Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2012

01.11.2012

Modeling the Flow Curve of AISI 410 Martensitic Stainless Steel

verfasst von: A. Momeni, K. Dehghani, M. Heidari, M. Vaseghi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, hot deformation behavior of AISI 410 martensitic stainless steel was investigated and modeled after conducting compression tests at the temperature range of 900-1150 °C and strain rate range of 0.001-1 s−1. At the studied temperature and strain rates, the flow curves were typical of dynamic recrystallization (DRX) showing a hardening peak followed by a softening one, and a steady state. The flow curves up to the peaks were modeled using the Estrin and Mecking equation. The softening due to DRX was also considered to increase the consistency of the developed model. The experimental equation proposed by Cingara and McQueen was also used to model the work hardening region. The results showed that the phenomenological model based on the Estrin and Mecking equation resulted in a better model for the work hardening region. Based on the Avrami equation, a model was developed to estimate the flow softening due to DRX between the peak and the starting point of steady state. The average value of the Avrami exponent was determined as 2.2, and it decreased with the increasing Zener-Hollomon parameter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.C. Tsai, C.S. Chiou, J.S. Du, and J.R. Yang, Phase Transformation in AISI, 410 Stainless Steel, Mater. Sci. Eng., 2002, A332, p 1–10 M.C. Tsai, C.S. Chiou, J.S. Du, and J.R. Yang, Phase Transformation in AISI, 410 Stainless Steel, Mater. Sci. Eng., 2002, A332, p 1–10
2.
Zurück zum Zitat C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong, Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel, J. Mater. Sci. Technol., 2007, 23, p 659–664 C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong, Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel, J. Mater. Sci. Technol., 2007, 23, p 659–664
3.
Zurück zum Zitat S. Venugopal, S.L. Mannan, and P. Rodriguez, Strategy for the Design of Thermomechanical Processes for AISI, type 304L Stainless Steel Using Dynamic Materials Model (DMM) Stability Criteria and Model for the Evolution of Microstructure, J. Mater. Sci., 2004, 39, p 5557–5560CrossRef S. Venugopal, S.L. Mannan, and P. Rodriguez, Strategy for the Design of Thermomechanical Processes for AISI, type 304L Stainless Steel Using Dynamic Materials Model (DMM) Stability Criteria and Model for the Evolution of Microstructure, J. Mater. Sci., 2004, 39, p 5557–5560CrossRef
4.
Zurück zum Zitat A. Momeni, A. Shokuhfar, and S.M. Abbasi, Dynamic Recrystallization of a Cr-Ni-Mo-Cu-Ti-V Precipitation Hardenable Stainless Steel, J. Mater. Sci. Technol., 2007, 23, p 775–778 A. Momeni, A. Shokuhfar, and S.M. Abbasi, Dynamic Recrystallization of a Cr-Ni-Mo-Cu-Ti-V Precipitation Hardenable Stainless Steel, J. Mater. Sci. Technol., 2007, 23, p 775–778
5.
Zurück zum Zitat A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI, 304 Austenitic Stainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485(1–2), p 664–672 A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI, 304 Austenitic Stainless Steel During and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485(1–2), p 664–672
6.
Zurück zum Zitat A. Momeni, S.M. Abbasi, and A. Shokuhfar, Dynamic and Metadynamic Recrystallization of a Martensitic Precipitation Hardenable Stainless Steel, Metal. Quart., 2007, 4, p 189–193CrossRef A. Momeni, S.M. Abbasi, and A. Shokuhfar, Dynamic and Metadynamic Recrystallization of a Martensitic Precipitation Hardenable Stainless Steel, Metal. Quart., 2007, 4, p 189–193CrossRef
7.
Zurück zum Zitat A. Momeni and K. Dehghani, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel During Hot Deformation, Met. Mater. Int., 2010, 16, p 843–849CrossRef A. Momeni and K. Dehghani, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel During Hot Deformation, Met. Mater. Int., 2010, 16, p 843–849CrossRef
8.
Zurück zum Zitat R. Ding and Z.X. Guo, Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization, Acta. Mater., 2001, 49, p 3163–3175CrossRef R. Ding and Z.X. Guo, Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization, Acta. Mater., 2001, 49, p 3163–3175CrossRef
9.
Zurück zum Zitat S.H. Cho and Y.C. Yoo, Hot Rolling Simulation of Austenitic Stainless Steel, J. Mater. Sci., 2001, 36, p 4267–4272CrossRef S.H. Cho and Y.C. Yoo, Hot Rolling Simulation of Austenitic Stainless Steel, J. Mater. Sci., 2001, 36, p 4267–4272CrossRef
10.
Zurück zum Zitat J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756CrossRef J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756CrossRef
