Skip to main content
Erschienen in: Journal of Materials Science 2/2020

06.09.2019 | Review

Modeling of stress corrosion cracking growth rates for key structural materials of nuclear power plant

verfasst von: Zhenhua Li, Yonghao Lu, Xinyu Wang

Erschienen in: Journal of Materials Science | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stress corrosion cracking in light water reactor is one of the most important factors threatening the safe operation of nuclear power plants. Due to the severity, generality and various safety and economic problems caused by this phenomenon, it is necessary to establish a model for predicting the stress corrosion cracking growth rates. This paper provides an overview of three main methods for predicting stress corrosion cracking growth rates in recent decades, i.e., empirical, deterministic and calculation methods, which are introduced in detail. Empirical models describe classical statistical analysis and emerging artificial neural network method, both of which are based on a large number of experimental test data mining. They are convenient and relatively accurate in predicting, but require extensive, time-consuming and expensive tests for different service environments. Deterministic models aim to establish a theoretical relationship between crack growth rate and various influencing parameters by studying the stress corrosion cracking mechanism. Many scholars have proposed different mechanisms to scientifically explain the stress corrosion cracking phenomenon and propose corresponding crack growth rate models. Calculation models reveal the mechanism of crack initiation and propagation in different layers of materials by means of finite element method based on fracture mechanics and multiscale method based on quantum mechanics. They provide new idea for future research on stress corrosion cracking and bridge the quantitative mechanism or model, but no specific stress corrosion cracking growth rate model is formed. The article concludes with the prospect, aim and direction for stress corrosion cracking mechanism and prediction model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Andresen PL (2019) A brief history of environmental cracking in Hot Water. Corrosion 75(3):240–253CrossRef Andresen PL (2019) A brief history of environmental cracking in Hot Water. Corrosion 75(3):240–253CrossRef
2.
Zurück zum Zitat Wang M, Song M, Lear CR, Was GS (2019) Irradiation assisted stress corrosion cracking of commercial and advanced alloys for light water reactor core internals. J Nucl Mater 515:52–70CrossRef Wang M, Song M, Lear CR, Was GS (2019) Irradiation assisted stress corrosion cracking of commercial and advanced alloys for light water reactor core internals. J Nucl Mater 515:52–70CrossRef
4.
Zurück zum Zitat Chen K, Wang J, Du D, Andresen PL, Zhang L (2018) dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water. J Nucl Mater 503:13–21CrossRef Chen K, Wang J, Du D, Andresen PL, Zhang L (2018) dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water. J Nucl Mater 503:13–21CrossRef
5.
Zurück zum Zitat Shen Z, Meisner M, Arika K, Lozano-Perez S (2019) Mechanistic understanding of the temperature dependence of crack growth rate in alloy 600 and 316 stainless steel through high-resolution characterization. Acta Mater 165:73–86CrossRef Shen Z, Meisner M, Arika K, Lozano-Perez S (2019) Mechanistic understanding of the temperature dependence of crack growth rate in alloy 600 and 316 stainless steel through high-resolution characterization. Acta Mater 165:73–86CrossRef
6.
Zurück zum Zitat Rebak RB, Szklarska-Smialowska Z (1996) The mechanism of stress corrosion cracking of alloy 600 in high temperature water. Corros Sci 38(6):971–988CrossRef Rebak RB, Szklarska-Smialowska Z (1996) The mechanism of stress corrosion cracking of alloy 600 in high temperature water. Corros Sci 38(6):971–988CrossRef
7.
Zurück zum Zitat Saito K, Kuniya J (2001) Mechanochemical model to predict stress corrosion crack growth of stainless steel in high temperature water. Corros Sci 43(9):1751–1766CrossRef Saito K, Kuniya J (2001) Mechanochemical model to predict stress corrosion crack growth of stainless steel in high temperature water. Corros Sci 43(9):1751–1766CrossRef
8.
Zurück zum Zitat Hall MM (2009) Film rupture model for aqueous stress corrosion cracking under constant and variable stress intensity factor. Corros Sci 51(2):225–233CrossRef Hall MM (2009) Film rupture model for aqueous stress corrosion cracking under constant and variable stress intensity factor. Corros Sci 51(2):225–233CrossRef
9.
Zurück zum Zitat Turnbull A, Wright L (2017) Modelling the electrochemical crack size effect on stress corrosion crack growth rate. Corros Sci 126:69–77CrossRef Turnbull A, Wright L (2017) Modelling the electrochemical crack size effect on stress corrosion crack growth rate. Corros Sci 126:69–77CrossRef
10.
Zurück zum Zitat Fekete B, Ai J, Yang J, Han JS, Maeng WY, Macdonald DD (2018) An advanced coupled environment fracture model for hydrogen-induced cracking in alloy 600 in PWR primary heat transport environment. Theor Appl Fract Mech 95:233–241CrossRef Fekete B, Ai J, Yang J, Han JS, Maeng WY, Macdonald DD (2018) An advanced coupled environment fracture model for hydrogen-induced cracking in alloy 600 in PWR primary heat transport environment. Theor Appl Fract Mech 95:233–241CrossRef
11.
Zurück zum Zitat Du D, Chen K, Yu L, Yu H, Lu H, Zhang L, Shi X, Xu X (2015) SCC crack growth rate of cold worked 316L stainless steel in PWR environment. J Nucl Mater 456:228–234CrossRef Du D, Chen K, Yu L, Yu H, Lu H, Zhang L, Shi X, Xu X (2015) SCC crack growth rate of cold worked 316L stainless steel in PWR environment. J Nucl Mater 456:228–234CrossRef
12.
Zurück zum Zitat Lim YS, Kim DJ, Kim SW, Kim HP (2019) Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water. Nucl Eng Technol 51(1):228–237CrossRef Lim YS, Kim DJ, Kim SW, Kim HP (2019) Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water. Nucl Eng Technol 51(1):228–237CrossRef
13.
Zurück zum Zitat Materials Reliability Program (2002) Crack growth rates for evaluating primary water stress corrosion cracking (PWSCC) of thick-wall alloy 600 materials (MRP-55), EPRI, Palo Alto, CA: 1006695 Materials Reliability Program (2002) Crack growth rates for evaluating primary water stress corrosion cracking (PWSCC) of thick-wall alloy 600 materials (MRP-55), EPRI, Palo Alto, CA: 1006695
14.
