Skip to main content

2018 | OriginalPaper | Buchkapitel

7. Modeling of Wind Instruments

verfasst von : Benoit Fabre, Joël Gilbert, Avraham Hirschberg

Erschienen in: Springer Handbook of Systematic Musicology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wind instruments driven by a constant pressure air reservoir produce a steady oscillation and associated sound waves. This self-sustained oscillation can be explained in terms of a lumped element feedback loop composed of an exciter, such as a reed-valve or an unstable jet, coupled to an acoustical air column resonator, usually a pipe. In this chapter this simplified model is used to classify wind instruments. Five prototype wind instruments are selected: the clarinet, the oboe, the harmonica, the trombone and the modern transverse flute. The elements of this feedback loop are described for each instrument. In simplified models the player is reduced to the role of a pressure reservoir. The player's control, also called the embouchure is however essential. This aspect is discussed briefly for each instrument.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
7.1
Zurück zum Zitat A. Baines: Woodwind Instruments and Their History (Dover, New York 1991) A. Baines: Woodwind Instruments and Their History (Dover, New York 1991)
7.2
Zurück zum Zitat H. Helmholtz: On the Sensation of Tone (Dover, New York 1954) H. Helmholtz: On the Sensation of Tone (Dover, New York 1954)
7.3
Zurück zum Zitat J.W. Strutt (Lord Rayleigh): The Theory of Sound (Dover, New York 1945) J.W. Strutt (Lord Rayleigh): The Theory of Sound (Dover, New York 1945)
7.4
Zurück zum Zitat H. Bouasse: Instruments a Vent (Librairie Delagrave, Paris 1929/30) H. Bouasse: Instruments a Vent (Librairie Delagrave, Paris 1929/30)
7.5
Zurück zum Zitat J. Backus: The Acoustical Foundation of Music (Norton, New York 1969) J. Backus: The Acoustical Foundation of Music (Norton, New York 1969)
7.6
Zurück zum Zitat C.J. Nederveen: Acoustical Aspects of Woodwind Instruments (Northern Illinois Univ. Press, DeKalb 1998) C.J. Nederveen: Acoustical Aspects of Woodwind Instruments (Northern Illinois Univ. Press, DeKalb 1998)
7.7
Zurück zum Zitat M. Campbell, C. Greated: The Musician’s Guide to Acoustics (Schirmer Book, New York 1987) M. Campbell, C. Greated: The Musician’s Guide to Acoustics (Schirmer Book, New York 1987)
7.8
Zurück zum Zitat N.H. Fletcher, T. Rossing: The Physics of Musical Instruments, 2nd edn. (Springer, New York 1998)CrossRef N.H. Fletcher, T. Rossing: The Physics of Musical Instruments, 2nd edn. (Springer, New York 1998)CrossRef
7.9
Zurück zum Zitat A. Hirschberg, J. Kergomard, G. Weinreich: Mechanics of Musical Instruments (Springer, Wien 1995)MATH A. Hirschberg, J. Kergomard, G. Weinreich: Mechanics of Musical Instruments (Springer, Wien 1995)MATH
7.10
Zurück zum Zitat L. Henrique: Acustica Musical, 2nd edn. (Fundacao Calouste Gulbenkian, Lisboa 2007) L. Henrique: Acustica Musical, 2nd edn. (Fundacao Calouste Gulbenkian, Lisboa 2007)
7.11
Zurück zum Zitat A. Chaigne, J. Kergomard: Acoustics of Musical Instruments (Springer, New York 2016)CrossRef A. Chaigne, J. Kergomard: Acoustics of Musical Instruments (Springer, New York 2016)CrossRef
7.12
