Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

More results on integral inequalities for strongly generalized \(( \phi,h,s )\)-preinvex functions

verfasst von: Shahid Qaisar, Jamshed Nasir, Saad Ihsan Butt, Sabir Hussain

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

The main goal of this research is to introduce a new form of generalized Hermite–Hadamard and Simpson type inequalities utilizing Riemann–Liouville fractional integral by a new class of preinvex functions which is known as strongly generalized \(( \phi,h,s )\)-preinvex functions in the second sense. It is observed that the derived inequalities are generalizations of the inequalities obtained by W. Liu, W. Wen (Filomat 30(2):333–342, 2016).
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Convexity plays a focal and major part in mathematical finance, economics, engineering, management sciences, and optimization theory. As of late, a few extensions and generalizations have been considered for classical convexity. A huge speculation of convex functions is that of invex functions presented in [2]. The fundamental properties of the preinvex functions and their use in optimization and mathematical programming issues have been considered in [35]. It is realized that the preinvex functions and invex sets may not be convex functions and convex sets, respectively. Another generalization of the convex function, which is known as the φ-convex function presented and examined in [6], is similarly vital. Specifically, these generalizations of the convex functions are very extraordinary and do not contain each other. Another class of nonconvex functions is presented and studied in [7], which incorporates these generalizations as special cases. This class of nonconvex functions is called the φ-preinvex and φ-invex functions. Some well-known integral inequalities like those of Simpson and Hermite–Hadamard type in literature are under discussion. In our opinion, these inequalities have great impact in pure and applied mathematics. Many new extensions and interesting generalizations of these integral inequalities have been studied in recent years. For further details involving Hermite–Hadamard and Simpson type inequalities on different concepts of convex function, the reader is referred to [1, 816].
In [1, 17] Wenjun Liu et al. presented the following form of inequalities for MT-convex functions:
Let \(f:I\subset R\rightarrow R\) be a differentiable mapping on \(I^{\circ }\) (the interior of I) such that \(f^{\prime }\in L_{1} ( [ u,v ] ) \), where \(u,v\in I\) with \(u< v\). Then, for all \(x\in [ u,v ] \), \(\delta \in [ 0,1 ] \), and \(\alpha >0\), we have
$$\begin{aligned} &S_{f} ( x,\delta,\alpha,u,v )\\ &\quad =\frac{ ( x-u ) ^{\alpha +1}}{v-u} \int _{0}^{1} \bigl( z^{\alpha }-\delta \bigr) f ^{\prime } \bigl( zx+ ( 1-z ) u \bigr) \,dz \\ &\qquad{}+\frac{ ( v-x ) ^{\alpha +1}}{v-u} \int _{0}^{1} \bigl( \delta -z^{\alpha } \bigr) f^{\prime } \bigl( zx+ ( 1-z ) v \bigr) \,dz. \end{aligned}$$
Theorem 1
Let \(f:I\subset R\rightarrow R\) be a differentiable mapping on \(I^{\circ }\) (the interior of I) such that \(f^{\prime }\in L_{1} ( [ u,v ] ) \), where \(u,v\in I\) with \(u< v\). If \(\vert f^{\prime } \vert \) is an MT-convex function on \([ u,v ] \) and \(\vert f^{\prime } ( x ) \vert \leq M\) for all \(x\in [ u,v ] \), then we have the following inequality for fractional integrals with \(\alpha >0\):
$$\begin{aligned} & \bigl\vert S_{f} ( x,1,\alpha,u,v ) \bigr\vert \\ &\quad= \biggl\vert \frac{ ( x-u ) ^{\alpha }f ( u ) + ( v-x ) ^{\alpha }f ( v ) }{v-u}-\frac{\varGamma ( \alpha +1 ) }{v-u} \bigl[ J_{x^{-}}^{\alpha }f ( u ) +J_{x^{+}}^{\alpha }f ( v ) \bigr] \biggr\vert \\ &\quad\leq \frac{M [ ( x-u ) ^{\alpha +1}+ ( v-x ) ^{\alpha +1} ] }{2(v-u)} \biggl[ \pi -\frac{ \varGamma ( \alpha +\frac{1}{2} ) \varGamma ( \frac{1}{2} ) }{\varGamma ( \alpha +1 ) } \biggr]. \end{aligned}$$
