Skip to main content
Erschienen in: Mechanics of Composite Materials 3/2015

01.07.2015

Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites

verfasst von: L. B. Li, Y. D. Song, Y. C. Sun

Erschienen in: Mechanics of Composite Materials | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The tensile behavior of cross-ply C/SiC ceramic-matrix composites (CMCs) at room temperature has been investigated. Under tensile loading, the damage evolution process was observed with an optical microscope. A micromechanical approach was developed to predict the tensile stress–strain curve, which considers the damage mechanisms of transverse multicracking, matrix multicracking, fiber/matrix interface debonding, and fiber fracture. The shear-lag model was used to describe the microstress field of the damaged composite. By combining the shear-lag model with different damage models, the tensile stress–strain curve of cross-ply CMCs corresponding to each damage stage was modeled. The predicted tensile stress–strain curves of cross-ply C/SiC composites agreed with experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Naslain, “Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview,” Compos. Sci. Technol., 64, No.2, 155-70 (2004).CrossRef R. Naslain, “Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview,” Compos. Sci. Technol., 64, No.2, 155-70 (2004).CrossRef
2.
Zurück zum Zitat D. B. Beyerle, S. M. Spearing, and A.G. Evans, “Damage mechanisms and the mechanical properties of a laminated 0/90 ceramic matrix composite,” J. of Am. Ceramic Soc., 75, No.12, 3321-30 (1992).CrossRef D. B. Beyerle, S. M. Spearing, and A.G. Evans, “Damage mechanisms and the mechanical properties of a laminated 0/90 ceramic matrix composite,” J. of Am. Ceramic Soc., 75, No.12, 3321-30 (1992).CrossRef
3.
Zurück zum Zitat A. W. Pryce and P. A. Smith, Behavior of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading,” J. Mater. Sci., 27, No.10, 2695-2704 (1992).CrossRef A. W. Pryce and P. A. Smith, Behavior of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading,” J. Mater. Sci., 27, No.10, 2695-2704 (1992).CrossRef
4.
Zurück zum Zitat P. Karandikar and T. W. Chou, “Characterization and modeling of microcracking and elastic moduli changes in Nicalon/CAS composites,” Compos. Sci. Technol., 46, No.3, 253-263. (1993).CrossRef P. Karandikar and T. W. Chou, “Characterization and modeling of microcracking and elastic moduli changes in Nicalon/CAS composites,” Compos. Sci. Technol., 46, No.3, 253-263. (1993).CrossRef
5.
Zurück zum Zitat F. A. Opalski and S. Mall, “Tension-compression fatigue behavior of a silicon carbide calcium-aluminosilicate ceramic matrix composites,” J. of Reinforced Plastics and Composites, 13, No.5, 420-438 (1994).CrossRef F. A. Opalski and S. Mall, “Tension-compression fatigue behavior of a silicon carbide calcium-aluminosilicate ceramic matrix composites,” J. of Reinforced Plastics and Composites, 13, No.5, 420-438 (1994).CrossRef
6.
Zurück zum Zitat S. W. Wang and A. Parvizi-Majidi, “Experimental characterization of the tensile behavior of Nicalon fiber-reinforced calcium aluminosilicate composites,” J. Mater. Sci., 27, No.20, 5483-5496 (1992).CrossRef S. W. Wang and A. Parvizi-Majidi, “Experimental characterization of the tensile behavior of Nicalon fiber-reinforced calcium aluminosilicate composites,” J. Mater. Sci., 27, No.20, 5483-5496 (1992).CrossRef
7.
Zurück zum Zitat L. P. Zwada, L. M. Butkus, and G. A. Hartman, “Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass,” J. Am. Ceramic Soc., 74, No.11, 2851-2858 (1991).CrossRef L. P. Zwada, L. M. Butkus, and G. A. Hartman, “Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass,” J. Am. Ceramic Soc., 74, No.11, 2851-2858 (1991).CrossRef
8.
Zurück zum Zitat G. N. Morscher, M. Singh, D. Kiser, M. Freedman, and R. Bhatt, “Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites,” Compos. Sci. Technol., 67, No.6, 1009-1017 (2007).CrossRef G. N. Morscher, M. Singh, D. Kiser, M. Freedman, and R. Bhatt, “Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites,” Compos. Sci. Technol., 67, No.6, 1009-1017 (2007).CrossRef
9.
