Skip to main content
Erschienen in: Archive of Applied Mechanics 7/2021

11.05.2021 | Original

Modeling of pulsatile EMHD flow of Au-blood in an inclined porous tapered atherosclerotic vessel under periodic body acceleration

verfasst von: Ramakrishna Manchi, R. Ponalagusamy

Erschienen in: Archive of Applied Mechanics | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A theoretical study on the pulsatile flow of Sutterby nanofluid in an inclined porous tapered arterial stenosis under the simultaneous impact of electro-osmotic , magnetohydrodynamic and periodic body forces with slip effect at the arterial wall is presented. Gold (Au) nanoparticles with various shapes (spheres, bricks, cylinders, platelets and blades) are utilized in the analysis. Poisson–Boltzmann equation is used to encounter the phenomena of the applied electric field. By assuming the low zeta potential on the walls, Debye–Hückel approximation is adapted to linearize the Poisson–Boltzmann equation, and then closed-form solution for the electric potential function is obtained. Under the assumption of small Reynolds number and mild stenoses case, the equations that govern the flow are made non-dimensional, and a suitable radial coordinate transformation is used to convert the irregular boundary to a regular boundary. The analytical expression for temperature profile is obtained via Laplace and finite Hankel transforms, from which Nusselt number is derived while the velocity profile is computed numerically employing a Crank–Nicolson scheme with the appropriate boundary and initial conditions. The physical aspect of various emerging parameters is analyzed through various graphs and tables for profiles of dimensionless velocity, temperature, volumetric flow flux, flow impedance, skin-friction coefficient and Nusselt number. It is found that an upsurge in the electro-osmotic parameter serves to reduce the hemodynamic factors (skin-friction and impedance) substantially, whereas an adverse trend is noticed for the Hartmann number. It is also deduced that the utilization of the spherical shape nanoparticles shows the higher heat flux at the stenosed arterial wall compared to the other nanoparticle shapes, and hence, nanoparticles and their shapes play a prominent role in biomedical applications. In order to validate the current results, different comparisons have been made with earlier published studies in a limiting case and an excellent agreement was found.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat William, B.: Text-Book of Pathology; Structure and Function in Diseases. Lea and Febiger, Philadelphia (1961) William, B.: Text-Book of Pathology; Structure and Function in Diseases. Lea and Febiger, Philadelphia (1961)
2.
Zurück zum Zitat Young, D.F.: Effect of a time-dependent stenosis on flow through a tube. Journal of Engineering for Industry 90, 248–254 (1968)CrossRef Young, D.F.: Effect of a time-dependent stenosis on flow through a tube. Journal of Engineering for Industry 90, 248–254 (1968)CrossRef
3.
Zurück zum Zitat Caro, C.G.: Arterial fluid mechanics and atherogenesis. Clin. Hemorheol. Microcirc. 2, 131–136 (1982)CrossRef Caro, C.G.: Arterial fluid mechanics and atherogenesis. Clin. Hemorheol. Microcirc. 2, 131–136 (1982)CrossRef
4.
Zurück zum Zitat Chaturani, P., Ponnalagarsamy, R.: Pulsatile flow of Casson’s fluid through stenosed arteries with applications to blood flow. Biorheology 23, 499–511 (1986)CrossRef Chaturani, P., Ponnalagarsamy, R.: Pulsatile flow of Casson’s fluid through stenosed arteries with applications to blood flow. Biorheology 23, 499–511 (1986)CrossRef
5.
Zurück zum Zitat Mekheimer, K.S., El Kot, M.A.: The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech. Sin. 24, 637–644 (2008) Mekheimer, K.S., El Kot, M.A.: The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech. Sin. 24, 637–644 (2008)
6.