Zurück zum Zitat B. Fabre, J. Gilbert, A. Hirschberg, X. Pelorson: Aeroacoustics of musical instruments, Ann. Rev. Fluid Mech. 44, 1–25 (2012)MathSciNetCrossRef B. Fabre, J. Gilbert, A. Hirschberg, X. Pelorson: Aeroacoustics of musical instruments, Ann. Rev. Fluid Mech. 44, 1–25 (2012)MathSciNetCrossRef
7.13
Zurück zum Zitat P. Taillard, J. Kergomard, F. Laloe: Iterated maps for clarinet-like systems, Nonlinear Dyn 62, 253–271 (2010)MathSciNetCrossRef P. Taillard, J. Kergomard, F. Laloe: Iterated maps for clarinet-like systems, Nonlinear Dyn 62, 253–271 (2010)MathSciNetCrossRef
7.14
Zurück zum Zitat R. Bader: Nonlinearities and Synchronization in Musical Acoustics and Music Psychology (Springer, Berlin, Heidelberg 2013)CrossRef R. Bader: Nonlinearities and Synchronization in Musical Acoustics and Music Psychology (Springer, Berlin, Heidelberg 2013)CrossRef
7.15
Zurück zum Zitat M. Campbell: Brass instruments as we know them today, Acta Acust. United Acust. 90(4), 600–610 (2004) M. Campbell: Brass instruments as we know them today, Acta Acust. United Acust. 90(4), 600–610 (2004)
7.16
Zurück zum Zitat T. Boehm: The Flute and Flute-Playing (Dover, New York 1964) T. Boehm: The Flute and Flute-Playing (Dover, New York 1964)
7.17
Zurück zum Zitat J.W. Coltman: Resonance and sounding frequencies of the flute, J. Acoust. Soc. Am. 40, 99–107 (1966)CrossRef J.W. Coltman: Resonance and sounding frequencies of the flute, J. Acoust. Soc. Am. 40, 99–107 (1966)CrossRef
7.18
Zurück zum Zitat J.P. Dalmont, C.J. Nederveen, V. Dubos, S. Olivier, V. Méserette, E. te Sligte: Experimental determination of the equivalent circuit of an open side hole: Linear and non-linear behavior, Acta Acust. United Acust. 88, 567–575 (2002) J.P. Dalmont, C.J. Nederveen, V. Dubos, S. Olivier, V. Méserette, E. te Sligte: Experimental determination of the equivalent circuit of an open side hole: Linear and non-linear behavior, Acta Acust. United Acust. 88, 567–575 (2002)
7.19
Zurück zum Zitat J.P. Dalmont, J. Gilbert, S. Olivier: Non-linear characteristics of single reed instruments: Quasi-static volume flow and reed opening measurements, J. Acoust. Soc. Am. 114, 2253–2262 (2003)CrossRef J.P. Dalmont, J. Gilbert, S. Olivier: Non-linear characteristics of single reed instruments: Quasi-static volume flow and reed opening measurements, J. Acoust. Soc. Am. 114, 2253–2262 (2003)CrossRef
7.20
Zurück zum Zitat A. da Silva, G. Scavone, M. van Walstijn: Numerical simulations of fluid-structure interaction in single-reed mouthpieces, J. Acoust. Soc. Am. 122, 1798–1810 (2007)CrossRef A. da Silva, G. Scavone, M. van Walstijn: Numerical simulations of fluid-structure interaction in single-reed mouthpieces, J. Acoust. Soc. Am. 122, 1798–1810 (2007)CrossRef
7.21
Zurück zum Zitat V. Lorenzoni, D. Ragni: Experimental investigation of the flow inside a saxophone mouthpiece by particle image velocimetry, J. Acoust. Soc. Am. 131, 716–721 (2012)CrossRef V. Lorenzoni, D. Ragni: Experimental investigation of the flow inside a saxophone mouthpiece by particle image velocimetry, J. Acoust. Soc. Am. 131, 716–721 (2012)CrossRef
7.22
Zurück zum Zitat M. Deverge, X. Pelorson, C. Vilain, P.Y. Lagrée, F. Chentouf, J. Willems, A. Hirschberg: Influence of collision on the flow through in-vitro rigid models of the vocal folds, J. Acoust. Soc. Am. 114, 3354–3362 (2003)CrossRef M. Deverge, X. Pelorson, C. Vilain, P.Y. Lagrée, F. Chentouf, J. Willems, A. Hirschberg: Influence of collision on the flow through in-vitro rigid models of the vocal folds, J. Acoust. Soc. Am. 114, 3354–3362 (2003)CrossRef