Zurück zum Zitat White GA, Hickling J, Mathews LK (2003) Crack growth rates for evaluating PWSCC of thick-wall alloy 600 material. In: Proceedings of the 11th international conference environmental degradation materials nuclear power systems-water reactors, ANS, pp 166–179 White GA, Hickling J, Mathews LK (2003) Crack growth rates for evaluating PWSCC of thick-wall alloy 600 material. In: Proceedings of the 11th international conference environmental degradation materials nuclear power systems-water reactors, ANS, pp 166–179
15.
Zurück zum Zitat Materials Reliability Program (2004) Crack growth rates for evaluating primary water stress corrosion cracking (PWSCC) of alloy 82, 182, and 132 welds (MRP-115), EPRI, Palo Alto, CA:1006696 Materials Reliability Program (2004) Crack growth rates for evaluating primary water stress corrosion cracking (PWSCC) of alloy 82, 182, and 132 welds (MRP-115), EPRI, Palo Alto, CA:1006696
16.
Zurück zum Zitat White GA, Nordmann NS, Hickling J, Harrington CD (2005) Development of crack growth rate disposition curves for primary water stress corrosion cracking (PWSCC) of Alloy 82, 182, and 132 Weldments. In: Proceedings of 12th international conference environmental degradation materials nuclear power systems-water reactors, TMS, pp 511–530 White GA, Nordmann NS, Hickling J, Harrington CD (2005) Development of crack growth rate disposition curves for primary water stress corrosion cracking (PWSCC) of Alloy 82, 182, and 132 Weldments. In: Proceedings of 12th international conference environmental degradation materials nuclear power systems-water reactors, TMS, pp 511–530
18.
Zurück zum Zitat Materials Reliability Program (2017) Crack growth rates for PWSCC of alloy 690 and alloy 52, 152, and variants welds (MRP-386), EPRI, Palo Alto, CA:3002010756 Materials Reliability Program (2017) Crack growth rates for PWSCC of alloy 690 and alloy 52, 152, and variants welds (MRP-386), EPRI, Palo Alto, CA:3002010756
19.
Zurück zum Zitat Materials Reliability Program (2017) Crack growth rates for evaluating PWSCC of alloy 600 materials and alloy 82, 182, and 132 welds (MRP-420), EPRI Palo Alto, CA:3002010758 Materials Reliability Program (2017) Crack growth rates for evaluating PWSCC of alloy 600 materials and alloy 82, 182, and 132 welds (MRP-420), EPRI Palo Alto, CA:3002010758
20.
Zurück zum Zitat Scott PM (1991) An analysis of primary water stress corrosion cracking in PWR steam generators. In: Proceedings of the specialists meeting on operating experience with steam generators, Brussels, Belgium, pp 5–6 Scott PM (1991) An analysis of primary water stress corrosion cracking in PWR steam generators. In: Proceedings of the specialists meeting on operating experience with steam generators, Brussels, Belgium, pp 5–6
21.
Zurück zum Zitat Jenks AR, White GA, Crooker P (2017) Crack growth rates for evaluating PWSCC of thick-wall alloy 690 material and alloy 52, 152, and variant welds. In: ASME. Pressure vessels and piping conference, volume 6B: materials and fabrication: V06BT06A012. https://doi.org/10.1115/pvp2017-65886 Jenks AR, White GA, Crooker P (2017) Crack growth rates for evaluating PWSCC of thick-wall alloy 690 material and alloy 52, 152, and variant welds. In: ASME. Pressure vessels and piping conference, volume 6B: materials and fabrication: V06BT06A012. https://​doi.​org/​10.​1115/​pvp2017-65886
22.
Zurück zum Zitat Smets HMG, Bogaerts WFL (1992) SCC analysis of austenitic stainless steels in chloride-bearing water by neural network techniques. Corrosion 48(8):618–623CrossRef Smets HMG, Bogaerts WFL (1992) SCC analysis of austenitic stainless steels in chloride-bearing water by neural network techniques. Corrosion 48(8):618–623CrossRef
23.
Zurück zum Zitat Lu PC (1997) Using neural network techniques to predict crack growth rates of stress corrosion. Int J Mater Prod Technol 12:329–345 Lu PC (1997) Using neural network techniques to predict crack growth rates of stress corrosion. Int J Mater Prod Technol 12:329–345
24.
Zurück zum Zitat Kamrunnahar M, Urquidi-Macdonald M (2010) Prediction of corrosion behavior using neural network as a data mining tool. Corros Sci 52(3):669–677CrossRef Kamrunnahar M, Urquidi-Macdonald M (2010) Prediction of corrosion behavior using neural network as a data mining tool. Corros Sci 52(3):669–677CrossRef
25.
Zurück zum Zitat Kamrunnahar M, Urquidi-Macdonald M (2011) Prediction of corrosion behaviour of Alloy 22 using neural network as a data mining tool. Corros Sci 53(3):961–967CrossRef Kamrunnahar M, Urquidi-Macdonald M (2011) Prediction of corrosion behaviour of Alloy 22 using neural network as a data mining tool. Corros Sci 53(3):961–967CrossRef
26.
Zurück zum Zitat Shi J, Wang J, Macdonald DD (2014) Prediction of crack growth rate in type 304 stainless steel using artificial neural networks and the coupled environment fracture model. Corros Sci 89:69–80CrossRef Shi J, Wang J, Macdonald DD (2014) Prediction of crack growth rate in type 304 stainless steel using artificial neural networks and the coupled environment fracture model. Corros Sci 89:69–80CrossRef
27.
Zurück zum Zitat Shi J, Wang J, Macdonald DD (2015) Prediction of primary water stress corrosion crack growth rates in alloy 600 using artificial neural networks. Corros Sci 92:217–227CrossRef Shi J, Wang J, Macdonald DD (2015) Prediction of primary water stress corrosion crack growth rates in alloy 600 using artificial neural networks. Corros Sci 92:217–227CrossRef
30.