(1)
Proposition 1
Under the assumption of Theorem 1, putting \(x=\frac{u+v}{2}\), we obtain
$$\begin{aligned} & \biggl\vert S_{f} \biggl( \frac{u+v}{2},1,\alpha,u,v \biggr) \biggr\vert \\ &\quad= \biggl\vert \frac{ ( v-u ) ^{\alpha -1}}{2^{\alpha -1}}\frac{f ( u ) +f ( v ) }{2}- \frac{\varGamma ( \alpha +1 ) }{v-u} \bigl[ J_{x^{-}}^{\alpha }f ( u ) +J_{x^{+}}^{\alpha }f ( v ) \bigr] \biggr\vert \\ &\quad\leq \frac{M ( v-u ) ^{\alpha }}{2^{ \alpha +1}} \biggl[ \pi -\frac{\varGamma ( \alpha +\frac{1}{2} ) \varGamma ( \frac{1}{2} ) }{\varGamma ( \alpha +1 ) } \biggr]. \end{aligned}$$
(2)
Theorem 2
Let \(f:I\subset R\rightarrow R\) be a differentiable mapping on \(I^{\circ }\) (the interior of I) such that \(f^{\prime }\in L_{1} ( [ u,v ] ) \), where \(u,v\in I\) with \(u< v\). If \(\vert f^{\prime } \vert ^{q}\) is an MT-convex function on \([ u,v ] \) for \(q\geq 1\) and \(\vert f ^{\prime } ( x ) \vert \leq M\), for all \(x\in [ u,v ] \), then we have the following inequality for fractional integrals with \(\alpha >0\):
$$\begin{aligned} & \bigl\vert S_{f} ( x,1,\alpha,u,v ) \bigr\vert \\ &\quad= \biggl\vert \frac{ ( x-u ) ^{\alpha }f ( u ) + ( v-x ) ^{\alpha }f ( v ) }{v-u}-\frac{\varGamma ( \alpha +1 ) }{v-u} \bigl[ J_{x^{-}}^{\alpha }f ( u ) +J_{x^{+}}^{\alpha }f ( v ) \bigr] \biggr\vert \\ &\quad\leq \frac{M [ ( x-u ) ^{\alpha +1}+ ( v-x ) ^{\alpha +1} ] }{(v-u)} \biggl( \frac{\alpha }{\alpha +1} \biggr) ^{1-\frac{1}{q}} \biggl[ \frac{\pi }{2}-\frac{ \varGamma ( \alpha +\frac{1}{2} ) \varGamma ( \frac{1}{2} ) }{2\varGamma ( \alpha +1 ) } \biggr] ^{1-\frac{1}{q}}. \end{aligned}$$
(3)
Theorem 3
Let \(f:I\subset R\rightarrow R\) be a differentiable mapping on \(I^{\circ }\) (the interior of I) such that \(f^{\prime }\in L_{1} ( [ u,v ] ) \), where \(u,v\in I\) with \(u< v\). If \(\vert f^{\prime } \vert ^{q}\) is an MT-convex function on \([ u,v ] \) for \(q\geq 1\) and \(\vert f ^{\prime } ( x ) \vert \leq M\), for all \(x\in [ u,v ] \), then we have the following inequality for fractional integrals with \(\alpha >0\):
$$\begin{aligned} & \bigl\vert S_{f} ( x,0,\alpha,u,v ) \bigr\vert \\ &\quad= \biggl\vert \frac{ ( x-u ) ^{\alpha }+ ( v-x ) ^{\alpha }}{v-u}f ( x ) -\frac{\varGamma ( \alpha +1 ) }{v-u} \bigl[ J_{x^{-}}^{\alpha }f ( u ) +J_{x^{+}}^{\alpha }f ( v ) \bigr] \biggr\vert \\ &\quad\leq \frac{M [ ( x-u ) ^{\alpha +1}+ ( v-x ) ^{\alpha +1} ] }{(v-u)} \biggl( \frac{\pi }{2} \biggr) ^{\frac{1}{q}} \biggl[ \frac{1}{ ( \alpha p+1 ) } \biggr] ^{\frac{1}{p}}. \end{aligned}$$
(4)
Theorem 4
Under the assumption of the above theorem, we obtain
$$\begin{aligned} & \biggl\vert S_{f} \biggl( \frac{u+v}{2},0,\alpha,u,v \biggr) \biggr\vert \\ &\quad = \biggl\vert \frac{ ( v-u ) ^{\alpha -1}}{2^{\alpha -1}}f \biggl( \frac{u+v}{2} \biggr) + \frac{\delta ( v-u ) ^{ \alpha -1}}{2^{\alpha -1}}\frac{f ( u ) +f ( v ) }{2}-\frac{\varGamma ( \alpha +1 ) }{v-u} \bigl[ J_{x^{-}} ^{\alpha }f ( u ) +J_{x^{+}}^{\alpha }f ( v ) \bigr] \biggr\vert \\ &\quad \leq \frac{M ( v-u ) ^{\alpha }}{2^{\alpha }} \biggl( \frac{ \pi }{2} \biggr) ^{\frac{1}{q}} \biggl( \frac{2}{\alpha } \int _{0}^{1} ( \delta -s ) ^{p}s^{\frac{1}{\alpha }-1} \,ds-\frac{1}{ \alpha } \int _{0}^{1} ( \delta -s ) ^{p}s^{\frac{1}{\alpha }-1} \,ds \biggr) ^{\frac{1}{p}}. \end{aligned}$$
(5)
Theorem 5
Let \(f:I\subset R\rightarrow R\) be a differentiable mapping on \(I^{\circ }\) (the interior of I) such that \(f^{\prime }\in L_{1} ( [ u,v ] ) \), where \(a,b\in I\) with \(u< v\). If \(\vert f^{\prime } \vert ^{q}\) is an MT-convex function on \([ u,v ] \) for \(q\geq 1\) and \(\vert f ^{\prime } ( x ) \vert \leq M\), for all \(x\in [ u,v ] \), then we have the following inequality for fractional integrals with \(\alpha >0\) and \(\delta \in [ 0,1 ]\):