Zurück zum Zitat Akbar, N.S., Nadeem, S., Hayat, T., Hendi, A.A.: Effects of heat and chemical reaction on Jeffrey fluid model with stenosis. Appl. Anal. 91, 1631–1647 (2012)MathSciNetMATHCrossRef Akbar, N.S., Nadeem, S., Hayat, T., Hendi, A.A.: Effects of heat and chemical reaction on Jeffrey fluid model with stenosis. Appl. Anal. 91, 1631–1647 (2012)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Varmazyar, M., Habibi, M.R., Amini, M., Pordanjani, A.H., Afrand, M., Vahedi, S.M.: Numerical simulation of magnetic nanoparticle-based drug delivery in presence of atherosclerotic plaques and under the effects of magnetic field. Powder Technol. 366, 164–174 (2020)CrossRef Varmazyar, M., Habibi, M.R., Amini, M., Pordanjani, A.H., Afrand, M., Vahedi, S.M.: Numerical simulation of magnetic nanoparticle-based drug delivery in presence of atherosclerotic plaques and under the effects of magnetic field. Powder Technol. 366, 164–174 (2020)CrossRef
8.
Zurück zum Zitat Choi, S.: US. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds) Developments and applications of non-Newtonian flows, vol. 36, pp. 99–105 (1995) Choi, S.: US. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds) Developments and applications of non-Newtonian flows, vol. 36, pp. 99–105 (1995)
9.
Zurück zum Zitat Darweesh, R.S., Ayoub, N.M., Nazzal, S.: Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int. J. Nanomed. 14, 7643 (2019)CrossRef Darweesh, R.S., Ayoub, N.M., Nazzal, S.: Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int. J. Nanomed. 14, 7643 (2019)CrossRef
10.
Zurück zum Zitat Youchun, J., Corey, R., Chang, X., et al.: Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J. Exp. Med. 204, 657–666 (2007)CrossRef Youchun, J., Corey, R., Chang, X., et al.: Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J. Exp. Med. 204, 657–666 (2007)CrossRef
11.
Zurück zum Zitat Peyman, H., Yunes, P., Abbas, E.-K., et al.: Biomedical applications of aluminium oxide nanoparticles. Micro Nano Lett. 13, 1227–1231 (2018)CrossRef Peyman, H., Yunes, P., Abbas, E.-K., et al.: Biomedical applications of aluminium oxide nanoparticles. Micro Nano Lett. 13, 1227–1231 (2018)CrossRef
12.
Zurück zum Zitat Ahmed, A., Nadeem, S.: The study of (Cu, TiO\(_{2}\), Al\(_{2}\)O\(_{3}\)) nanoparticles as antimicrobials of blood flow through diseased arteries J. Mol. Liq. 216, 615–623 (2016) Ahmed, A., Nadeem, S.: The study of (Cu, TiO\(_{2}\), Al\(_{2}\)O\(_{3}\)) nanoparticles as antimicrobials of blood flow through diseased arteries J. Mol. Liq. 216, 615–623 (2016)
13.
Zurück zum Zitat Ijaz, S., Nadeem, S.: Slip examination on the wall of tapered stenosed artery with emerging application of nanoparticles. Int. J. Therm. Sci. 109, 401–412 (2016)CrossRef Ijaz, S., Nadeem, S.: Slip examination on the wall of tapered stenosed artery with emerging application of nanoparticles. Int. J. Therm. Sci. 109, 401–412 (2016)CrossRef
14.
Zurück zum Zitat Vardanyan, V.A.: Effect of magnetic field on blood flow. Biofizika 18, 491–496 (1973) Vardanyan, V.A.: Effect of magnetic field on blood flow. Biofizika 18, 491–496 (1973)
15.
Zurück zum Zitat Akbar, N.S., Butt, A.W.: Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall. J. Magn. Magn. Mater. 381, 285–291 (2015)CrossRef Akbar, N.S., Butt, A.W.: Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall. J. Magn. Magn. Mater. 381, 285–291 (2015)CrossRef
16.
