Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 2/2024

09.02.2023

Monitoring and control the Wire Arc Additive Manufacturing process using artificial intelligence techniques: a review

verfasst von: Giulio Mattera, Luigi Nele, Davide Paolella

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wire Arc Additive Manufacturing is a Direct Energy Deposition additive technology that uses the principle of wire welding to deposit layers of material to create a finished component. This technology is finding an increasing interest in the manufacturing industry, especially thanks the low cost and the possibility to build large-scale components. Nowadays, the boosting to transition into smart manufacturing systems and the increasingly computational resources allowed the development of intelligent applications for smart production systems for both in situ inspection and process parameter control. This paper aims to provide an review of applications developed using artificial intelligence techniques for Wire Arc Additive Manufacturing, with particular focus on defect detection software modules, feedback generation for control system and innovative control strategies as reinforcement learning to overcome problems related to model non-linearity and uncertainties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adolfsson, S., Bahrami, A., Bolmsjö, G., & Claesson, I. (1999). On-line quality monitoring in short-circuit gas metal ARC welding. Welding Journal-New York, 78, 59s. Adolfsson, S., Bahrami, A., Bolmsjö, G., & Claesson, I. (1999). On-line quality monitoring in short-circuit gas metal ARC welding. Welding Journal-New York, 78, 59s.
Zurück zum Zitat Alfaro, S. C. A., Vargas, J. A. R., de Carvalho, G. C., & de Souza, G. G. (2015). Characterization of “humping’’ in the GTA welding process using infrared images. Journal of materials processing technology, 223, 216–224.CrossRef Alfaro, S. C. A., Vargas, J. A. R., de Carvalho, G. C., & de Souza, G. G. (2015). Characterization of “humping’’ in the GTA welding process using infrared images. Journal of materials processing technology, 223, 216–224.CrossRef
Zurück zum Zitat Almeida, P., & Williams, S. (2010). Innovative process model of ti-6al-4v additive layer manufacturing using cold metal transfer (cmt). University of Texas at Austin. Almeida, P., & Williams, S. (2010). Innovative process model of ti-6al-4v additive layer manufacturing using cold metal transfer (cmt). University of Texas at Austin.
Zurück zum Zitat Arata, Y., Inoue, K., Futamata, M., & Toh, T. (1979). Investigation on welding arc sound (report I): Effect of welding method and welding condition of welding arc sound (welding physics, processes & instruments). Transactions of JWRI, 8(1), 25–31. Arata, Y., Inoue, K., Futamata, M., & Toh, T. (1979). Investigation on welding arc sound (report I): Effect of welding method and welding condition of welding arc sound (welding physics, processes & instruments). Transactions of JWRI, 8(1), 25–31.
Zurück zum Zitat Aria, M., & Cuccurullo, C. (2017). bibliometrix: An r-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.CrossRef Aria, M., & Cuccurullo, C. (2017). bibliometrix: An r-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.CrossRef
Zurück zum Zitat Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866. Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). A brief survey of deep reinforcement learning. arXiv preprint arXiv:​1708.​05866.
Zurück zum Zitat Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503–515.CrossRef Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503–515.CrossRef
Zurück zum Zitat Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.CrossRef Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.CrossRef
Zurück zum Zitat Bianco, S., Cadene, R., Celona, L., & Napoletano, P. (2018). Benchmark analysis of representative deep neural network architectures. IEEE Access, 6, 64270–64277.CrossRef Bianco, S., Cadene, R., Celona, L., & Napoletano, P. (2018). Benchmark analysis of representative deep neural network architectures. IEEE Access, 6, 64270–64277.CrossRef
Zurück zum Zitat Bingul, Z., & Cook, G. E. (1999). Dynamic modeling of gmaw process, (Vol. 4, pp. 3059–3064, IEEE) . Bingul, Z., & Cook, G. E. (1999). Dynamic modeling of gmaw process, (Vol. 4, pp. 3059–3064, IEEE) .
Zurück zum Zitat Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? The Journal of Arthroplasty, 33(8), 2358–2361.CrossRef Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? The Journal of Arthroplasty, 33(8), 2358–2361.CrossRef
Zurück zum Zitat Caio, L. B. A., et al. (2021). Mild steel gma welds microstructural analysis and estimation using sensor fusion and neural network modeling. Sensors, 21(16), 5459.CrossRef Caio, L. B. A., et al. (2021). Mild steel gma welds microstructural analysis and estimation using sensor fusion and neural network modeling. Sensors, 21(16), 5459.CrossRef
Zurück zum Zitat Chen, B., Wang, J., & Chen, S. (2010). A study on application of multi-sensor information fusion in pulsed gtaw. Industrial Robot: An International Journal. Chen, B., Wang, J., & Chen, S. (2010). A study on application of multi-sensor information fusion in pulsed gtaw. Industrial Robot: An International Journal.
Zurück zum Zitat Chen, W., Chin, B., et al. (1990). Monitoring joint penetration using infrared sensing techniques. Welding Journal, 69(4), 181s–185s. Chen, W., Chin, B., et al. (1990). Monitoring joint penetration using infrared sensing techniques. Welding Journal, 69(4), 181s–185s.