7.23
Zurück zum Zitat P. Guillemain: Some roles of the vocal tract in clarinet breath attacks: Natural sounds analysis and model-based synthesis, J. Acoust. Soc. Am. 121, 2396–2406 (2007)CrossRef P. Guillemain: Some roles of the vocal tract in clarinet breath attacks: Natural sounds analysis and model-based synthesis, J. Acoust. Soc. Am. 121, 2396–2406 (2007)CrossRef
7.24
Zurück zum Zitat G.P. Scavone, A. Lefebvre, A.R. da Silva: Measurement of vocal-tract influence during saxophone performance, J. Acoust. Soc. Am. 123, 2391–2400 (2008)CrossRef G.P. Scavone, A. Lefebvre, A.R. da Silva: Measurement of vocal-tract influence during saxophone performance, J. Acoust. Soc. Am. 123, 2391–2400 (2008)CrossRef
7.25
Zurück zum Zitat J. Chen, J. Smith, J. Wolfe: Pitch bending and glissandi on the clarinet: Roles of the vocal tract and partial tone hole closure, J. Acoust. Soc. Am. 126, 1511–1520 (2009)CrossRef J. Chen, J. Smith, J. Wolfe: Pitch bending and glissandi on the clarinet: Roles of the vocal tract and partial tone hole closure, J. Acoust. Soc. Am. 126, 1511–1520 (2009)CrossRef
7.26
Zurück zum Zitat J. Kergomard, X. Meynial: Systèmes micro-intervalles pour les instruments de musique à vent a trous lateraux, J. Acoust. 1, 255–270 (1988) J. Kergomard, X. Meynial: Systèmes micro-intervalles pour les instruments de musique à vent a trous lateraux, J. Acoust. 1, 255–270 (1988)
7.27
Zurück zum Zitat J. Gilbert, J. Kergomard, E. Ngoya: Calculation of the steady-state oscillation of a clarinet using the harmonic balance technique, J. Acoust. Soc. Am. 86, 35–41 (1989)CrossRef J. Gilbert, J. Kergomard, E. Ngoya: Calculation of the steady-state oscillation of a clarinet using the harmonic balance technique, J. Acoust. Soc. Am. 86, 35–41 (1989)CrossRef
7.28
Zurück zum Zitat J. Kergomard, S. Olivier, J. Gilbert: Calculation of the spectrum of the self-sustained oscillators using a variable truncation method: Application to cylindrical reed instruments, Acustica 86, 685–703 (2000) J. Kergomard, S. Olivier, J. Gilbert: Calculation of the spectrum of the self-sustained oscillators using a variable truncation method: Application to cylindrical reed instruments, Acustica 86, 685–703 (2000)
7.29
Zurück zum Zitat M.E. McIntyre, R.T. Schumacher, J. Woodhouse: On the oscillations of musical instruments, J. Acoust. Soc. Am. 74, 1325–1345 (1983)CrossRef M.E. McIntyre, R.T. Schumacher, J. Woodhouse: On the oscillations of musical instruments, J. Acoust. Soc. Am. 74, 1325–1345 (1983)CrossRef
7.30
Zurück zum Zitat E. Ducasse: Modélisation d’instruments de musique pour la synthèse sonore: Application aux instruments à vent, Sup. J. Phys. Colloq. Phys. 51-C2, 837–840 (1990) E. Ducasse: Modélisation d’instruments de musique pour la synthèse sonore: Application aux instruments à vent, Sup. J. Phys. Colloq. Phys. 51-C2, 837–840 (1990)
7.31
Zurück zum Zitat J.O. Smith III: Physical modeling synthesis update, Comput. Music J. 20, 44–56 (1996)CrossRef J.O. Smith III: Physical modeling synthesis update, Comput. Music J. 20, 44–56 (1996)CrossRef
7.32