Zurück zum Zitat Mekheimer, K.S., Mohamed, M.S., Elnaqeeb, T.: Metallic nanoparticles influence on blood flow through a stenotic artery. Int. J. Pure Appl. Math. 107, 201–220 (2016)CrossRef Mekheimer, K.S., Mohamed, M.S., Elnaqeeb, T.: Metallic nanoparticles influence on blood flow through a stenotic artery. Int. J. Pure Appl. Math. 107, 201–220 (2016)CrossRef
17.
Zurück zum Zitat Wong, P.K., Wang, T.-H., Deval, J.H., Ho, C.-M.: Electrokinetics in micro devices for biotechnology applications. IEEE/ASME Trans. Mechatron. 9, 366–376 (2004)CrossRef Wong, P.K., Wang, T.-H., Deval, J.H., Ho, C.-M.: Electrokinetics in micro devices for biotechnology applications. IEEE/ASME Trans. Mechatron. 9, 366–376 (2004)CrossRef
18.
Zurück zum Zitat Burgreen, D., Nakache, F.R.: Electrokinetic flow in ultrafine capillary slits1. J. Phys. Chem. 68, 1084–1091 (1964)CrossRef Burgreen, D., Nakache, F.R.: Electrokinetic flow in ultrafine capillary slits1. J. Phys. Chem. 68, 1084–1091 (1964)CrossRef
19.
Zurück zum Zitat Saravani, M.S., Kalteh, M.: Heat transfer investigation of combined electroosmotic/pressure driven nanofluid flow in a microchannel: effect of heterogeneous surface potential and slip boundary condition. Eur. J. Mech.-B/Fluids 80, 13–25 (2020) Saravani, M.S., Kalteh, M.: Heat transfer investigation of combined electroosmotic/pressure driven nanofluid flow in a microchannel: effect of heterogeneous surface potential and slip boundary condition. Eur. J. Mech.-B/Fluids 80, 13–25 (2020)
20.
Zurück zum Zitat Ganguly, S., Sarkar, S., Hota, T.K., Mishra, M.: Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chem. Eng. Sci. 126, 10–21 (2015)CrossRef Ganguly, S., Sarkar, S., Hota, T.K., Mishra, M.: Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chem. Eng. Sci. 126, 10–21 (2015)CrossRef
21.
Zurück zum Zitat Satyasaran, C., Soumen, D.: Investigation of nanoparticle as a drug carrier suspended in a blood flowing through an inclined multiple stenosed artery. Bionanoscience 8, 166–178 (2018)CrossRef Satyasaran, C., Soumen, D.: Investigation of nanoparticle as a drug carrier suspended in a blood flowing through an inclined multiple stenosed artery. Bionanoscience 8, 166–178 (2018)CrossRef
22.
Zurück zum Zitat Satyasaran, C., Soumen, D.: Analytical investigation of nanoparticle as a drug carrier suspended in a MHD blood flowing through an irregular shape stenosed artery. Iran. J. Sci. Technol. Trans. A: Sci. 43, 1259–1272 (2019)CrossRef Satyasaran, C., Soumen, D.: Analytical investigation of nanoparticle as a drug carrier suspended in a MHD blood flowing through an irregular shape stenosed artery. Iran. J. Sci. Technol. Trans. A: Sci. 43, 1259–1272 (2019)CrossRef
23.
Zurück zum Zitat Walawender Jr., W.P., Tien, C., Cerny, L.C.: Experimental studies on the blood flow through tapered tubes. Int. J. Eng. Sci. 10, 1123–1135 (1972)CrossRef Walawender Jr., W.P., Tien, C., Cerny, L.C.: Experimental studies on the blood flow through tapered tubes. Int. J. Eng. Sci. 10, 1123–1135 (1972)CrossRef
24.
Zurück zum Zitat Akbar, N.S., Rahman, S.U., Ellahi, R., Nadeem, S.: Nano fluid flow in tapering stenosed arteries with permeable walls. Int. J. Therm. Sci. 85, 54–61 (2014)CrossRef Akbar, N.S., Rahman, S.U., Ellahi, R., Nadeem, S.: Nano fluid flow in tapering stenosed arteries with permeable walls. Int. J. Therm. Sci. 85, 54–61 (2014)CrossRef
25.