Zurück zum Zitat Chen, C., Lv, N., & Chen, S. (2021). Welding penetration monitoring for pulsed GTAW using visual sensor based on AAM and random forests. Journal of Manufacturing Processes, 63, 152–162.CrossRef Chen, C., Lv, N., & Chen, S. (2021). Welding penetration monitoring for pulsed GTAW using visual sensor based on AAM and random forests. Journal of Manufacturing Processes, 63, 152–162.CrossRef
Zurück zum Zitat Chen, S.-B., Zhang, Y., Qiu, T., & Lin, T. (2003). Robotic welding systems with vision-sensing and self-learning neuron control of arc welding dynamic process. Journal of Intelligent and Robotic Systems, 36(2), 191–208.CrossRef Chen, S.-B., Zhang, Y., Qiu, T., & Lin, T. (2003). Robotic welding systems with vision-sensing and self-learning neuron control of arc welding dynamic process. Journal of Intelligent and Robotic Systems, 36(2), 191–208.CrossRef
Zurück zum Zitat Chen, S., Zhao, D., Wu, L., & Lou, Y. (2000). Intelligent methodology for sensing, modeling and control of pulsed GTAW: Part 2–butt joint welding. Welding Journal (USA), 79(6), 164. Chen, S., Zhao, D., Wu, L., & Lou, Y. (2000). Intelligent methodology for sensing, modeling and control of pulsed GTAW: Part 2–butt joint welding. Welding Journal (USA), 79(6), 164.
Zurück zum Zitat Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259. Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:​1409.​1259.
Zurück zum Zitat Chokkalingham, S., Vasudevan, M., Sudarsan, S., & Chandrasekhar, N. (2012). Predicting weld bead width and depth of penetration from infrared thermal image of weld pool using artificial neural network. Insight-Non-Destructive Testing and Condition Monitoring, 54(5), 272–277.CrossRef Chokkalingham, S., Vasudevan, M., Sudarsan, S., & Chandrasekhar, N. (2012). Predicting weld bead width and depth of penetration from infrared thermal image of weld pool using artificial neural network. Insight-Non-Destructive Testing and Condition Monitoring, 54(5), 272–277.CrossRef
Zurück zum Zitat Cho, H.-W., Shin, S.-J., Seo, G.-J., Kim, D. B., & Lee, D.-H. (2022). Real-time anomaly detection using convolutional neural network in wire arc additive manufacturing: Molybdenum material. Journal of Materials Processing Technology, 302, 117495.CrossRef Cho, H.-W., Shin, S.-J., Seo, G.-J., Kim, D. B., & Lee, D.-H. (2022). Real-time anomaly detection using convolutional neural network in wire arc additive manufacturing: Molybdenum material. Journal of Materials Processing Technology, 302, 117495.CrossRef
Zurück zum Zitat Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (ELUS). arXiv preprint arXiv:1511.07289. Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (ELUS). arXiv preprint arXiv:​1511.​07289.
Zurück zum Zitat Cruz, J. G., Torres, E. M., & Absi Alfaro, S. C. (2015). A methodology for modeling and control of weld bead width in the GMSW process. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(5), 1529–1541.CrossRef Cruz, J. G., Torres, E. M., & Absi Alfaro, S. C. (2015). A methodology for modeling and control of weld bead width in the GMSW process. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(5), 1529–1541.CrossRef
Zurück zum Zitat Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4), 303–314.CrossRef Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4), 303–314.CrossRef
Zurück zum Zitat Dharmawan, A. G., Xiong, Y., Foong, S., & Soh, G. S. (2020). A model-based reinforcement learning and correction framework for process control of robotic wire arc additive manufacturing, pp. 4030–4036 (IEEE). Dharmawan, A. G., Xiong, Y., Foong, S., & Soh, G. S. (2020). A model-based reinforcement learning and correction framework for process control of robotic wire arc additive manufacturing, pp. 4030–4036 (IEEE).
Zurück zum Zitat Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2015). A multi-bead overlapping model for robotic wire and arc additive manufacturing (waam). Robotics and Computer-Integrated Manufacturing, 31, 101–110.CrossRef Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2015). A multi-bead overlapping model for robotic wire and arc additive manufacturing (waam). Robotics and Computer-Integrated Manufacturing, 31, 101–110.CrossRef
Zurück zum Zitat Doodman Tipi, A. R., Pariz, N., et al. (2015). Improving the dynamic metal transfer model of gas metal arc welding (GMAW) process. The International Journal of Advanced Manufacturing Technology, 76(1), 657–668.CrossRef Doodman Tipi, A. R., Pariz, N., et al. (2015). Improving the dynamic metal transfer model of gas metal arc welding (GMAW) process. The International Journal of Advanced Manufacturing Technology, 76(1), 657–668.CrossRef
Zurück zum Zitat Dupont, J. N., Marder, A. R., et al. (1995). Thermal efficiency of arc welding processes. Welding Journal-Including Welding Research Supplement, 74(12), 406s. Dupont, J. N., Marder, A. R., et al. (1995). Thermal efficiency of arc welding processes. Welding Journal-Including Welding Research Supplement, 74(12), 406s.
Zurück zum Zitat Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.CrossRef Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.CrossRef
Zurück zum Zitat Erdmann-Jesnitzer, F., Feustel, E., & Rehfeldt, D. (1967). Akustische untersuchungen am schweislichtbogen. Schw. und Schn, 19(3), 95–100. Erdmann-Jesnitzer, F., Feustel, E., & Rehfeldt, D. (1967). Akustische untersuchungen am schweislichtbogen. Schw. und Schn, 19(3), 95–100.