11.
Zurück zum Zitat A. Momeni, K. Dehghani, G.R. Ebrahimi, and H. Keshmiri, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel During Hot Deformation, Met. Mater. Trans., 2010, 41A, p 2898–2904CrossRef A. Momeni, K. Dehghani, G.R. Ebrahimi, and H. Keshmiri, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel During Hot Deformation, Met. Mater. Trans., 2010, 41A, p 2898–2904CrossRef
12.
Zurück zum Zitat A. Cingara and H.J. McQueen, New Method for Determining Sinh Constitutive Constants for High Temperature Deformation of 300 Austenitic Steels, J. Mater. Process. Technol, 1992, 36, p 17–30CrossRef A. Cingara and H.J. McQueen, New Method for Determining Sinh Constitutive Constants for High Temperature Deformation of 300 Austenitic Steels, J. Mater. Process. Technol, 1992, 36, p 17–30CrossRef
13.
Zurück zum Zitat S. Serajzadeh, Thermo-Mechanical Modeling of Hot Forging Process, J. Eng. Mater. Technol., 2004, 126, p 406–412CrossRef S. Serajzadeh, Thermo-Mechanical Modeling of Hot Forging Process, J. Eng. Mater. Technol., 2004, 126, p 406–412CrossRef
14.
Zurück zum Zitat Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32, p 57–70CrossRef Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32, p 57–70CrossRef
15.
Zurück zum Zitat X. Wang, E. Brunger, and G. Gottstein, Microstructure Characterization and Dynamic Recrystallization in an Alloy 800h, Mater. Sci. Eng., 2000, A290, p 180–185 X. Wang, E. Brunger, and G. Gottstein, Microstructure Characterization and Dynamic Recrystallization in an Alloy 800h, Mater. Sci. Eng., 2000, A290, p 180–185
16.
Zurück zum Zitat S. Mandal, P.V. Sivaprasad, and R.K. Dube, Kinetics, Mechanism and Modelling of Microstructural Evolution During Thermomechanical Processing of a 15Cr-15Ni-2.2Mo-Ti Modified Austenitic Stainless Steel, J. Mater. Sci., 2007, 42, p 2724–2734CrossRef S. Mandal, P.V. Sivaprasad, and R.K. Dube, Kinetics, Mechanism and Modelling of Microstructural Evolution During Thermomechanical Processing of a 15Cr-15Ni-2.2Mo-Ti Modified Austenitic Stainless Steel, J. Mater. Sci., 2007, 42, p 2724–2734CrossRef
17.
Zurück zum Zitat A.M.J. Junior and O. Balancin, Prediction of Steel Flow Stresses Under Hot Working Conditions, Mater. Res., 2005, 8, p 309–315 A.M.J. Junior and O. Balancin, Prediction of Steel Flow Stresses Under Hot Working Conditions, Mater. Res., 2005, 8, p 309–315
18.
Zurück zum Zitat H. Mirzadeh and A. Najafizadeh, Extrapolation of Flow Curves at Hot Working Conditions, Mater. Sci. Eng., 2010, A527, p 1160–1164 H. Mirzadeh and A. Najafizadeh, Extrapolation of Flow Curves at Hot Working Conditions, Mater. Sci. Eng., 2010, A527, p 1160–1164
19.
Zurück zum Zitat W. Roberts, Dynamic Changes that Occur During Hot Working and Their Significance Regarding Microstructural Development and Hot Workability, G. Krauss, Ed., 1982 ASM Materials Science Seminar (St Louis, Missouri, OH, USA), ASM, 1982, p 109–184 W. Roberts, Dynamic Changes that Occur During Hot Working and Their Significance Regarding Microstructural Development and Hot Workability, G. Krauss, Ed., 1982 ASM Materials Science Seminar (St Louis, Missouri, OH, USA), ASM, 1982, p 109–184
20.
Zurück zum Zitat A. Momeni, K. Dehghani, and G.R. Ebrahimi, Modeling the Initiation of Dynamic Recrystallization Using a Dynamic Recovery Model, J. Alloys Compd., 2011, 509, p 9387–9393CrossRef A. Momeni, K. Dehghani, and G.R. Ebrahimi, Modeling the Initiation of Dynamic Recrystallization Using a Dynamic Recovery Model, J. Alloys Compd., 2011, 509, p 9387–9393CrossRef
21.
Zurück zum Zitat A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng., 2010, A527, p 5467–5473 A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng., 2010, A527, p 5467–5473
22.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 684–691CrossRef E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 684–691CrossRef
23.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 692–700CrossRef E.I. Poliak and J.J. Jonas, Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 692–700CrossRef
24.
Zurück zum Zitat G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design, ASM, Materials Park, OH, 2003, p 35–44 G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design, ASM, Materials Park, OH, 2003, p 35–44
Metadaten
Titel
Modeling the Flow Curve of AISI 410 Martensitic Stainless Steel
verfasst von
A. Momeni
K. Dehghani
M. Heidari
M. Vaseghi
Publikationsdatum
01.11.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-012-0172-9

Weitere Artikel der Ausgabe 11/2012

Journal of Materials Engineering and Performance 11/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.