Zurück zum Zitat Sohail, N., Shagufta, I.: Theoretical analysis of metallic nanoparticles on blood flow through tapered elastic artery with overlapping stenosis. IEEE Trans. Nanobiosci. 14, 417–428 (2015)CrossRef Sohail, N., Shagufta, I.: Theoretical analysis of metallic nanoparticles on blood flow through tapered elastic artery with overlapping stenosis. IEEE Trans. Nanobiosci. 14, 417–428 (2015)CrossRef
26.
Zurück zum Zitat McDonald, D.A.: The relation of pulsatile pressure to flow in arteries. J. Physiol. 127, 533–552 (1955)CrossRef McDonald, D.A.: The relation of pulsatile pressure to flow in arteries. J. Physiol. 127, 533–552 (1955)CrossRef
28.
Zurück zum Zitat Zamir, M.: The Physics of Coronary Blood Flow. Springer, Berlin (2006) Zamir, M.: The Physics of Coronary Blood Flow. Springer, Berlin (2006)
29.
Zurück zum Zitat Ogulu, A., Abbey, T.M.: Simulation of heat transfer on an oscillatory blood flow in an indented porous artery. Int. Commun. Heat Mass Transf. 32, 983–989 (2005)CrossRef Ogulu, A., Abbey, T.M.: Simulation of heat transfer on an oscillatory blood flow in an indented porous artery. Int. Commun. Heat Mass Transf. 32, 983–989 (2005)CrossRef
30.
Zurück zum Zitat Das, K., Saha, G.C.: Arterial MHD pulsatile flow of blood under periodic body acceleration. Bull. Soc. Math. Banja Luka 16, 21–42 (2009)MathSciNetMATH Das, K., Saha, G.C.: Arterial MHD pulsatile flow of blood under periodic body acceleration. Bull. Soc. Math. Banja Luka 16, 21–42 (2009)MathSciNetMATH
31.
Zurück zum Zitat Shit, G.C., Sreeparna, M.: Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment. J. Magn. Magn. Mater. 388, 106–115 (2015)CrossRef Shit, G.C., Sreeparna, M.: Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment. J. Magn. Magn. Mater. 388, 106–115 (2015)CrossRef
32.
Zurück zum Zitat Mirza, I.A., Abdulhameed, M., Vieru, D., Shafie, S.: Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel. Comput. Methods Programs Biomed. 137, 149–166 (2016)CrossRef Mirza, I.A., Abdulhameed, M., Vieru, D., Shafie, S.: Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel. Comput. Methods Programs Biomed. 137, 149–166 (2016)CrossRef
33.
Zurück zum Zitat Srinivas, S., Vijayalakshmi, A., Reddy, A.S., Ramamohan, T.R.: MHD flow of a nanofluid in an expanding or contracting porous pipe with chemical reaction and heat source/sink. Propuls. Power Res. 5, 134–148 (2016)CrossRef Srinivas, S., Vijayalakshmi, A., Reddy, A.S., Ramamohan, T.R.: MHD flow of a nanofluid in an expanding or contracting porous pipe with chemical reaction and heat source/sink. Propuls. Power Res. 5, 134–148 (2016)CrossRef
34.
Zurück zum Zitat Charm, S., Kurland, G.: Viscometry of human blood for shear rates of 0–100,000 sec\(^{- 1}\). Nature 206, 617–618 (1965)CrossRef Charm, S., Kurland, G.: Viscometry of human blood for shear rates of 0–100,000 sec\(^{- 1}\). Nature 206, 617–618 (1965)CrossRef
35.
Zurück zum Zitat Leslie, W.R.: Rheology of the Circulation. Pergamon (1968) Leslie, W.R.: Rheology of the Circulation. Pergamon (1968)
36.
Zurück zum Zitat Min-Shing, L.M.: Transport Phenomena in Medicine and Biology. Wiley, London (1975) Min-Shing, L.M.: Transport Phenomena in Medicine and Biology. Wiley, London (1975)
37.