Zurück zum Zitat V. Välimäki: Discrete-time modeling of acoustic tubes using fractional delay filters, Ph.D. Thesis (Helsinki University of Technology, Helsinki 1995) V. Välimäki: Discrete-time modeling of acoustic tubes using fractional delay filters, Ph.D. Thesis (Helsinki University of Technology, Helsinki 1995)
7.33
Zurück zum Zitat C. Vergez, P. Tisserand: The BRASS project, from physical models to virtual musical instruments. In: CMMR Third Int. Symp. Play. Issues (Computer Music Modelling and Retrivial) (2005) pp. 1–10 C. Vergez, P. Tisserand: The BRASS project, from physical models to virtual musical instruments. In: CMMR Third Int. Symp. Play. Issues (Computer Music Modelling and Retrivial) (2005) pp. 1–10
7.34
Zurück zum Zitat P. Guillemain, J. Kergomard, T. Voinier: Real-time synthesis of wind instruments using nonlinear physical models, J. Acoust. Soc. Am. 105, 444–455 (2005) P. Guillemain, J. Kergomard, T. Voinier: Real-time synthesis of wind instruments using nonlinear physical models, J. Acoust. Soc. Am. 105, 444–455 (2005)
7.35
Zurück zum Zitat E. Mandaras, V. Gibiat, C. Besnainou, N. Grand: Caractérisation mécanique des anches simples d’instruments à vent, Suppl. J. Phys. III 4-C5, 633–636 (1994) E. Mandaras, V. Gibiat, C. Besnainou, N. Grand: Caractérisation mécanique des anches simples d’instruments à vent, Suppl. J. Phys. III 4-C5, 633–636 (1994)
7.36
Zurück zum Zitat T.D. Rossing, F.R. Moore, P.A. Wheeler: The Science of Sound, 3rd edn. (Person, Harlow 2001) T.D. Rossing, F.R. Moore, P.A. Wheeler: The Science of Sound, 3rd edn. (Person, Harlow 2001)
7.37
Zurück zum Zitat M. Castellengo: Acoustical analysis of initial transients in flute like instruments, Acta Acust. United Acust. 85, 387–400 (1999) M. Castellengo: Acoustical analysis of initial transients in flute like instruments, Acta Acust. United Acust. 85, 387–400 (1999)
7.38
Zurück zum Zitat A. Miklos, J. Angster: Properties of the sound of flue organ pipes, Acta Acust. United Acust. 86, 611–622 (2000) A. Miklos, J. Angster: Properties of the sound of flue organ pipes, Acta Acust. United Acust. 86, 611–622 (2000)
7.39
Zurück zum Zitat A.H. Benade: Fundamentals of Musical Acoustics (Oxford University Press, Oxford 1976) A.H. Benade: Fundamentals of Musical Acoustics (Oxford University Press, Oxford 1976)
7.40
Zurück zum Zitat E. Moers, J. Kergomard: On the cutoff frequency of clarinet-like instruments. Geometrical versus acoustical regularity, Acta Acust. United Acust. 97, 984–996 (2011)CrossRef E. Moers, J. Kergomard: On the cutoff frequency of clarinet-like instruments. Geometrical versus acoustical regularity, Acta Acust. United Acust. 97, 984–996 (2011)CrossRef
7.41
Zurück zum Zitat U. Ingard, H. Ising: Acoustic nonlinearity of an orifice, J. Acoust. Soc. Am. 42, 6–17 (1967)CrossRef U. Ingard, H. Ising: Acoustic nonlinearity of an orifice, J. Acoust. Soc. Am. 42, 6–17 (1967)CrossRef
7.42
Zurück zum Zitat J. Buick, M. Atig, D. Skulina, M. Campbell, J.P. Dalmont, J. Gilbert: Investigation of Non-Linear Acoustic Losses at the Open End of a Tube, J. Acoust. Soc. Am. 129, 1261–1272 (2011)CrossRef J. Buick, M. Atig, D. Skulina, M. Campbell, J.P. Dalmont, J. Gilbert: Investigation of Non-Linear Acoustic Losses at the Open End of a Tube, J. Acoust. Soc. Am. 129, 1261–1272 (2011)CrossRef