Zurück zum Zitat Y. Q. Wang, L. T. Zhang, and L. F. Cheng, “Comparison of tensile behaviors of carbon/ceramic composites with various fiber architectures,” Int. J. of Appl. Ceramic Technol., 10, No.2, 266-275 (2013).CrossRef Y. Q. Wang, L. T. Zhang, and L. F. Cheng, “Comparison of tensile behaviors of carbon/ceramic composites with various fiber architectures,” Int. J. of Appl. Ceramic Technol., 10, No.2, 266-275 (2013).CrossRef
10.
Zurück zum Zitat L. B. Li and Y. D. Song, “An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops,” Appl. Compos. Mater., 17, No.3, 309-328 (2010).CrossRef L. B. Li and Y. D. Song, “An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops,” Appl. Compos. Mater., 17, No.3, 309-328 (2010).CrossRef
11.
Zurück zum Zitat L. B. Li, Y. D. Song, and Z. G. Sun, “Influence of fiber Poisson contraction on matrix cracking development of ceramic matrix composites,” J. of Aerospace Power, 23, No.12, 2196-2201 (2008). (in Chinese) L. B. Li, Y. D. Song, and Z. G. Sun, “Influence of fiber Poisson contraction on matrix cracking development of ceramic matrix composites,” J. of Aerospace Power, 23, No.12, 2196-2201 (2008). (in Chinese)
12.
Zurück zum Zitat L. B. Li, Y. D. Song, and Z. G. Sun, “Uniaxial tensile behavior of unidirectional fiber reinforced ceramic matrix composites,” Acta Materiae Compositae Sinica, 25, No.4, 154-160 (2008). (in Chinese) L. B. Li, Y. D. Song, and Z. G. Sun, “Uniaxial tensile behavior of unidirectional fiber reinforced ceramic matrix composites,” Acta Materiae Compositae Sinica, 25, No.4, 154-160 (2008). (in Chinese)
13.
Zurück zum Zitat L. B. Li, Y. D. Song, and Z. G. Sun, “Uniaxial tensile behavior of cross-ply ceramic matrix composites,” Acta Materiae Compositae Sinica, 28, No.1, 179-186 (2011). (in Chinese)CrossRef L. B. Li, Y. D. Song, and Z. G. Sun, “Uniaxial tensile behavior of cross-ply ceramic matrix composites,” Acta Materiae Compositae Sinica, 28, No.1, 179-186 (2011). (in Chinese)CrossRef
14.
Zurück zum Zitat L. B. Li, Y. D. Song, and Y. C. Sun, “Modeling tensile behavior of unidirectional C/SiC ceramic matrix composites,” Mech. Compos. Mater., 49, No.6, 659-672 (2014).CrossRef L. B. Li, Y. D. Song, and Y. C. Sun, “Modeling tensile behavior of unidirectional C/SiC ceramic matrix composites,” Mech. Compos. Mater., 49, No.6, 659-672 (2014).CrossRef
15.
Zurück zum Zitat W. A. Curtin, “Stress-strain behavior of brittle matrix composites,” Comprehensive Composite materials, Elsevier Sci. Ltd. 4, 47-76 (2000). W. A. Curtin, “Stress-strain behavior of brittle matrix composites,” Comprehensive Composite materials, Elsevier Sci. Ltd. 4, 47-76 (2000).
16.
Zurück zum Zitat J. Kim and P. K. Liaw, “Fracture behavior of ceramic matrix composites during monotonic and cyclic loadings,” Key Engineering Materials, 345-346, 649-652 (2007).CrossRef J. Kim and P. K. Liaw, “Fracture behavior of ceramic matrix composites during monotonic and cyclic loadings,” Key Engineering Materials, 345-346, 649-652 (2007).CrossRef
17.
Zurück zum Zitat J. Kim and P. K. Liaw, “Tensile fracture behavior of Nicalon/SiC composites”, Metallurgical and Materials Transcations A, 38A, 2203-2213 (2007).CrossRef J. Kim and P. K. Liaw, “Tensile fracture behavior of Nicalon/SiC composites”, Metallurgical and Materials Transcations A, 38A, 2203-2213 (2007).CrossRef
18.
Zurück zum Zitat M. Steen, “Tensile mastercurve of ceramic matrix composites: significance and implications for modeling,” Mater. Sci. and Eng. A, 250, 241-248 (1998).CrossRef M. Steen, “Tensile mastercurve of ceramic matrix composites: significance and implications for modeling,” Mater. Sci. and Eng. A, 250, 241-248 (1998).CrossRef
19.