$$\begin{aligned} & \bigl\vert S_{f} ( x,\delta,\alpha,u,v ) \bigr\vert \\ &\quad \leq \frac{M [ ( x-u ) ^{\alpha +1}+ ( v-x ) ^{\alpha +1} ] }{v-u} \biggl( \frac{2\alpha \delta ^{1+\frac{1}{\alpha }}+1}{\alpha +1}-\delta \biggr) ^{1- \frac{1}{q}} \\ &\qquad{}\times \biggl( 2\delta \biggl( \beta \biggl( \delta ^{\frac{1}{\alpha }}; \frac{3}{2},\frac{1}{2} \biggr) +\beta \biggl( \delta ^{\frac{1}{ \alpha }};\frac{1}{2},\frac{3}{2} \biggr) \biggr) + \beta \biggl( \alpha +\frac{3}{2},\frac{1}{2} \biggr) +\beta \biggl( \alpha + \frac{1}{2},\frac{3}{2} \biggr) -\delta \pi \\ &\qquad{}-2 \biggl( \beta \biggl( \delta ^{\frac{1}{\alpha }};\alpha + \frac{3}{2},\frac{1}{2} \biggr) + \beta \biggl( \delta ^{\frac{1}{\alpha }};\alpha +\frac{1}{2}, \frac{3}{2} \biggr) \biggr) \Big/{2} \biggr) ^{\frac{1}{q}}. \end{aligned}$$
(6)
Fractional calculus was figured in 1695, soon after the advancement of classical calculus. The earliest efficient reviews were credited to Liouville, Riemann, Leibniz, etc. [15, 16, 1823]. For quite a while, fractional calculus was viewed as a pure mathematical domain without real applications. In any case, in recent decades, such a situation has changed. It has been found that fractional calculus can be useful and even capable, and a diagram of the straightforward history about fractional calculus, particularly with applications, can be found in Machado et al. [24]. Presently, fractional calculus and its applications are experiencing quick advancements with more persuading applications in this real world.
In this paper, we establish a new class of preinvex functions, which are called strongly generalized \(( \phi,h,s )\)-preinvex functions, and some generalizations for these inequalities mentioned above. Before moving towards our main results, first we recall the following definitions.
Definition 1
Let f \(\in L_{1} [ u,v ] \). The Riemann–Liouville integrals \(\int _{u^{+}}^{\alpha } ( f ) \) and \(\int _{v^{-}}^{\alpha } ( f ) \) of order \(\alpha >0\) with \(u\geq 0\) are defined by
$$ \int _{u^{+}}^{\alpha }f ( x ) =\frac{1}{\varGamma ( \alpha ) } \int _{u}^{x} ( x-z ) ^{\alpha -1}f ( z ) \,dz, \quad \text{for } x>u, $$
and
$$ \int _{v^{-}}^{\alpha }f ( x ) =\frac{1}{\varGamma ( \alpha ) } \int _{x}^{v} ( z-x ) ^{\alpha -1}f ( z ) \,dz, \quad \text{for }v>x, $$
where \(\varGamma ( \alpha ) =\int _{0}^{\infty }e^{-w}w^{ \alpha -1}\,dw \). Here, \(\int _{u^{+}}^{0}f ( x ) =\int _{v ^{-}}^{0}f ( x ) =f ( x ) \).
In a special case, when \(\alpha =1\) in Definition 1, we get the classical integral.
Here, we present new generalized inequalities using the Riemann–Liouville fractional integral by the class of strongly generalized \(( \phi,h,s )\)-preinvex functions in the second sense.
Definition 2
([19])
The function f on the invex set \(K_{\phi {\xi }}\) is said to be ϕ-preinvex with respect to ξ and ϕ if
$$ f \bigl( x +{ze^{i\phi }\xi ( {y,x} ) } \bigr) \leq ( {1-z} ) f ( x ) +zf ( y ),\quad \forall x,y\in K_{\phi {\xi }}, z\in [ {0,1} ]. $$
The function f is said to be ϕ-preconcave if and only if −f is φ-preinvex. Every convex function is a ϕ-preinvex function, but not conversely.
Definition 3
([5])
The function f on the invex set \(K_{\phi {\xi }}\) is said to be \(s_{\phi }\)-preinvex with respect to ξ and ϕ if
$$ f \bigl( x+{ze^{i\phi }\xi ( {y,x} ) } \bigr) \leq ( {1-z} ) ^{s}f ( x ) +z^{s}f ( y ) ,\quad \forall x,y\in K_{\phi {\xi }}, z\in [ {0,1} ], s\in ( 0,1 ]. $$

2 Main results

First we introduce a new concept named strongly generalized \(( \phi,h,s )\)-preinvex functions in the second sense. It is defined as follows.