Zurück zum Zitat Hu Q, Liu Y, Zhang T, Geng S, Wang F (2019) Modeling the corrosion behavior of Ni–Cr–Mo–V high strength steel in the simulated deep sea environments using design of experiment and artificial neural network. J Mater Sci Technol 35(1):168–175CrossRef Hu Q, Liu Y, Zhang T, Geng S, Wang F (2019) Modeling the corrosion behavior of Ni–Cr–Mo–V high strength steel in the simulated deep sea environments using design of experiment and artificial neural network. J Mater Sci Technol 35(1):168–175CrossRef
32.
33.
Zurück zum Zitat Shah M, Das SK (2018) An artificial neural network model to predict the Bainite plate thickness of nanostructured Bainitic steels using an efficient Network-Learning Algorithm. J Mater Eng Perform 27(11):5845–5855CrossRef Shah M, Das SK (2018) An artificial neural network model to predict the Bainite plate thickness of nanostructured Bainitic steels using an efficient Network-Learning Algorithm. J Mater Eng Perform 27(11):5845–5855CrossRef
34.
Zurück zum Zitat Sontag ED (1992) Feedback stabilization using two-hidden-layer nets. IEEE Trans Neural Netw 3(6):981–990CrossRef Sontag ED (1992) Feedback stabilization using two-hidden-layer nets. IEEE Trans Neural Netw 3(6):981–990CrossRef
35.
Zurück zum Zitat Srinivasan S, Saghir MZ (2013) Modeling of thermotransport phenomenon in metal alloys using artificial neural networks. Appl Math Model 37(5):2850–2869CrossRef Srinivasan S, Saghir MZ (2013) Modeling of thermotransport phenomenon in metal alloys using artificial neural networks. Appl Math Model 37(5):2850–2869CrossRef
36.
Zurück zum Zitat Lin Y, Cunningham GA (1995) A new approach to fuzzy-neural system modeling. IEEE Trans Fuzzy Syst 3(2):190–198CrossRef Lin Y, Cunningham GA (1995) A new approach to fuzzy-neural system modeling. IEEE Trans Fuzzy Syst 3(2):190–198CrossRef
37.
Zurück zum Zitat Ham FM, Kostanic I (2000) Principles of neurocomputing for science and engineering, 1st edn. McGraw-Hill, New York Ham FM, Kostanic I (2000) Principles of neurocomputing for science and engineering, 1st edn. McGraw-Hill, New York
38.
Zurück zum Zitat Coskun MI, Karahan IH (2018) Modeling corrosion performance of the hydroxyapatite coated CoCrMo biomaterial alloys. J Alloys Comput 745:840–848CrossRef Coskun MI, Karahan IH (2018) Modeling corrosion performance of the hydroxyapatite coated CoCrMo biomaterial alloys. J Alloys Comput 745:840–848CrossRef
39.
Zurück zum Zitat Cottis RA, Li Q, Owen G, Gartland SJ, Helliwell IA, Turega M (1999) Neural network methods for corrosion data reduction. Mater Des 20(4):169–178CrossRef Cottis RA, Li Q, Owen G, Gartland SJ, Helliwell IA, Turega M (1999) Neural network methods for corrosion data reduction. Mater Des 20(4):169–178CrossRef
40.
Zurück zum Zitat Kumar G, Buchheit RG (2012) Use of artificial neural network models to predict coated component life from short-term electrochemical impedance spectroscopy measurements. Corrosion 64(3):241–254CrossRef Kumar G, Buchheit RG (2012) Use of artificial neural network models to predict coated component life from short-term electrochemical impedance spectroscopy measurements. Corrosion 64(3):241–254CrossRef
41.
Zurück zum Zitat Cavanaugh MK, Buchheit RG, Birbilis N (2010) Modeling the environmental dependence of pit growth using neural network approaches. Corros Sci 52(9):3070–3077CrossRef Cavanaugh MK, Buchheit RG, Birbilis N (2010) Modeling the environmental dependence of pit growth using neural network approaches. Corros Sci 52(9):3070–3077CrossRef
42.
Zurück zum Zitat Ford FP, Emigh PW (1985) The prediction of the maximum corrosion fatigue crack propagation rate in the low alloy steel-de-oxygenated water system at 288°C. Corros Sci 25(8):673–692CrossRef Ford FP, Emigh PW (1985) The prediction of the maximum corrosion fatigue crack propagation rate in the low alloy steel-de-oxygenated water system at 288°C. Corros Sci 25(8):673–692CrossRef
43.
Zurück zum Zitat Andresen PL, Ford FP (1988) Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems. Mater Sci Eng A 103(1):167–184CrossRef Andresen PL, Ford FP (1988) Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems. Mater Sci Eng A 103(1):167–184CrossRef
44.
Zurück zum Zitat Logan HL (1952) Film-rupture mechanism of stress corrosion. J Res Natl Bur Stand 48:99–105CrossRef Logan HL (1952) Film-rupture mechanism of stress corrosion. J Res Natl Bur Stand 48:99–105CrossRef
45.
Zurück zum Zitat Woodtli J, Kieselbach R (2000) Damage due to hydrogen embrittlement and stress corrosion cracking. Eng Fail Anal 7(6):427–450CrossRef Woodtli J, Kieselbach R (2000) Damage due to hydrogen embrittlement and stress corrosion cracking. Eng Fail Anal 7(6):427–450CrossRef
46.
Zurück zum Zitat Scully JC (1968) The mechanical parameters of stress-corrosion cracking. Corros Sci 8(10):759–769CrossRef Scully JC (1968) The mechanical parameters of stress-corrosion cracking. Corros Sci 8(10):759–769CrossRef
47.
Zurück zum Zitat Vermilyea DA (1972) A theory for the propagation of stress corrosion cracks in metals. J Electrochem Soc 119(4):405–407CrossRef Vermilyea DA (1972) A theory for the propagation of stress corrosion cracks in metals. J Electrochem Soc 119(4):405–407CrossRef
48.
Zurück zum Zitat Parkins RN (1980) Predictive approaches to stress corrosion cracking failure. Corros Sci 20(2):147–166CrossRef Parkins RN (1980) Predictive approaches to stress corrosion cracking failure. Corros Sci 20(2):147–166CrossRef
49.