Zurück zum Zitat K. G. Dassios, D. G. Aggelis, E. Z. Kordatos, and T. E. Matikas, “Cyclic loading of a SiC-fiber reinforced ceramic matrix composite reveals damage mechanisms and thermal residual stress state,” Composites: Part A, 44, 105-116 (2013).CrossRef K. G. Dassios, D. G. Aggelis, E. Z. Kordatos, and T. E. Matikas, “Cyclic loading of a SiC-fiber reinforced ceramic matrix composite reveals damage mechanisms and thermal residual stress state,” Composites: Part A, 44, 105-116 (2013).CrossRef
20.
Zurück zum Zitat W. S. Kuo and T. W. Chou, “Multiple cracking of unidirectional and cross-ply ceramic matrix composites,” J. Am. Ceramic Soc., 78, No.3, 745-755 (1995).CrossRef W. S. Kuo and T. W. Chou, “Multiple cracking of unidirectional and cross-ply ceramic matrix composites,” J. Am. Ceramic Soc., 78, No.3, 745-755 (1995).CrossRef
21.
Zurück zum Zitat K. W. Garrett and J. E. Bailey, “Multiple transverse fracture in 90o cross-ply laminates of a glass fiber-reinforced polyester,” J. Mater. Sci., 12, No.1, 157-168 (1977).CrossRef K. W. Garrett and J. E. Bailey, “Multiple transverse fracture in 90o cross-ply laminates of a glass fiber-reinforced polyester,” J. Mater. Sci., 12, No.1, 157-168 (1977).CrossRef
22.
Zurück zum Zitat N. Laws and G. J. Dvorak, “Progressive transverse cracking in composite laminates,” J. Compos. Mater., 22, No.10, 900-916 (1988).CrossRef N. Laws and G. J. Dvorak, “Progressive transverse cracking in composite laminates,” J. Compos. Mater., 22, No.10, 900-916 (1988).CrossRef
23.
Zurück zum Zitat H. Fukunaga, T. W. Chou, P. W. M. Peters, and K. Schulte, “Probabilistic failure strength analysis of graphite/epoxy cross-ply laminates,” J. Compos. Mater., 18, No.4, 339-356 (1984).CrossRef H. Fukunaga, T. W. Chou, P. W. M. Peters, and K. Schulte, “Probabilistic failure strength analysis of graphite/epoxy cross-ply laminates,” J. Compos. Mater., 18, No.4, 339-356 (1984).CrossRef
24.
Zurück zum Zitat I. M. Daniel and J. W. Lee, “The behavior of ceramic matrix fiber composites under longitudinal loading,” Compos. Sci. Technol., 46, No.2, 105-113 (1993).CrossRef I. M. Daniel and J. W. Lee, “The behavior of ceramic matrix fiber composites under longitudinal loading,” Compos. Sci. Technol., 46, No.2, 105-113 (1993).CrossRef
25.
Zurück zum Zitat J. Aveston, G. A. Cooper, and A. Kelly, “Single and multiple fracture,” Properties of Fiber Composites, Conf. on Proc., England: National Physical Laboratory, IPC. 15-26 (1971). J. Aveston, G. A. Cooper, and A. Kelly, “Single and multiple fracture,” Properties of Fiber Composites, Conf. on Proc., England: National Physical Laboratory, IPC. 15-26 (1971).
26.
Zurück zum Zitat F. W. Zok and S. M. Spearing, “Matrix crack spacing in brittle matrix composites,” Acta Metallurgica et Materialia, 40, No.8, 2033-2043 (1992).CrossRef F. W. Zok and S. M. Spearing, “Matrix crack spacing in brittle matrix composites,” Acta Metallurgica et Materialia, 40, No.8, 2033-2043 (1992).CrossRef
27.
Zurück zum Zitat H. Zhu and Y. Weitsman, “The progression of failure mechanisms in unidirectional reinforced ceramic composites,” J. Mech. Phys. of Solids, 42, No.10, 1601-1632 (1994).CrossRef H. Zhu and Y. Weitsman, “The progression of failure mechanisms in unidirectional reinforced ceramic composites,” J. Mech. Phys. of Solids, 42, No.10, 1601-1632 (1994).CrossRef
28.
Zurück zum Zitat J. P. Solti, S. Mall, and D. D. Robertson, “Modeling damage in unidirectional ceramic-matrix composites,” Compos. Sci. Technol., 54, No.1, 55-66 (1995).CrossRef J. P. Solti, S. Mall, and D. D. Robertson, “Modeling damage in unidirectional ceramic-matrix composites,” Compos. Sci. Technol., 54, No.1, 55-66 (1995).CrossRef
29.