Definition 4
The function f on the invex set K is said to be strongly generalized \(( \phi,h,s )\)-preinvex in the second sense with modulus \(c>0\) if it is nonnegative, and for all \(u,v\in K\) and \(z\times s\in ( 0,1 ) \times ( 0,1 ] \), the following inequality holds:
$$ f \bigl( v+ze^{i\phi }\xi ( u,v ) \bigr) \leq h^{s} ( z ) f ( u ) +h^{s} ( 1-z ) f ( v ) -cz ( 1-z ) \bigl\Vert e^{i\phi }\xi ( u,v ) \bigr\Vert ^{2}. $$
Notation. Let \(f:I\subset R\rightarrow R\) be a differentiable mapping on \(I^{\circ }\) (the interior of I), from now on we will consider
$$\begin{aligned} &\varPsi _{f} \bigl( x,\delta,\sigma,\alpha,e^{i\phi }\xi ( u,v ) \bigr) \\ &\quad= \bigl( 1-\delta ^{\sigma } \bigr) \biggl[ \frac{ \xi ( v,x ) ^{\alpha }f ( v+e^{i\phi }\xi ( x,v ) ) +\xi ( x,u ) ^{\alpha }f ( u+e ^{i\phi }\xi ( x,u ) ) }{e^{i\phi }\xi ( v,u ) } \biggr] f ( x ) \\ &\qquad{}+\delta ^{\sigma } \biggl[ \frac{\xi ( v,x ) ^{\alpha }f ( v ) +\xi ( u,x ) ^{\alpha }f ( u ) }{e^{i\phi }\xi ( v,u ) } \biggr] \\ &\qquad{}-\frac{\varGamma ( \alpha +1 ) }{e^{i\alpha \phi }\xi ( v,u ) ^{\alpha }} \bigl[ J_{ ( u+e^{i\phi }\xi ( x,u ) ) +}^{\alpha }f ( u ) +J_{ ( v+e^{i\phi }\xi ( x,v ) ) +}^{\alpha }f ( v ) \bigr], \end{aligned}$$
where \(u< u+e^{i\phi }\xi ( v,u ) \), \(x\in [ u,u+e ^{i\phi }\xi ( v,u ) ] \), \(\delta \in[ 0,1]\), \(\alpha >0\) and Γ is Euler gamma function.
To get new integral inequalities, first we focus on proving the following lemma.
Lemma 1
Let \(K_{\phi \xi }\subseteq R\) be a ϕ-invex subset with respect to \(\phi (\cdot ) \) and ξ: \(K_{\phi \xi }\times K_{ \phi \xi }\subseteq R\) with \(u< u+e^{i\phi }\xi ( v,u ) \) and \(0\leq \phi \leq \frac{\pi }{2}\). Suppose that \(f:K_{\phi \xi }\rightarrow R\) is a differentiable mapping such that \(f^{\prime }\in L ( [ u,u+e^{i\phi }\xi ( v,u ) ] ) \) for all \(x\in [ u,u+e^{i\phi }\xi ( v,u ) ] \), \(\delta \times \sigma \in [ 0,1 ] \), and \(\alpha >0\), then we have
$$\begin{aligned} &\varPsi _{f} \bigl( x,\delta,\sigma,\alpha,e^{i\phi }\xi ( v,u ) \bigr) \\ &\quad=\frac{\xi ( x,u ) ^{\alpha +1}}{e ^{i\phi }\xi ( v,u ) } \int _{0}^{1} \bigl( z^{\alpha }- \delta ^{\sigma } \bigr) f^{\prime } \bigl( u+ze^{i\phi }\xi ( x,u ) \bigr) \,dz \\ &\qquad{}+\frac{\xi ( v,x ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \int _{0}^{1} \bigl( \delta ^{\sigma }-z^{\alpha } \bigr) f^{\prime } \bigl( v+ze^{i\phi }\xi ( x,v ) \bigr) \,dz. \end{aligned}$$
Proof
Using integration by parts, we get
$$\begin{aligned} & \int _{0}^{1} \bigl( z^{\alpha }-\delta ^{\sigma } \bigr) f^{{ \prime }} \bigl( u+ze^{i\phi }\xi ( x,u ) \bigr) \,dz \\ &\quad= \biggl[ \bigl( z^{\alpha }-\delta ^{\sigma } \bigr) \frac{f ( u+ze^{i\phi }\xi ( x,u ) ) }{e^{i\phi }\xi ( x,u ) }|_{0}^{1} - \alpha \int _{0}^{1}z^{ \alpha -1}\frac{f ( u+ze^{i\phi }\xi ( x,u ) ) }{e^{i\phi }\xi ( x,u ) }\,dz \biggr] \\ &\quad= \biggl[ \frac{ ( 1-\delta ^{\sigma } ) f ( u+e^{i \phi }\xi ( x,u ) ) +\delta ^{\sigma }f ( a ) }{e^{i\phi }\xi ( x,u ) }-\frac{\varGamma ( \alpha +1 ) }{e^{i\alpha \phi }\xi ( x,u ) ^{\alpha }}J_{ ( u+e^{i\phi }\xi ( x,u ) ) +}^{\alpha }f ( u ) \biggr]. \end{aligned}$$