Zurück zum Zitat Ponalagusamy, R., Priyadharshini, S.: Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration. Korea-Australia Rheol. J. 29, 303–316 (2017)CrossRef Ponalagusamy, R., Priyadharshini, S.: Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration. Korea-Australia Rheol. J. 29, 303–316 (2017)CrossRef
38.
Zurück zum Zitat Zaman, A., Khan, A.A., Ali, N.: Modeling of unsteady non-Newtonian blood flow through a stenosed artery: with nanoparticles. J. Braz. Soc. Mech. Sci. Eng. 40, 307 (2018)CrossRef Zaman, A., Khan, A.A., Ali, N.: Modeling of unsteady non-Newtonian blood flow through a stenosed artery: with nanoparticles. J. Braz. Soc. Mech. Sci. Eng. 40, 307 (2018)CrossRef
39.
Zurück zum Zitat Ali, N., Zaman, A., Sajid, M, Bég, O.A., Shamshuddin, M.D., Kadir, A.: Numerical simulation of time-dependent non-Newtonian nanopharmacodynamic transport phenomena in a tapered overlapping stenosed artery. Nanosci. Technol.: Int. J. 9 (2018) Ali, N., Zaman, A., Sajid, M, Bég, O.A., Shamshuddin, M.D., Kadir, A.: Numerical simulation of time-dependent non-Newtonian nanopharmacodynamic transport phenomena in a tapered overlapping stenosed artery. Nanosci. Technol.: Int. J. 9 (2018)
40.
Zurück zum Zitat Mekheimer, K.S., Abo-Elkhair, R.E., Moawad, A.M.A.: Electrothermal transport via gold nanoparticles as antimicrobials of blood flow through an electro-osmosis artery with overlapping stenosis. Int. J. Fluid Mech. Res. 47 (2020) Mekheimer, K.S., Abo-Elkhair, R.E., Moawad, A.M.A.: Electrothermal transport via gold nanoparticles as antimicrobials of blood flow through an electro-osmosis artery with overlapping stenosis. Int. J. Fluid Mech. Res. 47 (2020)
41.
Zurück zum Zitat Das, S., Chakraborty, S.: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal. Chim. Acta. 559, 15–24 (2006)CrossRef Das, S., Chakraborty, S.: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal. Chim. Acta. 559, 15–24 (2006)CrossRef
42.
Zurück zum Zitat Shaw, S., Murthy, P.V.S.N.: Magnetic targeting in the impermeable microvessel with two-phase fluid model-Non-Newtonian characteristics of blood. Microvasc. Res. 80, 209–220 (2010)CrossRef Shaw, S., Murthy, P.V.S.N.: Magnetic targeting in the impermeable microvessel with two-phase fluid model-Non-Newtonian characteristics of blood. Microvasc. Res. 80, 209–220 (2010)CrossRef
43.
Zurück zum Zitat Shaw, S., Murthy, P.V.S.N., Sibanda, P.: Magnetic drug targeting in a permeable microvessel. Microvasc. Res. 85, 77–85 (2013)CrossRef Shaw, S., Murthy, P.V.S.N., Sibanda, P.: Magnetic drug targeting in a permeable microvessel. Microvasc. Res. 85, 77–85 (2013)CrossRef
44.
Zurück zum Zitat Moli, Z., Shaowei, W., Shoushui, W.: Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. J. Non-Newtonian Fluid Mech. 201, 135–139 (2013)CrossRef Moli, Z., Shaowei, W., Shoushui, W.: Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. J. Non-Newtonian Fluid Mech. 201, 135–139 (2013)CrossRef
45.
Zurück zum Zitat Cunlu, Z., Chun, Y.: Electrokinetics of non-Newtonian fluids: a review. Adv. Colloid Interface Sci. 201, 94–108 (2013) Cunlu, Z., Chun, Y.: Electrokinetics of non-Newtonian fluids: a review. Adv. Colloid Interface Sci. 201, 94–108 (2013)
46.