Zurück zum Zitat W. A. Curtin, “Multiple matrix cracking in brittle matrix composites,” Acta Metallurgica et Materialia, 41, No.5, 1369-1377 (1993).CrossRef W. A. Curtin, “Multiple matrix cracking in brittle matrix composites,” Acta Metallurgica et Materialia, 41, No.5, 1369-1377 (1993).CrossRef
30.
Zurück zum Zitat C. H. Hsueh, “Crack-wake interface debonding criterion for fiber-reinforced ceramic composites,” Acta Materialia, 44, No.6, 2211-2216 (1996).CrossRef C. H. Hsueh, “Crack-wake interface debonding criterion for fiber-reinforced ceramic composites,” Acta Materialia, 44, No.6, 2211-2216 (1996).CrossRef
31.
Zurück zum Zitat Y. C. Gao, Y. W. Mai, and B. Cotterell, “Fracture of fiber-reinforced materials”, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 39, No.4, 550-572 (1988).CrossRef Y. C. Gao, Y. W. Mai, and B. Cotterell, “Fracture of fiber-reinforced materials”, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 39, No.4, 550-572 (1988).CrossRef
32.
Zurück zum Zitat Y. J. Sun and R. N. Singh, “The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite,” Acta Materialia, 46, No.5, 1657-1667 (1998).CrossRef Y. J. Sun and R. N. Singh, “The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite,” Acta Materialia, 46, No.5, 1657-1667 (1998).CrossRef
33.
Zurück zum Zitat M. D. Thouless and A. G. Evans, “Effects of pull-out on the mechanical properties of ceramic matrix composites,” Acta Metallurgica, 36, No.3, 517-522 (1988).CrossRef M. D. Thouless and A. G. Evans, “Effects of pull-out on the mechanical properties of ceramic matrix composites,” Acta Metallurgica, 36, No.3, 517-522 (1988).CrossRef
34.
Zurück zum Zitat H. C. Cao and M. D. Thouless, “Tensile tests of ceramic-matrix composites: theory and experiment,” J. Am. Ceramic Soc., 73, No.7, 2091-2094 (1990).CrossRef H. C. Cao and M. D. Thouless, “Tensile tests of ceramic-matrix composites: theory and experiment,” J. Am. Ceramic Soc., 73, No.7, 2091-2094 (1990).CrossRef
35.
Zurück zum Zitat M. Sutcu, “Weibull statistics applied to fiber failure in ceramic composites and work of fracture,” Acta Metallurgica, 37, No. 2, 651-661 (1989).CrossRef M. Sutcu, “Weibull statistics applied to fiber failure in ceramic composites and work of fracture,” Acta Metallurgica, 37, No. 2, 651-661 (1989).CrossRef
36.
Zurück zum Zitat H. R. Schwietert and P. S. Steif, “A theory for the ultimate strength of a brittle-matrix composite,” J. Mech. Phys. of Solids, 38, No.3, 325-343 (1990).CrossRef H. R. Schwietert and P. S. Steif, “A theory for the ultimate strength of a brittle-matrix composite,” J. Mech. Phys. of Solids, 38, No.3, 325-343 (1990).CrossRef
37.
Zurück zum Zitat W. A. Curtin, “Theory of mechanical properties of ceramic-matrix composites,” J. Am. Ceramic Soc., 74, No.11, 2837-2845 (1991).CrossRef W. A. Curtin, “Theory of mechanical properties of ceramic-matrix composites,” J. Am. Ceramic Soc., 74, No.11, 2837-2845 (1991).CrossRef
38.
Zurück zum Zitat Y. Weitsman and H. Zhu, “Multi-fracture of ceramic composites,” J. Mech. Phys. of Solids, 41, No.2, 351-388 (1993).CrossRef Y. Weitsman and H. Zhu, “Multi-fracture of ceramic composites,” J. Mech. Phys. of Solids, 41, No.2, 351-388 (1993).CrossRef
39.
Zurück zum Zitat F. Hild, J. M. Domergue, F. A. Leckie, and A. G. Evans, “Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites,” Int. J. of Solids and Structures, 31, No.7, 1035-1045 (1994).CrossRef F. Hild, J. M. Domergue, F. A. Leckie, and A. G. Evans, “Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites,” Int. J. of Solids and Structures, 31, No.7, 1035-1045 (1994).CrossRef
40.