Analogously, we have
$$\begin{aligned} & \int _{0}^{1} \bigl( \delta ^{\sigma }-z^{\alpha } \bigr) f^{{ \prime }} \bigl( v+ze^{i\phi }\xi ( x,v ) \bigr) \,dz \\ &\quad= \biggl[ \bigl( z^{\alpha }-\delta ^{\sigma } \bigr) \frac{f ( v+ze^{i\phi }\xi ( x,u ) ) }{e^{i\phi }\xi ( x,u ) }|_{0}^{1} + \alpha \int _{0}^{1}z^{ \alpha -1}\frac{f ( v+ze^{i\phi }\xi ( x,v ) ) }{e^{i\phi }\xi ( x,v ) }\,dz \biggr] \\ &\quad= \biggl[ \frac{ ( 1-\delta ^{\sigma } ) f ( v+e^{i \phi }\xi ( x,v ) ) +\delta ^{\sigma }f ( v ) }{e^{i\phi }\xi ( v,x ) }-\frac{\varGamma ( \alpha +1 ) }{e^{i\alpha \phi }\xi ( v,x ) ^{\alpha }}J_{ ( v+e^{i\phi }\xi ( x,v ) ) +}^{\alpha }f ( v ) \biggr]. \end{aligned}$$
Both sides of the above equalities are multiplied by \(\frac{\xi ( x,u ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) }\) and \(\frac{\xi ( v,x ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) }\) analogously, and then adding them, we obtain the required result. This completes the proof. □
Theorem 6
Let \(K_{\phi \xi }\subseteq R\) be a ϕ-invex subset with respect to \(\phi (\cdot ) \) and ξ: \(K_{\phi \xi }\times K_{ \phi \xi }\subseteq R\) with \(u< u+e^{i\phi }\xi ( v,u ) \) and \(0\leq \phi \leq \frac{\pi }{2}\). Suppose that \(f:K_{\phi \xi }\rightarrow R\) is a differentiable mapping such that \(f^{\prime }\in L ( [ u,u+e^{i\phi }\xi ( v,u ) ] ) \). If \(\vert f^{\prime } \vert \) is strongly generalized \(( \phi,h,s )\)-preinvex in the second sense and \(\vert f^{\prime } ( x ) \vert \leq M\), then for all \(x\in [ u,u+e^{i\phi }\xi ( v,u ) ] \), \(\delta \times \sigma \in [ 0,1 ] \), and \(\alpha >0\), we have
$$\begin{aligned} & \bigl\vert \varPsi _{f} \bigl( x,\delta,\sigma,\alpha,e^{i\phi } \xi ( u,v ) \bigr) \bigr\vert \\ &\quad\leq \frac{\xi ( x,u ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \bigl[ M \bigl( \varPsi _{1} ( \delta, \sigma,\alpha,s ) +\varPsi _{2} ( \delta,\sigma, \alpha,s ) \bigr) -c \bigl\Vert e ^{i\phi }\xi ( u,x ) \bigr\Vert ^{2}\varPsi _{3} ( \delta,\sigma,\alpha ) \bigr] \\ &\qquad{}+\frac{\xi ( v,x ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \bigl[ M \bigl( \varPsi _{1} ( \delta, \sigma,\alpha ,s ) +\varPsi _{2} ( \delta,\sigma,\alpha,s ) \bigr) -c \bigl\Vert e^{i\phi }\xi ( v,x ) \bigr\Vert ^{2}\varPsi _{3} ( \delta,\sigma,\alpha ) \bigr]. \end{aligned}$$
(7)
Proof
Using Lemma 1, the property of modulus, and strongly generalized \(( \phi,h,s )\)-preinvexity in the second sense, we obtain