Zurück zum Zitat Parkins RN (1987) Current topics in corrosion: factors influencing stress corrosion crack growth kinetics. Corrosion 43(3):130–139CrossRef Parkins RN (1987) Current topics in corrosion: factors influencing stress corrosion crack growth kinetics. Corrosion 43(3):130–139CrossRef
50.
Zurück zum Zitat Ford FP (1996) Quantitative prediction of environmentally assisted cracking. Corrosion 52:375–395CrossRef Ford FP (1996) Quantitative prediction of environmentally assisted cracking. Corrosion 52:375–395CrossRef
51.
Zurück zum Zitat Andresen PL (1988) Environmentally assisted growth rate response of nonsensitized AISI 316 grade stainless steels in high temperature water. Corrosion 44(7):450–460CrossRef Andresen PL (1988) Environmentally assisted growth rate response of nonsensitized AISI 316 grade stainless steels in high temperature water. Corrosion 44(7):450–460CrossRef
52.
Zurück zum Zitat Ford FP (1988) Status of research on environmentally assisted cracking in LWR pressure vessel steels. J Press Vess-T ASME 110(2):113–128CrossRef Ford FP (1988) Status of research on environmentally assisted cracking in LWR pressure vessel steels. J Press Vess-T ASME 110(2):113–128CrossRef
53.
Zurück zum Zitat Andresen PL, Ford FP (1993) Use of fundamental modeling of environmental cracking for improved design and lifetime evaluation. J Press Vess-T ASME 115(4):353–358CrossRef Andresen PL, Ford FP (1993) Use of fundamental modeling of environmental cracking for improved design and lifetime evaluation. J Press Vess-T ASME 115(4):353–358CrossRef
54.
Zurück zum Zitat Andresen PL, Ford FP (1994) Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs. Int J Press Vessel Pip 59(1–3):61–70CrossRef Andresen PL, Ford FP (1994) Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs. Int J Press Vessel Pip 59(1–3):61–70CrossRef
55.
Zurück zum Zitat Shoji T, Lu Z, Murakami H (2010) Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics. Corros Sci 52(3):769–779CrossRef Shoji T, Lu Z, Murakami H (2010) Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics. Corros Sci 52(3):769–779CrossRef
56.
Zurück zum Zitat Macdonald DD (1996) On the modeling of stress corrosion cracking in iron and nickel base alloys in high temperature aqueous environments. Corros Sci 38(6):1003–1010CrossRef Macdonald DD (1996) On the modeling of stress corrosion cracking in iron and nickel base alloys in high temperature aqueous environments. Corros Sci 38(6):1003–1010CrossRef
57.
Zurück zum Zitat Gutman EM (2007) An inconsistency in “film rupture model” of stress corrosion cracking. Corros Sci 49(5):2289–2302CrossRef Gutman EM (2007) An inconsistency in “film rupture model” of stress corrosion cracking. Corros Sci 49(5):2289–2302CrossRef
58.
Zurück zum Zitat Hall MM (2009) Critique of the Ford–Andresen film rupture model for aqueous stress corrosion cracking. Corros Sci 51(5):1103–1106CrossRef Hall MM (2009) Critique of the Ford–Andresen film rupture model for aqueous stress corrosion cracking. Corros Sci 51(5):1103–1106CrossRef
59.
Zurück zum Zitat Ford FP, Taylor DF, Andresen PL, Ballinger RG (1987) Corrosion-assisted cracking of stainless and low alloy steels in LWR environments. In: EPRI final report RP2006-6, Electric Power Research Institute Ford FP, Taylor DF, Andresen PL, Ballinger RG (1987) Corrosion-assisted cracking of stainless and low alloy steels in LWR environments. In: EPRI final report RP2006-6, Electric Power Research Institute
60.
Zurück zum Zitat Rice JR, Sorensen EP (1978) Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. J Mech Phys Solids 26(3):163–186CrossRef Rice JR, Sorensen EP (1978) Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. J Mech Phys Solids 26(3):163–186CrossRef
61.
Zurück zum Zitat Rice JR, Drugan WJ, Sham TL (1980) Elastic–plastic analysis of growing cracks. In: Proceedings of the 12th national symposium on fracture mechanics. ASTM Special Technical Publication, Philadelphia, pp 189–221 Rice JR, Drugan WJ, Sham TL (1980) Elastic–plastic analysis of growing cracks. In: Proceedings of the 12th national symposium on fracture mechanics. ASTM Special Technical Publication, Philadelphia, pp 189–221
62.
Zurück zum Zitat Congleton J, Shoji T, Parkins RN (1985) The stress corrosion cracking of reactor pressure vessel steel in high temperature water. Corros Sci 25(8):633–650CrossRef Congleton J, Shoji T, Parkins RN (1985) The stress corrosion cracking of reactor pressure vessel steel in high temperature water. Corros Sci 25(8):633–650CrossRef
63.
Zurück zum Zitat Shoji T, Suzuki S, Ballinger RG (1995) Theoretical prediction of SCC growth behavior-threshold and plateau growth rate. In: Proceedings of the seventh international symposium on environmental degradation of materials in nuclear power systems, Breckinridge, pp 881–889 Shoji T, Suzuki S, Ballinger RG (1995) Theoretical prediction of SCC growth behavior-threshold and plateau growth rate. In: Proceedings of the seventh international symposium on environmental degradation of materials in nuclear power systems, Breckinridge, pp 881–889
64.
Zurück zum Zitat Peng QJ, Kwon J, Shoji T (2004) Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water. J Nucl Mater 324:52–61CrossRef Peng QJ, Kwon J, Shoji T (2004) Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water. J Nucl Mater 324:52–61CrossRef
65.
Zurück zum Zitat Hutchinson JW (1968) Plastic stress and strain fields at a crack tip. J Mech Phys Solids 16(5):337–342CrossRef Hutchinson JW (1968) Plastic stress and strain fields at a crack tip. J Mech Phys Solids 16(5):337–342CrossRef
66.
Zurück zum Zitat Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16(1):1–12CrossRef Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16(1):1–12CrossRef
67.
