Manufacturing Applications, J. Mater. Sci., 2013, 48, p 5103–5112. doi:10.1007/s10853-013-7237-5 CrossRef J.A. Choren, S.M. Heinrich, and M.B. Silver-Thorn, Young’s Modulus and Volume Porosity Relationships for Additive Manufacturing Applications, J. Mater. Sci., 2013, 48, p 5103–5112. doi:10.​1007/​s10853-013-7237-5 CrossRef
17.
Zurück zum Zitat E. Jelis, M. Clemente, S. Kerwien, N.M. Ravindra, and M.R. Hespos, Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering, JOM, 2015, doi:10.1007/s11837-014-1273-8 E. Jelis, M. Clemente, S. Kerwien, N.M. Ravindra, and M.R. Hespos, Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering, JOM, 2015, doi:10.​1007/​s11837-014-1273-8
18.
Zurück zum Zitat B.K. Foster, E.W. Reutzel, A.R. Nassar, B.T. Hall, S.W. Brown, C.J. Dickman, Optical, Layerwise Monitoring of Powder Bed Fusion. 2015 Annual Solid Freeform Fabrication, Austin. In: University of Texas at Austin, pp. 295–307 (2015) B.K. Foster, E.W. Reutzel, A.R. Nassar, B.T. Hall, S.W. Brown, C.J. Dickman, Optical, Layerwise Monitoring of Powder Bed Fusion. 2015 Annual Solid Freeform Fabrication, Austin. In: University of Texas at Austin, pp. 295–307 (2015)
19.
Zurück zum Zitat M. Megahed, H.W. Mindt, N. N’Dri, H. Duan, and O. Desmaison, Metal Additive Manufacturing Process and Residual Stress Modelling, Integr. Mater. Manuf. Innov., 2016, doi:10.1186/s40192-016-0047-2 M. Megahed, H.W. Mindt, N. N’Dri, H. Duan, and O. Desmaison, Metal Additive Manufacturing Process and Residual Stress Modelling, Integr. Mater. Manuf. Innov., 2016, doi:10.​1186/​s40192-016-0047-2
20.
Zurück zum Zitat J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, and M.A. Peltz, Characterization of Metal Powders Used for Additive Manufacturing, J. Res. Natl. Inst. Stand. Technol., 2014, 119, p 460–493. doi:10.6028/jres.119.018 CrossRef J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, and M.A. Peltz, Characterization of Metal Powders Used for Additive Manufacturing, J. Res. Natl. Inst. Stand. Technol., 2014, 119, p 460–493. doi:10.​6028/​jres.​119.​018 CrossRef
22.
Zurück zum Zitat J. Dawes, R. Bowerman, and R. Trepleton, Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain, Johnson Matthey Technol. Rev., 2015, 59(3), p 243–256 J. Dawes, R. Bowerman, and R. Trepleton, Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain, Johnson Matthey Technol. Rev., 2015, 59(3), p 243–256
23.
Zurück zum Zitat H.W. Mindt, M. Megahed, N.P. Lavery, M.A. Homes, S.G. Brown, Powder Bed Layer Characteristics—The Overseen First Order Process Input. 145th TMS Annual Meeting and Exhibition, Nashville, USA (2016) H.W. Mindt, M. Megahed, N.P. Lavery, M.A. Homes, S.G. Brown, Powder Bed Layer Characteristics—The Overseen First Order Process Input. 145th TMS Annual Meeting and Exhibition, Nashville, USA (2016)
24.
Zurück zum Zitat H.W. Mindt, M. Megahed, N.P. Lavery, M.A. Holmes, and S.G.R. Brown, Powder Bed Layer Characteristics: The Overseen First-Order Process Input, Metall. Mater. Trans. A, 2016, doi:10.1007/s11661-016-3470-2 H.W. Mindt, M. Megahed, N.P. Lavery, M.A. Holmes, and S.G.R. Brown, Powder Bed Layer Characteristics: The Overseen First-Order Process Input, Metall. Mater. Trans. A, 2016, doi:10.​1007/​s11661-016-3470-2
25.
Zurück zum Zitat N. N’Dri, H.W. Mindt, B. Shula, M. Megahed, A.D. Peralta, P. Kantzos, et al., DMLS Process Modelling and Validation. Orlando. In: Wiley, TMS 2015 144th Annual Meeting & Exhibition (2015) N. N’Dri, H.W. Mindt, B. Shula, M. Megahed, A.D. Peralta, P. Kantzos, et al., DMLS Process Modelling and Validation. Orlando. In: Wiley, TMS 2015 144th Annual Meeting & Exhibition (2015)
26.