Zurück zum Zitat Fernández, A., Souto, Á., González, C., & Méndez-Rial, R. (2020). Embedded vision system for monitoring arc welding with thermal imaging and deep learning, pp 1–6 (IEEE). Fernández, A., Souto, Á., González, C., & Méndez-Rial, R. (2020). Embedded vision system for monitoring arc welding with thermal imaging and deep learning, pp 1–6 (IEEE).
Zurück zum Zitat Ghanty, P., et al. (2008). Artificial neural network approach for estimating weld bead width and depth of penetration from infrared thermal image of weld pool. Science and Technology of Welding and Joining, 13(4), 395–401.CrossRef Ghanty, P., et al. (2008). Artificial neural network approach for estimating weld bead width and depth of penetration from infrared thermal image of weld pool. Science and Technology of Welding and Joining, 13(4), 395–401.CrossRef
Zurück zum Zitat Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks, pp. 249–256 (JMLR Workshop and Conference Proceedings). Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks, pp. 249–256 (JMLR Workshop and Conference Proceedings).
Zurück zum Zitat Grondman, I., Busoniu, L., Lopes, G. A., & Babuska, R. (2012). A survey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1291–1307.CrossRef Grondman, I., Busoniu, L., Lopes, G. A., & Babuska, R. (2012). A survey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1291–1307.CrossRef
Zurück zum Zitat Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor, pp. 1861–1870 (PMLR). Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor, pp. 1861–1870 (PMLR).
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition, pp. 770–778. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition, pp. 770–778.
Zurück zum Zitat Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:​1207.​0580.
Zurück zum Zitat Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. et al. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. et al. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.
Zurück zum Zitat Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRef Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRef
Zurück zum Zitat Hopfield, J. J. (1988). Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5), 3–10.CrossRef Hopfield, J. J. (1988). Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5), 3–10.CrossRef
Zurück zum Zitat Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.CrossRef Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.CrossRef
Zurück zum Zitat Horvat, J., Prezelj, J., Polajnar, I., & Čudina, M. (2011). Monitoring gas metal arc welding process by using audible sound signal. Strojniški vestnik-Journal of Mechanical Engineering, 57(3), 267–278.CrossRef Horvat, J., Prezelj, J., Polajnar, I., & Čudina, M. (2011). Monitoring gas metal arc welding process by using audible sound signal. Strojniški vestnik-Journal of Mechanical Engineering, 57(3), 267–278.CrossRef
Zurück zum Zitat Hou, Y., Liu, L., Wei, Q., Xu, X., & Chen, C. (2017). A novel DDPG method with prioritized experience replay, pp. 316–321 (IEEE). Hou, Y., Liu, L., Wei, Q., Xu, X., & Chen, C. (2017). A novel DDPG method with prioritized experience replay, pp. 316–321 (IEEE).
Zurück zum Zitat Huang, G., Liu, Z., Maaten, L. V. D., & Weinberger, K. Q. (2017). Densely connected convolutional networks, 2261–2269. IEEE Computer Society. Huang, G., Liu, Z., Maaten, L. V. D., & Weinberger, K. Q. (2017). Densely connected convolutional networks, 2261–2269. IEEE Computer Society.
Zurück zum Zitat Jin, Z., Li, H., & Gao, H. (2019). An intelligent weld control strategy based on reinforcement learning approach. The International Journal of Advanced Manufacturing Technology, 100(9), 2163–2175.CrossRef Jin, Z., Li, H., & Gao, H. (2019). An intelligent weld control strategy based on reinforcement learning approach. The International Journal of Advanced Manufacturing Technology, 100(9), 2163–2175.CrossRef
Zurück zum Zitat Jin, C., Shin, S., Yu, J., & Rhee, S. (2020). Prediction model for back-bead monitoring during gas metal arc welding using supervised deep learning. IEEE Access, 8, 224044–224058.CrossRef Jin, C., Shin, S., Yu, J., & Rhee, S. (2020). Prediction model for back-bead monitoring during gas metal arc welding using supervised deep learning. IEEE Access, 8, 224044–224058.CrossRef
Zurück zum Zitat Johnson, J., Carlson, N., Smartt, H., & Clark, D. (1991). Process control of GMAW: Sensing of metal transfer mode. Welding Journal, 70(4), 91. Johnson, J., Carlson, N., Smartt, H., & Clark, D. (1991). Process control of GMAW: Sensing of metal transfer mode. Welding Journal, 70(4), 91.