Zurück zum Zitat Gao Y, Hwang K (1981) Elastic plastic fields in steady crack growth in a strain hardening material. Geochem Int 50(50):330–343 Gao Y, Hwang K (1981) Elastic plastic fields in steady crack growth in a strain hardening material. Geochem Int 50(50):330–343
68.
Zurück zum Zitat Gao Y, Zhang X, Hwang K (1983) The asymptotic near-tip solution for mode-III crack in steady growth in power hardening media. Int J Fract 21(4):301–317CrossRef Gao Y, Zhang X, Hwang K (1983) The asymptotic near-tip solution for mode-III crack in steady growth in power hardening media. Int J Fract 21(4):301–317CrossRef
69.
Zurück zum Zitat Gerberich W, Davidson DL, Kaczorowski M (1990) Experimental and theoretical strain distributions for stationary and growing cracks. J Mech Phys Solids 38(1):87–113CrossRef Gerberich W, Davidson DL, Kaczorowski M (1990) Experimental and theoretical strain distributions for stationary and growing cracks. J Mech Phys Solids 38(1):87–113CrossRef
70.
Zurück zum Zitat Fan TY, Sutton MA, Zhang LX (1997) Plane stress steady crack growth in a power-law hardening material. Int J Fract 86(4):327–341CrossRef Fan TY, Sutton MA, Zhang LX (1997) Plane stress steady crack growth in a power-law hardening material. Int J Fract 86(4):327–341CrossRef
71.
Zurück zum Zitat Hall M (2008) An alternative to the Shoji crack tip strain rate equation. Corros Sci 50(10):2902–2905CrossRef Hall M (2008) An alternative to the Shoji crack tip strain rate equation. Corros Sci 50(10):2902–2905CrossRef
72.
Zurück zum Zitat Koshiishi M, Hashimoto T, Obata R (2017) Application of the FRI crack growth model for neutron-irradiated stainless steels in high-temperature water of a boiling water reactor environment. Corros Sci 123:178–288CrossRef Koshiishi M, Hashimoto T, Obata R (2017) Application of the FRI crack growth model for neutron-irradiated stainless steels in high-temperature water of a boiling water reactor environment. Corros Sci 123:178–288CrossRef
73.
Zurück zum Zitat MacDonald DD, Urquidi-MacDonald M (1991) A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments. Corros Sci 32:51–81CrossRef MacDonald DD, Urquidi-MacDonald M (1991) A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments. Corros Sci 32:51–81CrossRef
74.
Zurück zum Zitat Macdonald DD, Lu PC, Urquidi-Macdonald M, Yeh TK (1996) Theoretical estimation of crack growth rates in type 304 stainless steel in boiling-water reactor coolant environments. Corrosion 52(10):768–785CrossRef Macdonald DD, Lu PC, Urquidi-Macdonald M, Yeh TK (1996) Theoretical estimation of crack growth rates in type 304 stainless steel in boiling-water reactor coolant environments. Corrosion 52(10):768–785CrossRef
75.
Zurück zum Zitat Vankeerberghen M, Macdonald DD (2002) Predicting crack growth rate vs. temperature behaviour of type 304 stainless steel in dilute sulphuric acid solutions. Corros Sci 44(7):1425–1441CrossRef Vankeerberghen M, Macdonald DD (2002) Predicting crack growth rate vs. temperature behaviour of type 304 stainless steel in dilute sulphuric acid solutions. Corros Sci 44(7):1425–1441CrossRef
76.
Zurück zum Zitat Lee SK, Lv P, Macdonald DD (2013) Customization of the CEFM for predicting stress corrosion cracking in lightly sensitized Al-Mg alloys in marine applications. J Solid State Electrochem 17(8):2319–2332CrossRef Lee SK, Lv P, Macdonald DD (2013) Customization of the CEFM for predicting stress corrosion cracking in lightly sensitized Al-Mg alloys in marine applications. J Solid State Electrochem 17(8):2319–2332CrossRef
77.
Zurück zum Zitat Liu S, Macdonald DD (2002) Fracture of AISI 4340 steel in concentrated sodium hydroxide solution. Corrosion 58(10):835–845CrossRef Liu S, Macdonald DD (2002) Fracture of AISI 4340 steel in concentrated sodium hydroxide solution. Corrosion 58(10):835–845CrossRef
78.
Zurück zum Zitat Maeng WY, Macdonald DD (2008) The effect of acetic acid on the stress corrosion cracking of 3.5NiCrMoV turbine steels in high temperature water. Corros Sci 50(8):2239–2250CrossRef Maeng WY, Macdonald DD (2008) The effect of acetic acid on the stress corrosion cracking of 3.5NiCrMoV turbine steels in high temperature water. Corros Sci 50(8):2239–2250CrossRef
79.
Zurück zum Zitat Shi J, Fekete B, Wang J, Macdonald DD (2018) Customization of the coupled environment fracture model for predicting stress corrosion cracking in Alloy 600 in PWR environment. Corros Sci 139:58–67CrossRef Shi J, Fekete B, Wang J, Macdonald DD (2018) Customization of the coupled environment fracture model for predicting stress corrosion cracking in Alloy 600 in PWR environment. Corros Sci 139:58–67CrossRef
80.
Zurück zum Zitat Engelhardt GR, Urquidi-Macdonald M, Macdonald DD (1997) A simplified method for estimating corrosion cavity growth rates. Corros Sci 39(3):419–441CrossRef Engelhardt GR, Urquidi-Macdonald M, Macdonald DD (1997) A simplified method for estimating corrosion cavity growth rates. Corros Sci 39(3):419–441CrossRef
81.
Zurück zum Zitat Engelhardt GR, Macdonald DD (2010) Modelling the crack propagation rate for corrosion fatigue at high frequency of applied stress. Corros Sci 52(4):1115–1122CrossRef Engelhardt GR, Macdonald DD (2010) Modelling the crack propagation rate for corrosion fatigue at high frequency of applied stress. Corros Sci 52(4):1115–1122CrossRef
82.
Zurück zum Zitat Engelhardt GR, Macdonald DD, Millett PJ (1999) Transport processes in steam generator crevices-I. General corrosion model. Corros Sci 41(11):2165–2190CrossRef Engelhardt GR, Macdonald DD, Millett PJ (1999) Transport processes in steam generator crevices-I. General corrosion model. Corros Sci 41(11):2165–2190CrossRef
83.