7.43
Zurück zum Zitat D. Noreland: An experimental study of temperature variations inside a clarinet. In: In: Proc. Stockh. Music Acoust. Conf (KTH, Stockholm 2013) pp. 446–450 D. Noreland: An experimental study of temperature variations inside a clarinet. In: In: Proc. Stockh. Music Acoust. Conf (KTH, Stockholm 2013) pp. 446–450
7.44
Zurück zum Zitat T. Grothe: Experimental Investigation of Bassoon Acoustics, Ph.D. Thesis (Technische Universität Dresden, Dresden 2014) T. Grothe: Experimental Investigation of Bassoon Acoustics, Ph.D. Thesis (Technische Universität Dresden, Dresden 2014)
7.45
Zurück zum Zitat A. Almeida, C. Vergez, R. Causse: Quasi-static non-linear characteristics of double-reed instruments, J. Acoust. Soc. Am. 121, 536–546 (2007)CrossRef A. Almeida, C. Vergez, R. Causse: Quasi-static non-linear characteristics of double-reed instruments, J. Acoust. Soc. Am. 121, 536–546 (2007)CrossRef
7.46
Zurück zum Zitat N. Grand, J. Gilbert, F. Laloe: Oscillation threshold of woodwind instruments, Acustica 83, 137–151 (1997)MATH N. Grand, J. Gilbert, F. Laloe: Oscillation threshold of woodwind instruments, Acustica 83, 137–151 (1997)MATH
7.47
Zurück zum Zitat J.P. Dalmont, B. Gazengel, J. Gilbert, J. Kergomard: Some aspects of tuning and clean intonation in reed instruments, Appl. Acoust. 46, 19–60 (1995)CrossRef J.P. Dalmont, B. Gazengel, J. Gilbert, J. Kergomard: Some aspects of tuning and clean intonation in reed instruments, Appl. Acoust. 46, 19–60 (1995)CrossRef
7.48
Zurück zum Zitat A.O. St Hilaire, T.A. Wilson, G.A. Beavers: Aerodynamic excitation of the harmonium reed, J. Fluid Mech. 49, 803–816 (1971)CrossRef A.O. St Hilaire, T.A. Wilson, G.A. Beavers: Aerodynamic excitation of the harmonium reed, J. Fluid Mech. 49, 803–816 (1971)CrossRef
7.49
Zurück zum Zitat D. Ricot, R. Caussé, N. Misdrariis: Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: The example of the accordion reed, J. Acoust. Soc. Am. 117, 826–841 (2005)CrossRef D. Ricot, R. Caussé, N. Misdrariis: Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: The example of the accordion reed, J. Acoust. Soc. Am. 117, 826–841 (2005)CrossRef
7.50
Zurück zum Zitat A.Z. Tarnopolsky, N.H. Fletcher, J.C.S. Lai: Oscillating reed valves: An experimental study, J. Acoust. Soc. Am. 108, 400–406 (2000)CrossRef A.Z. Tarnopolsky, N.H. Fletcher, J.C.S. Lai: Oscillating reed valves: An experimental study, J. Acoust. Soc. Am. 108, 400–406 (2000)CrossRef
7.51
Zurück zum Zitat L. Millot, C. Baumann: A proposal for a minimalModel of free reeds, Acta Acust. United Acust. 93, 122–144 (2007) L. Millot, C. Baumann: A proposal for a minimalModel of free reeds, Acta Acust. United Acust. 93, 122–144 (2007)
7.52
Zurück zum Zitat R. Causse, J. Kergomard, X. Lurton: Input impedance of brass musical instruments – Comparison between experiment and numerical models, J. Acoust. Soc. Am. 75, 241–254 (1984)CrossRef R. Causse, J. Kergomard, X. Lurton: Input impedance of brass musical instruments – Comparison between experiment and numerical models, J. Acoust. Soc. Am. 75, 241–254 (1984)CrossRef
7.53
Zurück zum Zitat J.M. Chen, J. Smith, J. Wolfe: Do trumpet players tune resonances of the vocal tract?, J. Acoust. Soc. Am. 131, 722–727 (2012)CrossRef J.M. Chen, J. Smith, J. Wolfe: Do trumpet players tune resonances of the vocal tract?, J. Acoust. Soc. Am. 131, 722–727 (2012)CrossRef