Zurück zum Zitat Kershaw, J., Yu, R., Zhang, Y., & Wang, P. (2021). Hybrid machine learning-enabled adaptive welding speed control. Journal of Manufacturing Processes, 71, 374–383.CrossRef Kershaw, J., Yu, R., Zhang, Y., & Wang, P. (2021). Hybrid machine learning-enabled adaptive welding speed control. Journal of Manufacturing Processes, 71, 374–383.CrossRef
Zurück zum Zitat Kozamernik, N., Bračun, D., & Klobčar, D. (2020). Waam system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. The International Journal of Advanced Manufacturing Technology, 110(7), 1955–1968.CrossRef Kozamernik, N., Bračun, D., & Klobčar, D. (2020). Waam system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. The International Journal of Advanced Manufacturing Technology, 110(7), 1955–1968.CrossRef
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.CrossRef Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.CrossRef
Zurück zum Zitat Kumar, N. P., Vendan, S. A., & Shanmugam, N. S. (2016). Investigations on the parametric effects of cold metal transfer process on the microstructural aspects in aa6061. Journal of Alloys and Compounds, 658, 255–264.CrossRef Kumar, N. P., Vendan, S. A., & Shanmugam, N. S. (2016). Investigations on the parametric effects of cold metal transfer process on the microstructural aspects in aa6061. Journal of Alloys and Compounds, 658, 255–264.CrossRef
Zurück zum Zitat Lecun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10), 1995. Lecun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10), 1995.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef
Zurück zum Zitat LeCun, Y., Touresky, D., Hinton, G., & Sejnowski, T. (1988). A theoretical framework for back-propagation,1, 21–28. LeCun, Y., Touresky, D., Hinton, G., & Sejnowski, T. (1988). A theoretical framework for back-propagation,1, 21–28.
Zurück zum Zitat Lee, C., Seo, G., Kim, D. B., Kim, M., & Shin, J.-H. (2021). Development of defect detection ai model for wire+ arc additive manufacturing using high dynamic range images. Applied Sciences, 11(16), 7541.CrossRef Lee, C., Seo, G., Kim, D. B., Kim, M., & Shin, J.-H. (2021). Development of defect detection ai model for wire+ arc additive manufacturing using high dynamic range images. Applied Sciences, 11(16), 7541.CrossRef
Zurück zum Zitat Li, Q., Li, G., Wang, X., & Wei, M. (2019). Diffusion welding furnace temperature controller based on actor-critic, pp. 2484–2487 (IEEE). Li, Q., Li, G., Wang, X., & Wei, M. (2019). Diffusion welding furnace temperature controller based on actor-critic, pp. 2484–2487 (IEEE).
Zurück zum Zitat Li, Y., et al. (2022). A defect detection system for wire arc additive manufacturing using incremental learning. Journal of Industrial Information Integration, 27, 100291.CrossRef Li, Y., et al. (2022). A defect detection system for wire arc additive manufacturing using incremental learning. Journal of Industrial Information Integration, 27, 100291.CrossRef
Zurück zum Zitat Li, Y., et al. (2022). Towards intelligent monitoring system in wire arc additive manufacturing: A surface anomaly detector on a small dataset. The International Journal of Advanced Manufacturing Technology, 120(7), 5225–5242.CrossRef Li, Y., et al. (2022). Towards intelligent monitoring system in wire arc additive manufacturing: A surface anomaly detector on a small dataset. The International Journal of Advanced Manufacturing Technology, 120(7), 5225–5242.CrossRef
Zurück zum Zitat Lotter, W., Kreiman, G., & Cox, D. (2016). Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104. Lotter, W., Kreiman, G., & Cox, D. (2016). Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:​1605.​08104.
Zurück zum Zitat Lü, F., Chen, H., Fan, C., & Chen, S. (2010). A novel control algorithm for weld pool control. Industrial Robot: An International Journal. Lü, F., Chen, H., Fan, C., & Chen, S. (2010). A novel control algorithm for weld pool control. Industrial Robot: An International Journal.
Zurück zum Zitat Lv, N., Xu, Y., Li, S., Yu, X., & Chen, S. (2017). Automated control of welding penetration based on audio sensing technology. Journal of Materials Processing Technology, 250, 81–98.CrossRef Lv, N., Xu, Y., Li, S., Yu, X., & Chen, S. (2017). Automated control of welding penetration based on audio sensing technology. Journal of Materials Processing Technology, 250, 81–98.CrossRef
Zurück zum Zitat Ma, Y., Cuiuri, D., Shen, C., Li, H., & Pan, Z. (2015). Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding. Additive Manufacturing, 8, 71–77.CrossRef Ma, Y., Cuiuri, D., Shen, C., Li, H., & Pan, Z. (2015). Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding. Additive Manufacturing, 8, 71–77.CrossRef
Zurück zum Zitat Madhvacharyula, A. S., et al. (2022). In situ detection of welding defects: A review. Welding in the World, 18, 1–18. Madhvacharyula, A. S., et al. (2022). In situ detection of welding defects: A review. Welding in the World, 18, 1–18.
Zurück zum Zitat Mathers, G. (2002). Weld defects and quality control. Welding of Aluminium and Its Alloys, 15, 199–215.CrossRef Mathers, G. (2002). Weld defects and quality control. Welding of Aluminium and Its Alloys, 15, 199–215.CrossRef
Zurück zum Zitat Mattera, G., & Mattera, R. (2023). Shrinkage estimation with reinforcement learning of large variance matrices for portfolio selection. Intelligent Systems with Applications. Forthcoming. Mattera, G., & Mattera, R. (2023). Shrinkage estimation with reinforcement learning of large variance matrices for portfolio selection. Intelligent Systems with Applications. Forthcoming.