$$\begin{aligned} & \bigl\vert \varPsi _{f} \bigl( x,\delta,\sigma, \alpha,e^{i\phi } \xi ( u,v ) \bigr) \bigr\vert \\ &\quad\leq \frac{\xi ( x,u ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \int _{0}^{1} \bigl\vert z^{\alpha }-\delta ^{ \sigma } \bigr\vert \bigl\vert f^{\prime } \bigl( u+e^{i\phi }z \xi ( x,u ) \bigr) \bigr\vert \,dz \\ &\qquad{}+\frac{\xi ( v,x ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \int _{0}^{1} \bigl\vert z^{\alpha }-\delta ^{\sigma } \bigr\vert \bigl\vert f^{\prime } \bigl( v+e^{i\phi }z\xi ( x,v ) \bigr) \bigr\vert \,dz \\ &\quad\leq \frac{\xi ( x,u ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \int _{0}^{1} \bigl\vert z^{\alpha }-\delta ^{ \sigma } \bigr\vert \bigl( h^{s} ( z ) \bigl\vert f^{ \prime } ( x ) \bigr\vert +h^{s} ( 1-z ) \bigl\vert f^{\prime } ( u ) \bigr\vert -cz ( 1-z ) \bigl\Vert e^{i\phi }\xi ( u,x ) \bigr\Vert ^{2} \bigr) \,dz \\ &\qquad{}+\frac{\xi ( v,x ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \int _{0}^{1} \bigl( \delta ^{\sigma }-z^{\alpha } \bigr) \bigl( h^{s} ( z ) \bigl\vert f^{\prime } ( x ) \bigr\vert +h^{s} ( 1-z ) \bigl\vert f^{\prime } ( u ) \bigr\vert \\ &\qquad{}-cz ( 1-z ) \bigl\Vert e^{i\phi } \xi ( v,x ) \bigr\Vert ^{2} \bigr) \,dz \\ &\quad =\frac{\xi ( x,u ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \bigl[ \varPsi _{1} ( \delta,\sigma,\alpha,s ) \bigl\vert f^{\prime } ( x ) \bigr\vert +\varPsi _{2} ( \delta, \sigma,\alpha,s ) \bigl\vert f^{\prime } ( u ) \bigr\vert -c \bigl\Vert e^{i\phi }\xi ( u,x ) \bigr\Vert ^{2}\varPsi _{3} ( \delta,\sigma,\alpha ) \bigr] \\ &\qquad{}+\frac{\xi ( v,x ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \bigl[ \varPsi _{1} ( \delta,\sigma,\alpha,s ) \bigl\vert f^{\prime } ( x ) \bigr\vert +\varPsi _{2} ( \delta, \sigma,\alpha,s ) \bigl\vert f^{\prime } ( v ) \bigr\vert -c \bigl\Vert e^{i\phi }\xi ( v,x ) \bigr\Vert ^{2}\varPsi _{3} ( \delta,\sigma,\alpha ) \bigr], \end{aligned}$$
where we used the fact
$$\begin{aligned} &\varPsi _{1} ( \delta,\sigma,\alpha,s ) = \int _{0}^{1} \bigl\vert z^{\alpha }-\delta ^{\sigma } \bigr\vert h^{s} ( z ) \,dz, \\ &\varPsi _{2} ( \delta,\sigma,\alpha,s ) = \int _{0}^{1} \bigl\vert z^{\alpha }-\delta ^{\sigma } \bigr\vert h^{s} ( 1-z ) \,dz, \\ &\varPsi _{3} ( \delta,\sigma,\alpha ) = \int _{0}^{1} \bigl\vert z ^{\alpha }-\delta ^{\sigma } \bigr\vert z ( 1-z ) \,dz \\ &\phantom{\varPsi _{3} ( \delta,\sigma,\alpha )}=2\delta ^{\sigma }\beta \bigl( \delta ^{\frac{\sigma }{\alpha }},2,2 \bigr) -2\beta \bigl( \delta ^{\frac{\sigma }{\alpha }},\alpha +2,2 \bigr) +\beta ( \alpha +2,2 ) -\delta ^{\sigma }\beta ( 2,2 ). \end{aligned}$$
Hence the proof. □
Remark 1
On letting \(s=1\), \(\xi ( u,v ) =u-v\), \(\phi =c=\sigma =0\), \(x=\frac{u+v}{2}\), and \(h ( z ) =\frac{\sqrt{z}}{2 \sqrt{1-z}}\) in Theorem 6, then inequality (7) reduces to inequality (2).
Theorem 7
Let \(K_{\phi \xi }\subseteq R\) be a ϕ-invex subset with respect to \(\phi (\cdot ) \) and ξ: \(K_{\phi \xi }\times K_{ \phi \xi }\subseteq R\) with \(u< u+e^{i\phi }\xi ( v,u ) \) for \(0\leq \phi \leq \frac{\pi }{2}\). Suppose that \(f:K_{\phi \xi }\rightarrow R\) is a differentiable mapping such that \(f^{\prime }\in L ( [ u,u+e^{i\phi }\xi ( v,u ) ] ) \). If \(\vert f^{\prime } \vert \) is strongly generalized \(( \phi,h,s )\)-preinvex in the second sense with \(q>1\), \(\frac{1}{p}+\frac{1}{q}=1\), and \(\vert f^{\prime } ( x ) \vert \leq M\), then for all \(x\in [ u,u+e^{i \phi }\xi ( v,u ) ] \), \(\delta \times \sigma \in ( 0,1 ] \times ( 0,1 ] \), and \(\alpha >0\), we have