Zurück zum Zitat Engelhardt GR, Macdonald DD, Millett PJ (1999) Transport processes in steam generator crevices. II. A simplified method for estimating impurity accumulation rates. Corros Sci 41(11):2191–2211CrossRef Engelhardt GR, Macdonald DD, Millett PJ (1999) Transport processes in steam generator crevices. II. A simplified method for estimating impurity accumulation rates. Corros Sci 41(11):2191–2211CrossRef
84.
Zurück zum Zitat Lee SK, Kramer D, Macdonald DD (2014) On the shape of stress corrosion cracks in sensitized type 304 SS in Boiling Water Reactor primary coolant piping at 288°C. J Nucl Mater 454(1–3):359–372CrossRef Lee SK, Kramer D, Macdonald DD (2014) On the shape of stress corrosion cracks in sensitized type 304 SS in Boiling Water Reactor primary coolant piping at 288°C. J Nucl Mater 454(1–3):359–372CrossRef
85.
Zurück zum Zitat Macdonald DD (1981) Redox potential measurements in high temperature aqueous systems. J Electrochem Soc 128(2):250–257CrossRef Macdonald DD (1981) Redox potential measurements in high temperature aqueous systems. J Electrochem Soc 128(2):250–257CrossRef
86.
Zurück zum Zitat Andresen PL, Ford FP (1996) Response to “On the modeling of stress corrosion cracking of iron and nickel base alloys in high temperature aqueous environments”. Corros Sci 38(6):1011–1016CrossRef Andresen PL, Ford FP (1996) Response to “On the modeling of stress corrosion cracking of iron and nickel base alloys in high temperature aqueous environments”. Corros Sci 38(6):1011–1016CrossRef
87.
Zurück zum Zitat Macdonald DD (1997) Clarification of issues raised by P.L. Andresen and F.P. Ford in their response to “On the modeling of stress corrosion cracking of iron and nickel base alloys in high temperature aqueous environments”. Corros Sci 39(8):1487–1490CrossRef Macdonald DD (1997) Clarification of issues raised by P.L. Andresen and F.P. Ford in their response to “On the modeling of stress corrosion cracking of iron and nickel base alloys in high temperature aqueous environments”. Corros Sci 39(8):1487–1490CrossRef
88.
Zurück zum Zitat Galvele JR (1986) Enhanced surface mobility as the cause of stress corrosion cracking. J Electrochem Soc 113:953–954CrossRef Galvele JR (1986) Enhanced surface mobility as the cause of stress corrosion cracking. J Electrochem Soc 113:953–954CrossRef
89.
Zurück zum Zitat Galvele JR (1987) A stress corrosion cracking mechanism based on surface mobility. Corros Sci 27(1):1–33CrossRef Galvele JR (1987) A stress corrosion cracking mechanism based on surface mobility. Corros Sci 27(1):1–33CrossRef
90.
Zurück zum Zitat Galvele JR (1993) Surface mobility mechanism of stress-corrosion cracking. Corros Sci 35(1):419–434CrossRef Galvele JR (1993) Surface mobility mechanism of stress-corrosion cracking. Corros Sci 35(1):419–434CrossRef
91.
Zurück zum Zitat Galvele JR (1996) Application of the surface-mobility stress corrosion cracking mechanism to nuclear materials. J Nucl Mater 229:139–148CrossRef Galvele JR (1996) Application of the surface-mobility stress corrosion cracking mechanism to nuclear materials. J Nucl Mater 229:139–148CrossRef
92.
Zurück zum Zitat Galvele JR (2000) Recent developments in the surface-mobility stress-corrosion-cracking mechanism. Electrochim Acta 45(21):3537–3541CrossRef Galvele JR (2000) Recent developments in the surface-mobility stress-corrosion-cracking mechanism. Electrochim Acta 45(21):3537–3541CrossRef
93.
Zurück zum Zitat Galvele JR (2004) Reply to E.M. Gutman’s: “Comments on the “Stress corrosion cracking of zirconium and zircaloy-4 in halide aqueous solutions” by S.B. Farina, G.S. Duffo, J.R. Galvele”. Corros Sci 46(7):1807–1812CrossRef Galvele JR (2004) Reply to E.M. Gutman’s: “Comments on the “Stress corrosion cracking of zirconium and zircaloy-4 in halide aqueous solutions” by S.B. Farina, G.S. Duffo, J.R. Galvele”. Corros Sci 46(7):1807–1812CrossRef
94.
Zurück zum Zitat Sieradzki K, Friedersdorf FJ (1994) Notes on the surface mobility mechanism of stress-corrosion cracking. Corros Sci 36(4):669–675CrossRef Sieradzki K, Friedersdorf FJ (1994) Notes on the surface mobility mechanism of stress-corrosion cracking. Corros Sci 36(4):669–675CrossRef
95.
Zurück zum Zitat Galvele JR (1994) Comments on “notes on the surface mobility mechanism of stress-corrosion cracking”, by K. Sieradzki and F. J. Friedersdorf. Corros Sci 36(5):901–910CrossRef Galvele JR (1994) Comments on “notes on the surface mobility mechanism of stress-corrosion cracking”, by K. Sieradzki and F. J. Friedersdorf. Corros Sci 36(5):901–910CrossRef
96.
Zurück zum Zitat Gutman EM (2004) Comments on the “Stress corrosion cracking of zirconium and zircaloy-4 in halide aqueous solutions” by S.B. Farina, G.S. Duffo, J.R. Galvele. Corros Sci 46(7):1801–1806CrossRef Gutman EM (2004) Comments on the “Stress corrosion cracking of zirconium and zircaloy-4 in halide aqueous solutions” by S.B. Farina, G.S. Duffo, J.R. Galvele. Corros Sci 46(7):1801–1806CrossRef
97.
Zurück zum Zitat Zhu X, Zi G (2017) A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage. Constr Build Mater 137:330–344CrossRef Zhu X, Zi G (2017) A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage. Constr Build Mater 137:330–344CrossRef
98.