Zurück zum Zitat Mohamed, A., Dumitru, V., Rozaini, R.: Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo–Fabrizio derivatives through circular tubes. Comput. Math. Appl. 74, 2503–2519 (2017)MathSciNetCrossRef Mohamed, A., Dumitru, V., Rozaini, R.: Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo–Fabrizio derivatives through circular tubes. Comput. Math. Appl. 74, 2503–2519 (2017)MathSciNetCrossRef
47.
Zurück zum Zitat Abdelsalam, S.I., Mekheimer, K.S., Zaher, A.Z.: Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: aneurysmal/stenosed segment. Chin. J. Phys. 67, 314–329 (2020)MathSciNetCrossRef Abdelsalam, S.I., Mekheimer, K.S., Zaher, A.Z.: Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: aneurysmal/stenosed segment. Chin. J. Phys. 67, 314–329 (2020)MathSciNetCrossRef
48.
Zurück zum Zitat Zhen, T., Hai-tao, Q., Xiao-yun, J.: Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition. Appl. Math. Mech. 35, 689–696 (2014)MathSciNetMATHCrossRef Zhen, T., Hai-tao, Q., Xiao-yun, J.: Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition. Appl. Math. Mech. 35, 689–696 (2014)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Sutterby, J.L.: Laminar converging flow of dilute polymer solutions in conical sections: Part I. Viscosity data, new viscosity model, tube flow solution. AIChE J. 12, 63–68 (1966)CrossRef Sutterby, J.L.: Laminar converging flow of dilute polymer solutions in conical sections: Part I. Viscosity data, new viscosity model, tube flow solution. AIChE J. 12, 63–68 (1966)CrossRef
50.
Zurück zum Zitat Sutterby, J.L.: Laminar converging flow of dilute polymer solutions in conical sections. II. Trans. Soc. Rheol. 9, 227–241 (1965)CrossRef Sutterby, J.L.: Laminar converging flow of dilute polymer solutions in conical sections. II. Trans. Soc. Rheol. 9, 227–241 (1965)CrossRef
51.
Zurück zum Zitat Sher, A.N.: Biomathematical study of Sutterby fluid model for blood flow in stenosed arteries. Int. J. Biomath. 8, 1550075 (2015)MathSciNetMATHCrossRef Sher, A.N.: Biomathematical study of Sutterby fluid model for blood flow in stenosed arteries. Int. J. Biomath. 8, 1550075 (2015)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Abbas, Z., Shabbir, M.S., Ali, N.: Numerical study of magnetohydrodynamic pulsatile flow of Sutterby fluid through an inclined overlapping arterial stenosis in the presence of periodic body acceleration. Results Phys. 9, 753–762 (2018)CrossRef Abbas, Z., Shabbir, M.S., Ali, N.: Numerical study of magnetohydrodynamic pulsatile flow of Sutterby fluid through an inclined overlapping arterial stenosis in the presence of periodic body acceleration. Results Phys. 9, 753–762 (2018)CrossRef
53.
Zurück zum Zitat Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R., Abdelsalam, S.I.: Swimming of Motile Gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 95 (2020)CrossRef Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R., Abdelsalam, S.I.: Swimming of Motile Gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 95 (2020)CrossRef
54.
Zurück zum Zitat Ponalagusamy, R.: Blood Flow Through Stenosed Tube. Ph.D. thesis, IIT Bombay, India (1986) Ponalagusamy, R.: Blood Flow Through Stenosed Tube. Ph.D. thesis, IIT Bombay, India (1986)
Metadaten
Titel
Modeling of pulsatile EMHD flow of Au-blood in an inclined porous tapered atherosclerotic vessel under periodic body acceleration
verfasst von
Ramakrishna Manchi
R. Ponalagusamy
Publikationsdatum
11.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 7/2021
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-01974-6

Weitere Artikel der Ausgabe 7/2021

Archive of Applied Mechanics 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.