$$\begin{aligned} & \bigl\vert \varPsi _{f} \bigl( x,\delta,\sigma, \alpha,e^{i\phi } \xi ( u,v ) \bigr) \bigr\vert \\ &\quad\leq \frac{\xi ( x,u ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) }\varPsi _{6} ( \delta,\sigma,\alpha ) ^{\frac{1}{p}} \bigl[ M^{q} ( \varPsi _{4}+\varPsi _{5} ) -c \bigl\Vert e ^{i\phi }\xi ( u,x ) \bigr\Vert ^{2}\beta ( 2,2 ) \bigr] ^{\frac{1}{q}} \\ &\qquad{}+\frac{\xi ( v,x ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) }\varPsi _{6} ( \delta,\sigma,\alpha ) ^{ \frac{1}{p}} \bigl[ M^{q} ( \varPsi _{4}+\varPsi _{5} ) -c \bigl\Vert e ^{i\phi }\xi ( v,x ) \bigr\Vert ^{2}\beta ( 2,2 ) \bigr] ^{\frac{1}{q}}. \end{aligned}$$
(8)
Proof
Using Lemma 1 and the Holder integral inequality, we obtain
| Ψ f ( x , δ , σ , α , e i ϕ ξ ( u , v ) ) | ξ ( x , u ) α + 1 e i ϕ ξ ( v , u ) 0 1 | z α δ σ | | f ( u + z e i ϕ ξ ( x , u ) ) | d z + ξ ( v , x ) α + 1 e i ϕ ξ ( v , u ) 0 1 | δ σ z α | | f ( v + z e i ϕ ξ ( x , v ) ) | d z . ξ ( x , u ) α + 1 e i ϕ ξ ( v , u ) ( 0 1 | z α δ σ | p d z ) 1 p ( 0 1 | f ( u + z e i ϕ ξ ( x , u ) ) | q d z ) 1 q + ξ ( v , x ) α + 1 e i ϕ ξ ( v , u ) ( 0 1 | δ σ z α | p d z ) 1 p ( 0 1 | f ( v + z e i ϕ ξ ( x , v ) ) | q d z ) 1 q ξ ( x , u ) α + 1 e i ϕ ξ ( v , u ) ( 0 1 | δ σ z α | p d z ) 1 p × ( 0 1 ( h s ( z ) | f ( x ) | q + h s ( 1 z ) | f ( u ) | q c z ( 1 z ) e i ϕ ξ ( u , x ) 2 ) d z ) 1 q + ξ ( v , x ) α + 1 e i ϕ ξ ( v , u ) ( 0 1 | δ σ z α | p d z ) 1 p × ( 0 1 ( h s ( z ) | f ( x ) | q + h s ( 1 z ) | f ( u ) | q c z ( 1 z ) e i ϕ ξ ( v , x ) 2 ) d z ) 1 q = ξ ( x , u ) α + 1 e i ϕ ξ ( v , u ) Ψ 6 ( δ , σ , α ) 1 p [ M q ( Ψ 4 + Ψ 5 ) c e i ϕ ξ ( u , x ) 2 β ( 2 , 2 ) ] 1 q + ξ ( v , x ) α + 1 e i ϕ ξ ( v , u ) Ψ 6 ( δ , σ , α ) 1 p [ M q ( Ψ 4 + Ψ 5 ) c e i ϕ ξ ( v , x ) 2 β ( 2 , 2 ) ] 1 q ,
where we used the fact
$$\begin{aligned} &\varPsi _{4} = \int _{0}^{1}h^{s} ( z ) \,dz, \\ &\varPsi _{5} = \int _{0}^{1}h^{s} ( 1-z ) \,dz, \\ &\varPsi _{6} ( \delta,\sigma,\alpha ) = \int _{0}^{1} \bigl\vert z ^{\alpha }-\delta ^{\sigma } \bigr\vert \,dz=\frac{1+2\alpha \delta ^{\sigma ( \frac{1+\alpha }{\alpha } ) }}{1+\alpha }-\delta ^{\sigma }. \end{aligned}$$
This completes the proof. □
Remark 2
On letting \(\delta =s=1\), \(\xi ( u,v ) =u-v\), \(\phi =c=0\), and \(h ( z ) = \frac{\sqrt{z}}{2\sqrt{1-z}}\) in Theorem 7, inequality (8) reduces to inequality (3).
Remark 3
On letting \(s=1\), \(\xi ( u,v ) =u-v\), \(\phi =c=\delta =0\), and \(h ( z ) =\frac{\sqrt{z}}{2\sqrt{1-z}}\) in Theorem 7, inequality (8) reduces to inequality (4).
Remark 4
On letting \(\sigma =s=1\), \(\xi ( u,v ) =u-v\), \(\phi =c=0\), \(x=\frac{u+v}{2}\), and \(h ( z ) =\frac{ \sqrt{z}}{2\sqrt{1-z}}\) in Theorem 7, inequality (8) reduces to inequality (5).