Zurück zum Zitat Satoh T, Nakazato T, Moriya S, Suzuki S, Shoji T (1998) Quantitative prediction of environmentally assisted cracking based on a theoretical model and computer simulation. J Nucl Mater 258–263(4):2054–2058CrossRef Satoh T, Nakazato T, Moriya S, Suzuki S, Shoji T (1998) Quantitative prediction of environmentally assisted cracking based on a theoretical model and computer simulation. J Nucl Mater 258–263(4):2054–2058CrossRef
99.
Zurück zum Zitat Xue H, Shoji T (2007) Quantitative prediction of EAC crack growth rate of sensitized type 304 stainless steel in boiling water reactor environments based on EPFEM. J Press Vess-T ASME 129(3):460–467CrossRef Xue H, Shoji T (2007) Quantitative prediction of EAC crack growth rate of sensitized type 304 stainless steel in boiling water reactor environments based on EPFEM. J Press Vess-T ASME 129(3):460–467CrossRef
100.
Zurück zum Zitat Xue H, Sato Y, Shoji T (2009) Quantitative estimation of the growth of environmentally assisted cracks at flaws in light water reactor components. J Press Vess-T ASME 131(1):011404-1–011404-9 Xue H, Sato Y, Shoji T (2009) Quantitative estimation of the growth of environmentally assisted cracks at flaws in light water reactor components. J Press Vess-T ASME 131(1):011404-1–011404-9
101.
Zurück zum Zitat Xue H, Li Z, Lu Z, Shoji T (2011) The effect of a single tensile overload on stress corrosion cracking growth of stainless steel in a light water reactor environment. Nucl Eng Des 241(3):731–738CrossRef Xue H, Li Z, Lu Z, Shoji T (2011) The effect of a single tensile overload on stress corrosion cracking growth of stainless steel in a light water reactor environment. Nucl Eng Des 241(3):731–738CrossRef
102.
Zurück zum Zitat Yang F, Xue H, Zhao L, Fang X (2014) Effects of stress intensity factor on electrochemical corrosion potential at crack tip of nickel-based alloys in high temperature water environments. Rare Metal Mat Eng 43(3):513–518CrossRef Yang F, Xue H, Zhao L, Fang X (2014) Effects of stress intensity factor on electrochemical corrosion potential at crack tip of nickel-based alloys in high temperature water environments. Rare Metal Mat Eng 43(3):513–518CrossRef
103.
Zurück zum Zitat Xue H, Li Y (2016) Micro-mechanical state at tip of environmentally assisted cracking in nickel-based alloy. Rare Metal Mat Eng 45(3):537–541CrossRef Xue H, Li Y (2016) Micro-mechanical state at tip of environmentally assisted cracking in nickel-based alloy. Rare Metal Mat Eng 45(3):537–541CrossRef
104.
Zurück zum Zitat Yang F, Xue H, Zhao L, Fang X (2016) Influence of nickel-based alloys’ mechanical properties on mechanochemical effect at crack tip in high temperature water environments. Rare Metal Mat Eng 45(7):1641–1646CrossRef Yang F, Xue H, Zhao L, Fang X (2016) Influence of nickel-based alloys’ mechanical properties on mechanochemical effect at crack tip in high temperature water environments. Rare Metal Mat Eng 45(7):1641–1646CrossRef
105.
Zurück zum Zitat Zhao L, Cui Y, Yang F, Xue H (2018) Analysis on crack driving force at stress corrosion cracking tip induced by scratch in nickel-based alloy. Rare Metal Mat Eng 47(5):1399–1405CrossRef Zhao L, Cui Y, Yang F, Xue H (2018) Analysis on crack driving force at stress corrosion cracking tip induced by scratch in nickel-based alloy. Rare Metal Mat Eng 47(5):1399–1405CrossRef
106.
Zurück zum Zitat Jivkov AP, Stahle P (2002) Strain-driven corrosion crack growth: a pilot study of intergranular stress corrosion cracking. Eng Fract Mech 69(18):2095–2111CrossRef Jivkov AP, Stahle P (2002) Strain-driven corrosion crack growth: a pilot study of intergranular stress corrosion cracking. Eng Fract Mech 69(18):2095–2111CrossRef
107.
Zurück zum Zitat Jivkov AP (2002) Strain-assisted corrosion cracking and growth rate inhibitors. Ph.D. Dissertation, Malmö University Jivkov AP (2002) Strain-assisted corrosion cracking and growth rate inhibitors. Ph.D. Dissertation, Malmö University
108.
Zurück zum Zitat Jivkov AP (2004) Strain-induced passivity breakdown in corrosion crack initiation. Theor Appl Fract Mec 42:43–52CrossRef Jivkov AP (2004) Strain-induced passivity breakdown in corrosion crack initiation. Theor Appl Fract Mec 42:43–52CrossRef
109.
Zurück zum Zitat Jivkov AP (2003) Evolution of fatigue crack corrosion from surface irregularities. Theor Appl Fract Mec 40(1):45–54CrossRef Jivkov AP (2003) Evolution of fatigue crack corrosion from surface irregularities. Theor Appl Fract Mec 40(1):45–54CrossRef
110.
Zurück zum Zitat Jivkov AP, Stevens NPC, Marrow TJ (2006) A two-dimensional mesoscale model for intergranular stress corrosion crack propagation. Acta Mater 54(13):3493–3501CrossRef Jivkov AP, Stevens NPC, Marrow TJ (2006) A two-dimensional mesoscale model for intergranular stress corrosion crack propagation. Acta Mater 54(13):3493–3501CrossRef
111.
Zurück zum Zitat Jivkov AP, Stevens NPC, Marrow TJ (2006) A three-dimensional computational model for intergranular cracking. Comput Mater Sci 38(2):442–453CrossRef Jivkov AP, Stevens NPC, Marrow TJ (2006) A three-dimensional computational model for intergranular cracking. Comput Mater Sci 38(2):442–453CrossRef
112.
Zurück zum Zitat Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Inter J Numer Math Eng 45(5):601–620CrossRef Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Inter J Numer Math Eng 45(5):601–620CrossRef
113.