7.54
Zurück zum Zitat V. Freour, G.P. Scavone: Acoustical interaction between vibrating lips, downstream air column, and upstream airways in trombone performance, J. Acoust. Soc. Am. 134, 3887–3898 (2013)CrossRef V. Freour, G.P. Scavone: Acoustical interaction between vibrating lips, downstream air column, and upstream airways in trombone performance, J. Acoust. Soc. Am. 134, 3887–3898 (2013)CrossRef
7.55
Zurück zum Zitat K. Ishizaka, M. Matsudaira: Fluid Mechanical Considerations of Vocal Cord Vibration (Speech Commun. Res. Lab., Santa Barbara 1972) K. Ishizaka, M. Matsudaira: Fluid Mechanical Considerations of Vocal Cord Vibration (Speech Commun. Res. Lab., Santa Barbara 1972)
7.56
Zurück zum Zitat J. Cullen, J. Gilbert, M. Campbell: Brass instruments linear stability analysis and experiments with an artificial mouth, Acta Acust. United Acust. 86, 704–724 (2000) J. Cullen, J. Gilbert, M. Campbell: Brass instruments linear stability analysis and experiments with an artificial mouth, Acta Acust. United Acust. 86, 704–724 (2000)
7.57
Zurück zum Zitat M. Newton, D.M. Campbell, J. Gilbert: Mechanical response measurements of real and artificial brass players lips, J. Acoust. Soc. Am. 123, EL14–EL20 (2008)CrossRef M. Newton, D.M. Campbell, J. Gilbert: Mechanical response measurements of real and artificial brass players lips, J. Acoust. Soc. Am. 123, EL14–EL20 (2008)CrossRef
7.58
Zurück zum Zitat A. Hirschberg, J. Gilbert, R. Msallam, A.P.J. Wijnands: Shock waves in trombones, J. Acoust. Soc. Am. 99, 1754–1758 (1996)CrossRef A. Hirschberg, J. Gilbert, R. Msallam, A.P.J. Wijnands: Shock waves in trombones, J. Acoust. Soc. Am. 99, 1754–1758 (1996)CrossRef
7.59
Zurück zum Zitat J.W. Beauchamp: Analysis of simultaneous mouthpiece and output waveforms. In: 66th AES Conf., Los Angeles (1980) J.W. Beauchamp: Analysis of simultaneous mouthpiece and output waveforms. In: 66th AES Conf., Los Angeles (1980)
7.60
Zurück zum Zitat A. Myers, R.W. Pyle Jr., J. Gilbert, D.M. Campbell, J.P. Chick, S. Logie: Effects of nonlinear sound propagation on the characteritic timbres of brass insruments, J. Acoust. Soc. Am. 131, 678–688 (2012)CrossRef A. Myers, R.W. Pyle Jr., J. Gilbert, D.M. Campbell, J.P. Chick, S. Logie: Effects of nonlinear sound propagation on the characteritic timbres of brass insruments, J. Acoust. Soc. Am. 131, 678–688 (2012)CrossRef
7.61
Zurück zum Zitat L. Norman, J. Chick, D.M. Campbell, A. Myers, J. Gilbert: Player control of ‘brassiness’ at intermediate dynamic levels in brass instruments, Acta Acust. United Acust. 96, 614–738 (2010)CrossRef L. Norman, J. Chick, D.M. Campbell, A. Myers, J. Gilbert: Player control of ‘brassiness’ at intermediate dynamic levels in brass instruments, Acta Acust. United Acust. 96, 614–738 (2010)CrossRef
7.62
Zurück zum Zitat A. Powell: On the edge tone, J. Acoust. Soc. Am. 33, 395–409 (1961)CrossRef A. Powell: On the edge tone, J. Acoust. Soc. Am. 33, 395–409 (1961)CrossRef
7.63
Zurück zum Zitat J.W. Coltman: Sound radiation from the mouth of an organ pipe, J. Acoust. Soc. Am. 46, 477 (1969)CrossRef J.W. Coltman: Sound radiation from the mouth of an organ pipe, J. Acoust. Soc. Am. 46, 477 (1969)CrossRef
7.64
