Skip to main content

2024 | OriginalPaper | Buchkapitel

Modulation of Energy Bandgap in Graphene Nanoribbons Using KWANT

verfasst von : Sradhanjali Lenka, Ajit Kumar Sahu, Madhusudan Mishra, Narayan Sahoo

Erschienen in: Micro and Nanoelectronics Devices, Circuits and Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene, the wonder material, consists of a single-atom thick layer of SP2-hybridized carbon atoms arranged in a hexagonal honeycomb structure. It became popular mainly due to its ideally zero band gap and ultra high electron mobility. To make graphene more functional in the domain of device design, it is essential to create a certain amount of band gap, which can be realized by following different techniques like width modulation, chemical doping, field gating, etc. In this chapter, we adopt some existing techniques to study modulation of bandgap in two-dimensional and one-dimensional nanoribbon (GNRs) form with its arm chair and zigzag ribbon edges (known as AGNR and ZNRs). The band energy has been calculated numerically employing tight-binding model. Moreover, band gaps of GNRs are studied for different sets of ribbon width, and energy bands are obtained using an open-source python-based simulation tool “KWANT”. For AGNR, a decrease in width enhances the band gap, while for ZNR, it is pinned at zero, for all width configurations. The study also includes the behavior of the energy diagram of GNRs for different biasing voltages. Shifting of energy levels to higher and lower values with the application of positive and negative voltage is observed, by maintaining the same band gap.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (1998), pp. 17–29 R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (1998), pp. 17–29
2.
Zurück zum Zitat Z. Xu, Fundamental Properties of Graphene. Graphene: Fabrication, Characterization, Properties, and Applications (Academic Press, Cambridge, 2018), pp. 73–102 Z. Xu, Fundamental Properties of Graphene. Graphene: Fabrication, Characterization, Properties, and Applications (Academic Press, Cambridge, 2018), pp. 73–102
3.
Zurück zum Zitat N.U.J. Hauwali, I. Syuhada, V.E. Ligasetiawan, T. Winata, Ab initio DFT study of band gap of armchair and zigzag graphenes. IOP Conf. Ser. Mater. Sci. Eng. 578, 12037 (2019)CrossRef N.U.J. Hauwali, I. Syuhada, V.E. Ligasetiawan, T. Winata, Ab initio DFT study of band gap of armchair and zigzag graphenes. IOP Conf. Ser. Mater. Sci. Eng. 578, 12037 (2019)CrossRef
4.
Zurück zum Zitat A. Tiwari, Graphene: An Introduction to the Fundamentals and Industrial Applications (Wiley, Hoboken, 2015) A. Tiwari, Graphene: An Introduction to the Fundamentals and Industrial Applications (Wiley, Hoboken, 2015)
5.
Zurück zum Zitat N. Gorjizadeh, Y. Kawazoe, Chemical functionalization of graphene nanoribbons. J. Nanomater. 2010, 23–30 (2010)CrossRef N. Gorjizadeh, Y. Kawazoe, Chemical functionalization of graphene nanoribbons. J. Nanomater. 2010, 23–30 (2010)CrossRef
6.
Zurück zum Zitat D. Jariwala, A. Srivastava, P.M. Ajayan, Graphene synthesis and band gap opening. J. Nanosci. Nanotechnol. 11, 6621–6641 (2011)CrossRef D. Jariwala, A. Srivastava, P.M. Ajayan, Graphene synthesis and band gap opening. J. Nanosci. Nanotechnol. 11, 6621–6641 (2011)CrossRef
7.
Zurück zum Zitat L. Gao, Probing electronic properties of graphene on the atomic scale by scanning tunneling microscopy and spectroscopy. Graphene 2D Mater. 1 (2014) L. Gao, Probing electronic properties of graphene on the atomic scale by scanning tunneling microscopy and spectroscopy. Graphene 2D Mater. 1 (2014)
8.
Zurück zum Zitat M. Mishra, N.R. Das, N. Sahoo, T. Sahu, Performance enhancement of armchair graphene nanoribbon resonant tunneling diode using V-shaped potential well. Phys. Scr. 96, 124076 (2021)CrossRef M. Mishra, N.R. Das, N. Sahoo, T. Sahu, Performance enhancement of armchair graphene nanoribbon resonant tunneling diode using V-shaped potential well. Phys. Scr. 96, 124076 (2021)CrossRef
9.
Zurück zum Zitat Y.-C. Chen, D.G. de Oteyza, Z. Pedramrazi, C. Chen, F.R. Fischer, M.F. Crommie, Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123–6128 (2013)CrossRef Y.-C. Chen, D.G. de Oteyza, Z. Pedramrazi, C. Chen, F.R. Fischer, M.F. Crommie, Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123–6128 (2013)CrossRef