Zurück zum Zitat Lee SJ, Chang YS (2015) Evaluation of primary water stress corrosion cracking growth rates by using the extended finite element method. Nucl Eng Technol 47(7):895–906CrossRef Lee SJ, Chang YS (2015) Evaluation of primary water stress corrosion cracking growth rates by using the extended finite element method. Nucl Eng Technol 47(7):895–906CrossRef
114.
Zurück zum Zitat Lee H, Kang SJ, Choi JB, Kim MK (2017) An extended finite element method-based representative model for primary water stress corrosion cracking of a control rod driving mechanism penetration nozzle. Fatigue Fract Eng Mater Struct 41(1):1–8 Lee H, Kang SJ, Choi JB, Kim MK (2017) An extended finite element method-based representative model for primary water stress corrosion cracking of a control rod driving mechanism penetration nozzle. Fatigue Fract Eng Mater Struct 41(1):1–8
115.
Zurück zum Zitat Kang SJ, Lee H, Choi JB, Kim MK (2017) PWSCC initiation and propagation in a CRDM penetration nozzle. J Mech Sci Technol 31(11):5387–5395CrossRef Kang SJ, Lee H, Choi JB, Kim MK (2017) PWSCC initiation and propagation in a CRDM penetration nozzle. J Mech Sci Technol 31(11):5387–5395CrossRef
116.
Zurück zum Zitat Saxena S, Ramakrishnan N (2007) A comparison of micro, meso and macroscale FEM analysis of ductile fracture in a CT specimen (mode I). Comput Mater Sci 39(1):1–7CrossRef Saxena S, Ramakrishnan N (2007) A comparison of micro, meso and macroscale FEM analysis of ductile fracture in a CT specimen (mode I). Comput Mater Sci 39(1):1–7CrossRef
117.
Zurück zum Zitat Ersland CH, Thaulow C, Vatne IR, Østby E (2012) Atomistic modeling of micromechanisms and T-stress effects in fracture of iron. Eng Fract Mech 79:180–190CrossRef Ersland CH, Thaulow C, Vatne IR, Østby E (2012) Atomistic modeling of micromechanisms and T-stress effects in fracture of iron. Eng Fract Mech 79:180–190CrossRef
118.
Zurück zum Zitat Bitzek E, Kermode JR, Gumbsch P (2015) Atomistic aspects of fracture. Int J Fract 191(1–2):13–30CrossRef Bitzek E, Kermode JR, Gumbsch P (2015) Atomistic aspects of fracture. Int J Fract 191(1–2):13–30CrossRef
119.
Zurück zum Zitat Liu X, Hwang W, Park J, Van D, Chang Y, Lee SH, Kim S-Y, Han S, Lee B (2018) Towards the multiscale nature of stress corrosion cracking. Nucl Eng Technol 50(1):1–17CrossRef Liu X, Hwang W, Park J, Van D, Chang Y, Lee SH, Kim S-Y, Han S, Lee B (2018) Towards the multiscale nature of stress corrosion cracking. Nucl Eng Technol 50(1):1–17CrossRef
120.
Zurück zum Zitat Xiao SP, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Method Appl M 193(17–20):1645–1669CrossRef Xiao SP, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Method Appl M 193(17–20):1645–1669CrossRef
121.
Zurück zum Zitat Xu T, Stewart R, Fan J, Zeng X, Yao A (2016) Bridging crack propagation at the atomistic and mesoscopic scale for BCC-Fe with hybrid multiscale methods. Eng Fract Mech 155:166–182CrossRef Xu T, Stewart R, Fan J, Zeng X, Yao A (2016) Bridging crack propagation at the atomistic and mesoscopic scale for BCC-Fe with hybrid multiscale methods. Eng Fract Mech 155:166–182CrossRef
122.
Zurück zum Zitat Das NK, Tirtom I, Shoji T (2010) A multiscale modelling study of Ni–Cr crack tip initial stage oxidation at different stress intensities. Mater Chem Phys 122(2–3):336–342CrossRef Das NK, Tirtom I, Shoji T (2010) A multiscale modelling study of Ni–Cr crack tip initial stage oxidation at different stress intensities. Mater Chem Phys 122(2–3):336–342CrossRef
123.
Zurück zum Zitat Das NK, Suzuki K, Takeda Y, Ogawa K, Shoji T (2008) Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe-Cr surfaces. Corros Sci 50(6):1701–1706CrossRef Das NK, Suzuki K, Takeda Y, Ogawa K, Shoji T (2008) Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe-Cr surfaces. Corros Sci 50(6):1701–1706CrossRef
124.
Zurück zum Zitat Das NK, Shoji T (2011) A density functional study of atomic oxygen and water molecule adsorption on Ni (111) and chromium-substituted Ni (111) surfaces. Appl Surf Sci 258(1):442–447CrossRef Das NK, Shoji T (2011) A density functional study of atomic oxygen and water molecule adsorption on Ni (111) and chromium-substituted Ni (111) surfaces. Appl Surf Sci 258(1):442–447CrossRef
125.
Zurück zum Zitat Das NK, Shoji T (2013) Early stage oxidation of Ni-Cr binary alloy (111), (110) and (100) surfaces: a combined density functional and quantum chemical molecular dynamics study. Corros Sci 73:18–31CrossRef Das NK, Shoji T (2013) Early stage oxidation of Ni-Cr binary alloy (111), (110) and (100) surfaces: a combined density functional and quantum chemical molecular dynamics study. Corros Sci 73:18–31CrossRef
126.
Zurück zum Zitat Wei X, Dong C, Chen Z, Xiao K, Li X (2016) The effect of hydrogen on the evolution of intergranular cracking: a cross-scale study using first-principles and cohesive finite element methods. RSC Adv 6(33):27282–27292CrossRef Wei X, Dong C, Chen Z, Xiao K, Li X (2016) The effect of hydrogen on the evolution of intergranular cracking: a cross-scale study using first-principles and cohesive finite element methods. RSC Adv 6(33):27282–27292CrossRef
Metadaten
Titel
Modeling of stress corrosion cracking growth rates for key structural materials of nuclear power plant
verfasst von
Zhenhua Li
Yonghao Lu
Xinyu Wang
Publikationsdatum
06.09.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03968-w

Weitere Artikel der Ausgabe 2/2020

Journal of Materials Science 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.