Zurück zum Zitat M.P. Verge, A. Hirschberg, R. Caussé: Sound production in recorderlike instruments. II A simulation model, J. Acoust. Soc. Am. 101, 2925–2939 (1997)CrossRef M.P. Verge, A. Hirschberg, R. Caussé: Sound production in recorderlike instruments. II A simulation model, J. Acoust. Soc. Am. 101, 2925–2939 (1997)CrossRef
7.65
Zurück zum Zitat S. Dequand, J.F.H. Willems, M. Leroux, R. Vullings, M. van Weert, C. Thieulot: Simplified models of flute instruments: Influence of mouth geometry on the sound source, J. Acoust. Soc. Am. 113, 1724–1735 (2003)CrossRef S. Dequand, J.F.H. Willems, M. Leroux, R. Vullings, M. van Weert, C. Thieulot: Simplified models of flute instruments: Influence of mouth geometry on the sound source, J. Acoust. Soc. Am. 113, 1724–1735 (2003)CrossRef
7.66
Zurück zum Zitat J. Wolfe, J. Smith, J. Tann, N.H. Fletcher: Acoustic impedance spectra of classical and modern flutes, J. Sound Vib. 243, 127–144 (2001)CrossRef J. Wolfe, J. Smith, J. Tann, N.H. Fletcher: Acoustic impedance spectra of classical and modern flutes, J. Sound Vib. 243, 127–144 (2001)CrossRef
7.67
Zurück zum Zitat M.S. Howe: Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute, J. Fluid Mech. 71, 625–673 (1975)MathSciNetCrossRef M.S. Howe: Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute, J. Fluid Mech. 71, 625–673 (1975)MathSciNetCrossRef
7.68
Zurück zum Zitat R. Auvray, A. Emoult, B. Fabre, P.Y. Lagrée: Time-domain simulation of flute-like instruments: Comparison of jet-drive and discrete-vortex models, J. Acoust. Soc. Am. 136, 389–400 (2014)CrossRef R. Auvray, A. Emoult, B. Fabre, P.Y. Lagrée: Time-domain simulation of flute-like instruments: Comparison of jet-drive and discrete-vortex models, J. Acoust. Soc. Am. 136, 389–400 (2014)CrossRef
7.69
Zurück zum Zitat B. Fabre, A. Hirschberg, A.P.J. Wijnands: Vortex shedding in steady oscillation of a flue organ pipe, Acta Acust. United Acust. 82, 863–877 (1996) B. Fabre, A. Hirschberg, A.P.J. Wijnands: Vortex shedding in steady oscillation of a flue organ pipe, Acta Acust. United Acust. 82, 863–877 (1996)
7.70
Zurück zum Zitat J.W. Coltman: Effect of material on flute tone quality, J. Acoust. Soc. Am. 49, 520–523 (1971)CrossRef J.W. Coltman: Effect of material on flute tone quality, J. Acoust. Soc. Am. 49, 520–523 (1971)CrossRef
7.71
Zurück zum Zitat G. Paal, J. Angster, W. Garen, A. Miklos: A combined LDA and flow-vizualization on flue organ pipes, Exp. Fluids 40, 825–835 (2006)CrossRef G. Paal, J. Angster, W. Garen, A. Miklos: A combined LDA and flow-vizualization on flue organ pipes, Exp. Fluids 40, 825–835 (2006)CrossRef
7.72
Zurück zum Zitat R. Chaffin, A. Lemieux: Musical excellence strategies and techniques to enhance performance. In: General Perceptives on Achieving Musical Excellence, ed. by A. Williamon (Oxford University Press, Oxford 2004) pp. 19–39 R. Chaffin, A. Lemieux: Musical excellence strategies and techniques to enhance performance. In: General Perceptives on Achieving Musical Excellence, ed. by A. Williamon (Oxford University Press, Oxford 2004) pp. 19–39
Metadaten
Titel
Modeling of Wind Instruments
verfasst von
Benoit Fabre
Joël Gilbert
Avraham Hirschberg
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55004-5_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.