Zurück zum Zitat Menaka, M., Vasudevan, M., Venkatraman, B., & Raj, B. (2005). Estimating bead width and depth of penetration during welding by infrared thermal imaging. Insight-Non-Destructive Testing and Condition Monitoring, 47(9), 564–568.CrossRef Menaka, M., Vasudevan, M., Venkatraman, B., & Raj, B. (2005). Estimating bead width and depth of penetration during welding by infrared thermal imaging. Insight-Non-Destructive Testing and Condition Monitoring, 47(9), 564–568.CrossRef
Zurück zum Zitat Mezaache, M., Babes, B., & Chaouch, S. (2022). Optimization of welding input parameters using PSO technique for minimizing HAZ width in GMAW. Periodica Polytechnica Mechanical Engineering, 66(2), 99–108.CrossRef Mezaache, M., Babes, B., & Chaouch, S. (2022). Optimization of welding input parameters using PSO technique for minimizing HAZ width in GMAW. Periodica Polytechnica Mechanical Engineering, 66(2), 99–108.CrossRef
Zurück zum Zitat Mnih, V. et al. (2016). Asynchronous methods for deep reinforcement learning, pp. 1928–1937 (PMLR). Mnih, V. et al. (2016). Asynchronous methods for deep reinforcement learning, pp. 1928–1937 (PMLR).
Zurück zum Zitat Mnih, V., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.CrossRef Mnih, V., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.CrossRef
Zurück zum Zitat Mozaffar, M., et al. (2018). Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manufacturing Letters, 18, 35–39.CrossRef Mozaffar, M., et al. (2018). Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manufacturing Letters, 18, 35–39.CrossRef
Zurück zum Zitat Mu, H., et al. (2022). Layer-by-layer model-based adaptive control for wire arc additive manufacturing of thin-wall structures. Journal of Intelligent Manufacturing, 33(4), 1165–1180.CrossRef Mu, H., et al. (2022). Layer-by-layer model-based adaptive control for wire arc additive manufacturing of thin-wall structures. Journal of Intelligent Manufacturing, 33(4), 1165–1180.CrossRef
Zurück zum Zitat Nele, L., Mattera, G., & Vozza, M. (2022). Deep neural networks for defects detection in gas metal arc welding. Applied Sciences, 12(7), 3615.CrossRef Nele, L., Mattera, G., & Vozza, M. (2022). Deep neural networks for defects detection in gas metal arc welding. Applied Sciences, 12(7), 3615.CrossRef
Zurück zum Zitat Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence rate. 269, 543–547 Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence rate. 269, 543–547
Zurück zum Zitat Nguyen, H. D., et al. (2022). Rapid and accurate prediction of temperature evolution in wire plus arc additive manufacturing using feedforward neural network. Manufacturing Letters, 32, 28–31.CrossRef Nguyen, H. D., et al. (2022). Rapid and accurate prediction of temperature evolution in wire plus arc additive manufacturing using feedforward neural network. Manufacturing Letters, 32, 28–31.CrossRef
Zurück zum Zitat Nomura, K., Fukushima, K., Matsumura, T., & Asai, S. (2021). Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation. Journal of Manufacturing Processes, 61, 590–600.CrossRef Nomura, K., Fukushima, K., Matsumura, T., & Asai, S. (2021). Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation. Journal of Manufacturing Processes, 61, 590–600.CrossRef
Zurück zum Zitat O’Donoghue, B., Munos, R., Kavukcuoglu, K., & Mnih, V. (2016). Combining policy gradient and q-learning. arXiv preprint arXiv:1611.01626. O’Donoghue, B., Munos, R., Kavukcuoglu, K., & Mnih, V. (2016). Combining policy gradient and q-learning. arXiv preprint arXiv:​1611.​01626.
Zurück zum Zitat Ogoke, F., & Farimani, A. B. (2021). Thermal control of laser powder bed fusion using deep reinforcement learning. Additive Manufacturing, 46, 102033.CrossRef Ogoke, F., & Farimani, A. B. (2021). Thermal control of laser powder bed fusion using deep reinforcement learning. Additive Manufacturing, 46, 102033.CrossRef
Zurück zum Zitat Pal, K., Bhattacharya, S., & Pal, S. K. (2010). Investigation on arc sound and metal transfer modes for on-line monitoring in pulsed gas metal arc welding. Journal of Materials Processing Technology, 210(10), 1397–1410.CrossRef Pal, K., Bhattacharya, S., & Pal, S. K. (2010). Investigation on arc sound and metal transfer modes for on-line monitoring in pulsed gas metal arc welding. Journal of Materials Processing Technology, 210(10), 1397–1410.CrossRef
Zurück zum Zitat Pan, H., Pang, Z., Wang, Y., Wang, Y., & Chen, L. (2020). A new image recognition and classification method combining transfer learning algorithm and mobilenet model for welding defects. IEEE Access, 8, 119951–119960.CrossRef Pan, H., Pang, Z., Wang, Y., Wang, Y., & Chen, L. (2020). A new image recognition and classification method combining transfer learning algorithm and mobilenet model for welding defects. IEEE Access, 8, 119951–119960.CrossRef
Zurück zum Zitat Pedamonti, D. (2018). Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv preprint arXiv:1804.02763. Pedamonti, D. (2018). Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv preprint arXiv:​1804.​02763.