10.
Zurück zum Zitat Z.F. Wang, Q. Li, H. Zheng, H. Ren, H. Su, Q.W. Shi, J. Chen, Tuning the electronic structure of graphene nanoribbons through chemical edge modification: a theoretical study. Phys. Rev. B. 75, 113406 (2007)CrossRef Z.F. Wang, Q. Li, H. Zheng, H. Ren, H. Su, Q.W. Shi, J. Chen, Tuning the electronic structure of graphene nanoribbons through chemical edge modification: a theoretical study. Phys. Rev. B. 75, 113406 (2007)CrossRef
11.
Zurück zum Zitat M. Zoghi, A.Y. Goharrizi, M. Saremi, Band gap tuning of armchair graphene nanoribbons by using antidotes. J. Electron. Mater. 46, 340–346 (2017)CrossRef M. Zoghi, A.Y. Goharrizi, M. Saremi, Band gap tuning of armchair graphene nanoribbons by using antidotes. J. Electron. Mater. 46, 340–346 (2017)CrossRef
12.
Zurück zum Zitat P. Wagner, C.P. Ewels, J.-J. Adjizian, L. Magaud, P. Pochet, S. Roche, A. Lopez-Bezanilla, V.V. Ivanovskaya, A. Yaya, M. Rayson, P. Briddon, B. Humbert, Band gap engineering via edge-functionalization of graphene nanoribbons. J. Phys. Chem. C. 117, 26790–26796 (2013)CrossRef P. Wagner, C.P. Ewels, J.-J. Adjizian, L. Magaud, P. Pochet, S. Roche, A. Lopez-Bezanilla, V.V. Ivanovskaya, A. Yaya, M. Rayson, P. Briddon, B. Humbert, Band gap engineering via edge-functionalization of graphene nanoribbons. J. Phys. Chem. C. 117, 26790–26796 (2013)CrossRef
13.
Zurück zum Zitat A. Celis, M.N. Nair, A. Taleb-Ibrahimi, E.H. Conrad, C. Berger, W.A. de Heer, A. Tejeda, Graphene nanoribbons: fabrication, properties and devices. J. Phys. D. Appl. Phys. 49, 143001 (2016)CrossRef A. Celis, M.N. Nair, A. Taleb-Ibrahimi, E.H. Conrad, C. Berger, W.A. de Heer, A. Tejeda, Graphene nanoribbons: fabrication, properties and devices. J. Phys. D. Appl. Phys. 49, 143001 (2016)CrossRef
14.
Zurück zum Zitat Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)CrossRef Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)CrossRef
15.
Zurück zum Zitat J. Yamaguchi, H. Hayashi, H. Jippo, A. Shiotari, M. Ohtomo, M. Sakakura, N. Hieda, N. Aratani, M. Ohfuchi, Y. Sugimoto, H. Yamada, S. Sato, Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Commun. Mater. 1, 1–9 (2020) J. Yamaguchi, H. Hayashi, H. Jippo, A. Shiotari, M. Ohtomo, M. Sakakura, N. Hieda, N. Aratani, M. Ohfuchi, Y. Sugimoto, H. Yamada, S. Sato, Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Commun. Mater. 1, 1–9 (2020)
16.
Zurück zum Zitat G. Fiori, G. Iannaccone, Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28, 760–762 (2007)CrossRef G. Fiori, G. Iannaccone, Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett. 28, 760–762 (2007)CrossRef
17.
Zurück zum Zitat F. Zhao, T. Cao, S.G. Louie, Topological phases in graphene nanoribbons tuned by electric fields. Phys. Rev. Lett. 127 (2021) F. Zhao, T. Cao, S.G. Louie, Topological phases in graphene nanoribbons tuned by electric fields. Phys. Rev. Lett. 127 (2021)
18.
Zurück zum Zitat H. Raza, Zigzag graphene nanoribbons: bandgap and midgap state modulation. J. Phys. Condens. Matter. 23, 382203 (2011)CrossRef H. Raza, Zigzag graphene nanoribbons: bandgap and midgap state modulation. J. Phys. Condens. Matter. 23, 382203 (2011)CrossRef
19.
Zurück zum Zitat L. Sun, Q. Li, H. Ren, H. Su, Q.W. Shi, J. Yang, Strain effect on electronic structures of graphene nanoribbons: a first-principles study. J. Chem. Phys. 129, 74704 (2008)CrossRef L. Sun, Q. Li, H. Ren, H. Su, Q.W. Shi, J. Yang, Strain effect on electronic structures of graphene nanoribbons: a first-principles study. J. Chem. Phys. 129, 74704 (2008)CrossRef
20.
Zurück zum Zitat C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, Kwant: a software package for quantum transport. New J. Phys. 16, 63065 (2014)CrossRef C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, Kwant: a software package for quantum transport. New J. Phys. 16, 63065 (2014)CrossRef
Metadaten
Titel
Modulation of Energy Bandgap in Graphene Nanoribbons Using KWANT
verfasst von
Sradhanjali Lenka
Ajit Kumar Sahu
Madhusudan Mishra
Narayan Sahoo
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4495-8_10

Neuer Inhalt