Zurück zum Zitat H.W. Mindt, M. Megahed, B. Shula, A.D. Peralta, J. Neumann, Powder Bed Models—Numerical Assessment of As-Built Quality. AIAA, editor. (ed) SciTech, 4–8 January, San Diego. pp. 2016–1657 (2016) H.W. Mindt, M. Megahed, B. Shula, A.D. Peralta, J. Neumann, Powder Bed Models—Numerical Assessment of As-Built Quality. AIAA, editor. (ed) SciTech, 4–8 January, San Diego. pp. 2016–1657 (2016)
27.
Zurück zum Zitat M. Vogel, M. Khan, J. Ibarra-Medina, A. Pinkerton, N. N’Dri, M. Megahed, A Coupled Approach to Weld Pool, Phase and Residual Stress Modelling of Laser Direct Metal Deposition (LDMD) Processes. 2nd World Congress on Integrated Computational Materials Engineering, Salt Lake City, pp. 231–236 (2013) M. Vogel, M. Khan, J. Ibarra-Medina, A. Pinkerton, N. N’Dri, M. Megahed, A Coupled Approach to Weld Pool, Phase and Residual Stress Modelling of Laser Direct Metal Deposition (LDMD) Processes. 2nd World Congress on Integrated Computational Materials Engineering, Salt Lake City, pp. 231–236 (2013)
28.
Zurück zum Zitat Keller N, Ploshikhin V (2014) New method for Fast Predictions of Residual Stress and Distortion of AM parts. Solid Freeform Fabrication Symposium, Austin, Texas Keller N, Ploshikhin V (2014) New method for Fast Predictions of Residual Stress and Distortion of AM parts. Solid Freeform Fabrication Symposium, Austin, Texas
29.
Zurück zum Zitat C. Li, C.H. Fu, Y.B. Guo, and F.Z. Fang, Fast Prediction and Validation of Part Distortion in Selective Laser Melting, Proc. Manuf., 2015, 1, p 355–365 C. Li, C.H. Fu, Y.B. Guo, and F.Z. Fang, Fast Prediction and Validation of Part Distortion in Selective Laser Melting, Proc. Manuf., 2015, 1, p 355–365
30.
Zurück zum Zitat (2011) ATI 718 Plus Alloy Data Sourcebook. : Revision 1.2, ATI Allvac (2011) ATI 718 Plus Alloy Data Sourcebook. : Revision 1.2, ATI Allvac
31.
Zurück zum Zitat J. Guo and M. Samonds, Alloy Thermal Physical Property Prediction Coupled Computational Thermodynamics with Back Diffusion Consideration, J. Phase Equilib. Diffus. Basic Appl. Res. Sect., 2006, 1, p 1863–7345. doi:10.1007/s11669-006-9005-6 J. Guo and M. Samonds, Alloy Thermal Physical Property Prediction Coupled Computational Thermodynamics with Back Diffusion Consideration, J. Phase Equilib. Diffus. Basic Appl. Res. Sect., 2006, 1, p 1863–7345. doi:10.​1007/​s11669-006-9005-6
32.
33.
Zurück zum Zitat Y.S. Touloukian, D.P. DeWitt, Thermophysical Properties of Matter—Thermal Radiative Properties—Metallic Elements and Alloys. Purdue University (1970) Y.S. Touloukian, D.P. DeWitt, Thermophysical Properties of Matter—Thermal Radiative Properties—Metallic Elements and Alloys. Purdue University (1970)
35.
Zurück zum Zitat N.P. Lavery, S.G.R. Brown, J. Sienz, F. Belblidia, A Review of Computational Modelling of Additive Layer Manufacturing—Multi-Scale and Multi-Physics. International Conference on Sustainable Design and Manufacturing, Cardiff, UK (2014) N.P. Lavery, S.G.R. Brown, J. Sienz, F. Belblidia, A Review of Computational Modelling of Additive Layer Manufacturing—Multi-Scale and Multi-Physics. International Conference on Sustainable Design and Manufacturing, Cardiff, UK (2014)
36.
Zurück zum Zitat A. Mendizabal, J.B. Gonzalez-Diaz, M. San Sebastian, and A. Echeverria, Improved Accuracy of the Inherent Shrinkage Method for Fast and more Reliable Welding Distortion Calculations, J. Mater. Eng. Perform., 2016, doi:10.1007/s11665-016-2116-2 A. Mendizabal, J.B. Gonzalez-Diaz, M. San Sebastian, and A. Echeverria, Improved Accuracy of the Inherent Shrinkage Method for Fast and more Reliable Welding Distortion Calculations, J. Mater. Eng. Perform., 2016, doi:10.​1007/​s11665-016-2116-2
Metadaten
Titel
Modeling of Powder Bed Manufacturing Defects
verfasst von
H.-W. Mindt
O. Desmaison
M. Megahed
A. Peralta
J. Neumann
Publikationsdatum
05.09.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2874-5

Weitere Artikel der Ausgabe 1/2018

Journal of Materials Engineering and Performance 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.