Zurück zum Zitat Penttilä, S., Kah, P., Ratava, J., & Eskelinen, H. (2019). Artificial neural network controlled GMAW system: Penetration and quality assurance in a multi-pass butt weld application. The International Journal of Advanced Manufacturing Technology, 105(7), 3369–3385.CrossRef Penttilä, S., Kah, P., Ratava, J., & Eskelinen, H. (2019). Artificial neural network controlled GMAW system: Penetration and quality assurance in a multi-pass butt weld application. The International Journal of Advanced Manufacturing Technology, 105(7), 3369–3385.CrossRef
Zurück zum Zitat Pernambuco, B. S. G. et al. (2019). Online sound based arc-welding defect detection using artificial neural networks, (pp. 263–268, IEEE). Pernambuco, B. S. G. et al. (2019). Online sound based arc-welding defect detection using artificial neural networks, (pp. 263–268, IEEE).
Zurück zum Zitat Pinto-Lopera, J. E., ST Motta, J. M., & Absi Alfaro, S. C. (2016). Real-time measurement of width and height of weld beads in GMAW processes. Sensors, 16(9), 1500.CrossRef Pinto-Lopera, J. E., ST Motta, J. M., & Absi Alfaro, S. C. (2016). Real-time measurement of width and height of weld beads in GMAW processes. Sensors, 16(9), 1500.CrossRef
Zurück zum Zitat Pires, J. N., Loureiro, A., & Bölmsjo, G. (2006). Welding Robots: Technology, System Issues and Application. Springer. Pires, J. N., Loureiro, A., & Bölmsjo, G. (2006). Welding Robots: Technology, System Issues and Application. Springer.
Zurück zum Zitat Polydoros, A. S., & Nalpantidis, L. (2017). Survey of model-based reinforcement learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2), 153–173.CrossRef Polydoros, A. S., & Nalpantidis, L. (2017). Survey of model-based reinforcement learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2), 153–173.CrossRef
Zurück zum Zitat Recht, B. (2019). A tour of reinforcement learning: The view from continuous control. Annual Review of Control, Robotics, and Autonomous Systems, 2, 253–279.CrossRef Recht, B. (2019). A tour of reinforcement learning: The view from continuous control. Annual Review of Control, Robotics, and Autonomous Systems, 2, 253–279.CrossRef
Zurück zum Zitat Roca, A. S., Fals, H., Fernández, J., Macías, E., & De La Parte, M. (2009). Artificial neural networks and acoustic emission applied to stability analysis in gas metal arc welding. Science and Technology of Welding and Joining, 14(2), 117–124.CrossRef Roca, A. S., Fals, H., Fernández, J., Macías, E., & De La Parte, M. (2009). Artificial neural networks and acoustic emission applied to stability analysis in gas metal arc welding. Science and Technology of Welding and Joining, 14(2), 117–124.CrossRef
Zurück zum Zitat Rohe, M., Stoll, B. N., Hildebrand, J., Reimann, J., & Bergmann, J. P. (2021). Detecting process anomalies in the GMAW process by acoustic sensing with a convolutional neural network (CNN) for classification. Journal of Manufacturing and Materials Processing, 5(4), 135.CrossRef Rohe, M., Stoll, B. N., Hildebrand, J., Reimann, J., & Bergmann, J. P. (2021). Detecting process anomalies in the GMAW process by acoustic sensing with a convolutional neural network (CNN) for classification. Journal of Manufacturing and Materials Processing, 5(4), 135.CrossRef
Zurück zum Zitat Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems (Vol. 37). Cambridge: Department of Engineering, University of Cambridge. Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems (Vol. 37). Cambridge: Department of Engineering, University of Cambridge.
Zurück zum Zitat Schmidhuber, J.(1990). Artificial neural network. IEEE 112–127. Schmidhuber, J.(1990). Artificial neural network. IEEE 112–127.
Zurück zum Zitat Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization, pp. 1889–1897 (PMLR). Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization, pp. 1889–1897 (PMLR).
Zurück zum Zitat Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:​1707.​06347.
Zurück zum Zitat Shin, S., Jin, C., Yu, J., & Rhee, S. (2020). Real-time detection of weld defects for automated welding process base on deep neural network. Metals, 10(3), 389.CrossRef Shin, S., Jin, C., Yu, J., & Rhee, S. (2020). Real-time detection of weld defects for automated welding process base on deep neural network. Metals, 10(3), 389.CrossRef
Zurück zum Zitat Silver, D., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef Silver, D., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556.
Zurück zum Zitat Sivasakthivel, P., & Sudhakaran, R. (2018). Modelling and optimisation of welding parameters for multiple objectives in pre-heated gas metal arc welding process using nature instigated algorithms. Australian Journal of Mechanical Engineering. Sivasakthivel, P., & Sudhakaran, R. (2018). Modelling and optimisation of welding parameters for multiple objectives in pre-heated gas metal arc welding process using nature instigated algorithms. Australian Journal of Mechanical Engineering.
Zurück zum Zitat Sreedhar, U., Krishnamurthy, C., Balasubramaniam, K., Raghupathy, V., & Ravisankar, S. (2012). Automatic defect identification using thermal image analysis for online weld quality monitoring. Journal of Materials Processing Technology, 212(7), 1557–1566.CrossRef Sreedhar, U., Krishnamurthy, C., Balasubramaniam, K., Raghupathy, V., & Ravisankar, S. (2012). Automatic defect identification using thermal image analysis for online weld quality monitoring. Journal of Materials Processing Technology, 212(7), 1557–1566.CrossRef
Zurück zum Zitat Sumesh, A., et al. (2017). Establishing correlation between current and voltage signatures of the arc and weld defects in GMAW process. Arabian Journal for Science and Engineering, 42(11), 4649–4665.CrossRef Sumesh, A., et al. (2017). Establishing correlation between current and voltage signatures of the arc and weld defects in GMAW process. Arabian Journal for Science and Engineering, 42(11), 4649–4665.CrossRef
Zurück zum Zitat Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). The MIT Press. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). The MIT Press.