Zurück zum Zitat W. A. Curtin, B. K. Ahn, and N. Takeda, “Modeling brittle and tough stress−strain behavior in unidirectional ceramic matrix composites,” Acta Materialia, 46, No.10, 3409-3420 (1998).CrossRef W. A. Curtin, B. K. Ahn, and N. Takeda, “Modeling brittle and tough stress−strain behavior in unidirectional ceramic matrix composites,” Acta Materialia, 46, No.10, 3409-3420 (1998).CrossRef
41.
Zurück zum Zitat R. Paar, J.-L.Valles, and R. Danzer, “Influence of fiber properties on the mechanical behavior of unidirectionallyreinforced ceramic matrix composites,” Mater. Sci. and Eng.: A, 250, No. 2, 209-216 (1998).CrossRef R. Paar, J.-L.Valles, and R. Danzer, “Influence of fiber properties on the mechanical behavior of unidirectionallyreinforced ceramic matrix composites,” Mater. Sci. and Eng.: A, 250, No. 2, 209-216 (1998).CrossRef
42.
Zurück zum Zitat K. Liao and K. L. Reifsnider, “A tensile strength model for unidirectional fiber-reinforced brittle matrix composite,” Int. J. of Fracture, 106, No. 2, 95-115 (2000).CrossRef K. Liao and K. L. Reifsnider, “A tensile strength model for unidirectional fiber-reinforced brittle matrix composite,” Int. J. of Fracture, 106, No. 2, 95-115 (2000).CrossRef
43.
Zurück zum Zitat S. J. Zhou and W. A. Curtin, “Failure of fiber composites: a lattice green function model,” Acta Metallurgica et Materialia, 43, No. 8, 3093-3104 (1995).CrossRef S. J. Zhou and W. A. Curtin, “Failure of fiber composites: a lattice green function model,” Acta Metallurgica et Materialia, 43, No. 8, 3093-3104 (1995).CrossRef
44.
Zurück zum Zitat R. E. Dutton, N. J. Pagano, and R. Y. Kim, “Modeling the ultimate tensile strength of unidirectional glass-matrix composites,” J. Am. Ceramic Soc., 83, No. 1, 166-174 (2000).CrossRef R. E. Dutton, N. J. Pagano, and R. Y. Kim, “Modeling the ultimate tensile strength of unidirectional glass-matrix composites,” J. Am. Ceramic Soc., 83, No. 1, 166-174 (2000).CrossRef
45.
Zurück zum Zitat Z. Xia and W. A. Curtin, “Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress,” Acta Materialia, 48, No. 20, 4879-4892 (2000).CrossRef Z. Xia and W. A. Curtin, “Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress,” Acta Materialia, 48, No. 20, 4879-4892 (2000).CrossRef
46.
Zurück zum Zitat N. Ramakrishnan and V. S. Arunachalam, “Effective elastic moduli of porous ceramic materials,” J. Am. Ceramic Soc., 76, No. 11, 2745-2752 (1993).CrossRef N. Ramakrishnan and V. S. Arunachalam, “Effective elastic moduli of porous ceramic materials,” J. Am. Ceramic Soc., 76, No. 11, 2745-2752 (1993).CrossRef
47.
Zurück zum Zitat W. A. Curtin, “In situ fiber strengths in ceramic-matrix composites from fracture mirrors,” J. Am. Ceramic Soc., 77, No. 4, 1075-1078 (1994).CrossRef W. A. Curtin, “In situ fiber strengths in ceramic-matrix composites from fracture mirrors,” J. Am. Ceramic Soc., 77, No. 4, 1075-1078 (1994).CrossRef
48.
Zurück zum Zitat D. S. Beyerle, S. M. Spearing, F. W. Zok, and A. G. Evans, “Damage and failure in unidirectional ceramic matrix composites,” J. Am. Ceramic Soc., 75, No. 10, 2719-2725 (1992).CrossRef D. S. Beyerle, S. M. Spearing, F. W. Zok, and A. G. Evans, “Damage and failure in unidirectional ceramic matrix composites,” J. Am. Ceramic Soc., 75, No. 10, 2719-2725 (1992).CrossRef
Metadaten
Titel
Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites
verfasst von
L. B. Li
Y. D. Song
Y. C. Sun
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 3/2015
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-015-9507-6

Weitere Artikel der Ausgabe 3/2015

Mechanics of Composite Materials 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.