Zurück zum Zitat Szegedy, C. et al. (2015). Going deeper with convolutions, pp. 1–9. Szegedy, C. et al. (2015). Going deeper with convolutions, pp. 1–9.
Zurück zum Zitat Tamari, R. (2016). Reinforce framework for stochastic policy optimization and its use in deep learning. Tamari, R. (2016). Reinforce framework for stochastic policy optimization and its use in deep learning.
Zurück zum Zitat Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018). Digital twin in industry: State-of-the-art. IEEE Transactions on industrial informatics, 15(4), 2405–2415.CrossRef Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018). Digital twin in industry: State-of-the-art. IEEE Transactions on industrial informatics, 15(4), 2405–2415.CrossRef
Zurück zum Zitat Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double q-learning, (Vol. 30). Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double q-learning, (Vol. 30).
Zurück zum Zitat Vishnuvaradhan, S., Chandrasekhar, N., Vasudevan, M., & Jayakumar, T. (2013). Intelligent modeling using adaptive neuro fuzzy inference system (anfis) for predicting weld bead shape parameters during a-tig welding of reduced activation ferritic-martensitic (rafm) steel. Transactions of the Indian Institute of Metals, 66(1), 57–63.CrossRef Vishnuvaradhan, S., Chandrasekhar, N., Vasudevan, M., & Jayakumar, T. (2013). Intelligent modeling using adaptive neuro fuzzy inference system (anfis) for predicting weld bead shape parameters during a-tig welding of reduced activation ferritic-martensitic (rafm) steel. Transactions of the Indian Institute of Metals, 66(1), 57–63.CrossRef
Zurück zum Zitat Wang, Y., et al. (2020). Weld reinforcement analysis based on long-term prediction of molten pool image in additive manufacturing. IEEE Access, 8, 69908–69918.CrossRef Wang, Y., et al. (2020). Weld reinforcement analysis based on long-term prediction of molten pool image in additive manufacturing. IEEE Access, 8, 69908–69918.CrossRef
Zurück zum Zitat Wang, Y., et al. (2021). Coordinated monitoring and control method of deposited layer width and reinforcement in waam process. Journal of Manufacturing Processes, 71, 306–316.CrossRef Wang, Y., et al. (2021). Coordinated monitoring and control method of deposited layer width and reinforcement in waam process. Journal of Manufacturing Processes, 71, 306–316.CrossRef
Zurück zum Zitat Watkins, C. D. P. (1992). Q-learning. Machine Learning, 8(3), 279–292.CrossRef Watkins, C. D. P. (1992). Q-learning. Machine Learning, 8(3), 279–292.CrossRef
Zurück zum Zitat Wei, E., Farson, D., Richardson, R., & Ludewig, H. (2001). Detection of weld surface porosity by statistical analysis of arc current in gas metal arc welding. journal of Manufacturing Processes, 3, 50–59.CrossRef Wei, E., Farson, D., Richardson, R., & Ludewig, H. (2001). Detection of weld surface porosity by statistical analysis of arc current in gas metal arc welding. journal of Manufacturing Processes, 3, 50–59.CrossRef
Zurück zum Zitat Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3), 229–256.CrossRef Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3), 229–256.CrossRef
Zurück zum Zitat Williams, S. W., et al. (2016). Wire+ arc additive manufacturing. Materials Science and Technology, 32(7), 641–647.CrossRef Williams, S. W., et al. (2016). Wire+ arc additive manufacturing. Materials Science and Technology, 32(7), 641–647.CrossRef
Zurück zum Zitat Wu, B., Pan, Z., van Duin, S., & Li, H. (2019). in Thermal behavior in wire arc additive manufacturing: characteristics, effects and control pp. 3–18 (Springer). Wu, B., Pan, Z., van Duin, S., & Li, H. (2019). in Thermal behavior in wire arc additive manufacturing: characteristics, effects and control pp. 3–18 (Springer).
Zurück zum Zitat Wu, B., et al. (2018). A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. Journal of Manufacturing Processes, 35, 127–139.CrossRef Wu, B., et al. (2018). A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. Journal of Manufacturing Processes, 35, 127–139.CrossRef
Zurück zum Zitat Wu, C., Gao, J., & Hu, J. (2006). Real-time sensing and monitoring in robotic gas metal arc welding. Measurement Science and Technology, 18(1), 303.CrossRef Wu, C., Gao, J., & Hu, J. (2006). Real-time sensing and monitoring in robotic gas metal arc welding. Measurement Science and Technology, 18(1), 303.CrossRef
Zurück zum Zitat Xia, C., et al. (2020). Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing. The International Journal of Advanced Manufacturing Technology, 110(7), 2131–2142.CrossRef Xia, C., et al. (2020). Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing. The International Journal of Advanced Manufacturing Technology, 110(7), 2131–2142.CrossRef
Zurück zum Zitat Xia, C., et al. (2020). Model predictive control of layer width in wire arc additive manufacturing. Journal of Manufacturing Processes, 58, 179–186.CrossRef Xia, C., et al. (2020). Model predictive control of layer width in wire arc additive manufacturing. Journal of Manufacturing Processes, 58, 179–186.CrossRef
Zurück zum Zitat Xia, C., et al. (2022). Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning. Journal of Intelligent Manufacturing, 33(5), 1467–1482.CrossRef Xia, C., et al. (2022). Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning. Journal of Intelligent Manufacturing, 33(5), 1467–1482.CrossRef
Zurück zum Zitat Xia, C., Pan, Z., Fei, Z., Zhang, S., & Li, H. (2020). Vision based defects detection for keyhole tig welding using deep learning with visual explanation. Journal of Manufacturing Processes, 56, 845–855. Xia, C., Pan, Z., Fei, Z., Zhang, S., & Li, H. (2020). Vision based defects detection for keyhole tig welding using deep learning with visual explanation. Journal of Manufacturing Processes, 56, 845–855.
Zurück zum Zitat Xia, C., Pan, Z., Li, Y., Chen, J., & Li, H. (2022). Vision-based melt pool monitoring for wire-arc additive manufacturing using deep learning method. The International Journal of Advanced Manufacturing Technology, 120(1), 551–562.CrossRef Xia, C., Pan, Z., Li, Y., Chen, J., & Li, H. (2022). Vision-based melt pool monitoring for wire-arc additive manufacturing using deep learning method. The International Journal of Advanced Manufacturing Technology, 120(1), 551–562.CrossRef
Zurück zum Zitat Xiong, J., & Zhang, G. (2013). Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision. Measurement Science and Technology, 24(11), 115103.CrossRef Xiong, J., & Zhang, G. (2013). Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision. Measurement Science and Technology, 24(11), 115103.CrossRef
Zurück zum Zitat Xiong, J., Zhang, G., Hu, J., & Wu, L. (2014). Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. Journal of Intelligent Manufacturing, 25(1), 157–163.CrossRef Xiong, J., Zhang, G., Hu, J., & Wu, L. (2014). Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. Journal of Intelligent Manufacturing, 25(1), 157–163.CrossRef
Zurück zum Zitat Xu, F., et al. (2018). Realisation of a multi-sensor framework for process monitoring of the wire arc additive manufacturing in producing ti-6al-4v parts. International Journal of Computer Integrated Manufacturing, 31(8), 785–798.CrossRef Xu, F., et al. (2018). Realisation of a multi-sensor framework for process monitoring of the wire arc additive manufacturing in producing ti-6al-4v parts. International Journal of Computer Integrated Manufacturing, 31(8), 785–798.CrossRef
Zurück zum Zitat Yin, L., Wang, J., Hu, H., Han, S., & Zhang, Y. (2019). Prediction of weld formation in 5083 aluminum alloy by twin-wire CMT welding based on deep learning. Welding in the World, 63(4), 947–955.CrossRef Yin, L., Wang, J., Hu, H., Han, S., & Zhang, Y. (2019). Prediction of weld formation in 5083 aluminum alloy by twin-wire CMT welding based on deep learning. Welding in the World, 63(4), 947–955.CrossRef
Zurück zum Zitat Yu, R., Han, J., Bai, L., & Zhao, Z. (2021). Identification of butt welded joint penetration based on infrared thermal imaging. Journal of Materials Research and Technology, 12, 1486–1495.CrossRef Yu, R., Han, J., Bai, L., & Zhao, Z. (2021). Identification of butt welded joint penetration based on infrared thermal imaging. Journal of Materials Research and Technology, 12, 1486–1495.CrossRef
Zurück zum Zitat Yusof, M., Kamaruzaman, M., Ishak, M., & Ghazali, M. (2017). Porosity detection by analyzing arc sound signal acquired during the welding process of gas pipeline steel. The International Journal of Advanced Manufacturing Technology, 89(9), 3661–3670.CrossRef Yusof, M., Kamaruzaman, M., Ishak, M., & Ghazali, M. (2017). Porosity detection by analyzing arc sound signal acquired during the welding process of gas pipeline steel. The International Journal of Advanced Manufacturing Technology, 89(9), 3661–3670.CrossRef
Zurück zum Zitat Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks (pp. 818–833). Springer. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks (pp. 818–833). Springer.
Zurück zum Zitat Zhang, Z., Wen, G., & Chen, S. (2019). Weld image deep learning-based on-line defects detection using convolutional neural networks for al alloy in robotic arc welding. Journal of Manufacturing Processes, 45, 208–216.CrossRef Zhang, Z., Wen, G., & Chen, S. (2019). Weld image deep learning-based on-line defects detection using convolutional neural networks for al alloy in robotic arc welding. Journal of Manufacturing Processes, 45, 208–216.CrossRef
Metadaten
Titel
Monitoring and control the Wire Arc Additive Manufacturing process using artificial intelligence techniques: a review
verfasst von
Giulio Mattera
Luigi Nele
Davide Paolella
Publikationsdatum
09.02.2023
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 2/2024
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-023-02085-5

Weitere Artikel der Ausgabe 2/2024

Journal of Intelligent Manufacturing 2/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.