Theorem 8
Let \(f:I= [ u,u+e^{i\phi }\xi ( v,u ) ] \) \(\subset [ 0,\infty ) \rightarrow R\) be a differentiable mapping on \(I^{\circ}\) such that \(f^{\prime } \in L_{1} ( [ u,u+e^{i\phi }\xi ( v,u ) ] ) \). If \(\vert f^{\prime } \vert ^{q}\) is strongly generalized \(( \phi,h,s )\)-preinvex and \(\vert f ^{\prime } ( x ) \vert \leq M\) for all \(x\in [ u,u+e^{i\phi }\xi ( v,u ) ] \), \(\delta \times \sigma \in [ 0,1 ] \times ( 0,1 ] \), and \(\alpha >0\), we have
$$\begin{aligned} & \bigl\vert \varPsi _{f} \bigl( x,\delta,\sigma, \alpha,e^{i\phi } \xi ( u,v ) \bigr) \bigr\vert \\ &\quad\leq \frac{\xi ( x,u ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \bigl( \varPsi _{6} ( \delta,\sigma,\alpha ) \bigr) ^{\frac{1}{p}} \bigl[ M^{q} \bigl( \varPsi _{1} ( \delta,\sigma,\alpha,s ) +\varPsi _{2} ( \delta,\sigma,\alpha,s ) \bigr) \\ &\qquad{}-c \bigl\Vert e ^{i\phi }\xi ( u,x ) \bigr\Vert ^{2}\beta ( 2,2 ) \bigr] ^{\frac{1}{q}} \\ &\qquad{}+\frac{\xi ( v,x ) ^{\alpha +1}}{e^{i\phi }\xi ( v,u ) } \bigl( \varPsi _{6} ( \delta,\sigma,\alpha ) \bigr) ^{\frac{1}{p}} \bigl[ M^{q} \bigl( \varPsi _{1} ( \delta, \sigma,\alpha,s ) +\varPsi _{2} ( \delta,\sigma,\alpha,s ) \bigr) \\ &\qquad{}-c \bigl\Vert e^{i\phi } \xi ( v,x ) \bigr\Vert ^{2}\beta ( 2,2 ) \bigr] ^{\frac{1}{q}}. \end{aligned}$$
(9)
Proof
Using Lemma 1, the property of modulus and power mean inequality, we have
| Ψ f ( x , δ , σ , α , e i ϕ ξ ( u , v ) ) | ξ ( x , u ) α + 1 e i ϕ ξ ( v , u ) 0 1 ( z α δ σ ) | f ( u + z e i ϕ ξ ( x , u ) ) | d z + ξ ( v , x ) α + 1 e i ϕ ξ ( v , u ) 0 1 ( δ σ z α ) | f ( v + z e i ϕ ξ ( x , v ) ) | d z ξ ( x , u ) α + 1 e i ϕ ξ ( v , u ) ( 0 1 | z α δ σ | d z ) 1 1 q ( 0 1 | z α δ σ | | f ( u + z e i ϕ ξ ( x , u ) ) | d z ) 1 q + ξ ( v , x ) α + 1 e i ϕ ξ ( v , u ) ( 0 1 | z α δ σ | d z ) 1 1 q ( 0 1 | z α δ σ | | f ( v + z e i ϕ ξ ( x , v ) ) | d z ) 1 q ξ ( x , u ) α + 1 e i ϕ ξ ( v , u ) ( 0 1 | z α δ σ | d z ) 1 1 q × ( 0 1 | z α δ σ | ( h s ( z ) M q + h s ( 1 z ) M q c z ( 1 z ) e i ϕ ξ ( u , x ) 2 ) d z ) 1 q + ξ ( v , x ) α + 1 e i ϕ ξ ( v , u ) ( 0 1 | z α δ σ | d z ) 1 1 q × ( 0 1 | z α δ σ | ( h s ( z ) M q + h s ( 1 z ) M q c z ( 1 z ) e i ϕ ξ ( v , x ) 2 ) d z ) 1 q = ξ ( x , u ) α + 1 e i ϕ ξ ( v , u ) ( Ψ 6 ( δ , σ , α ) ) 1 p [ M q ( Ψ 1 ( δ , σ , α , s ) + Ψ 2 ( δ , σ , α , s ) ) c e i ϕ ξ ( u , x ) 2 β ( 2 , 2 ) ] 1 q + ξ ( v , x ) α + 1 e i ϕ ξ ( v , u ) ( Ψ 6 ( δ , σ , α ) ) 1 p [ M q ( Ψ 1 ( δ , σ , α , s ) + Ψ 2 ( δ , σ , α , s ) ) c e i ϕ ξ ( v , x ) 2 β ( 2 , 2 ) ] 1 q .
Hence the proof. □
Remark 5
On letting \(\sigma =s=1\), \(\xi ( u,v ) =u-v\), \(\phi =c=0\), \(x=\frac{u+v}{2}\), and \(h ( z ) =\frac{ \sqrt{z}}{2\sqrt{1-z}}\) in Theorem 8, inequality (9) reduces to inequality (6).

Acknowledgements

The first author is grateful to Prof. Dr. S. M. Junaid Zaidi, Executive Director and Prof. Dr. Raheel Qamar Rector, COMSATS University Islamabad, Sahiwal Campus, Pakistan, for providing excellent research facilities. The authors are grateful to the reviewers and the editor for their useful and valuable comments and advices toward the improvement of the paper.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Liu, W., Wen, W.: Some generalizations of different type of integral inequalities for MT-convex functions. Filomat 30(2), 333–342 (2016) MathSciNetCrossRef Liu, W., Wen, W.: Some generalizations of different type of integral inequalities for MT-convex functions. Filomat 30(2), 333–342 (2016) MathSciNetCrossRef
3.
4.
Zurück zum Zitat Noor, M.A.: On generalized preinvex functions and monotonicities. J. Inequal. Pure Appl. Math. 5, Article ID 110 (2004) MathSciNetMATH Noor, M.A.: On generalized preinvex functions and monotonicities. J. Inequal. Pure Appl. Math. 5, Article ID 110 (2004) MathSciNetMATH
5.
Zurück zum Zitat Noor, M.A.: Some new classes of nonconvex functions. Nonlinear Funct. Anal. Appl. 11, 165–171 (2006) MathSciNetMATH Noor, M.A.: Some new classes of nonconvex functions. Nonlinear Funct. Anal. Appl. 11, 165–171 (2006) MathSciNetMATH
6.
Zurück zum Zitat Weir, T., Mond, B.: Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 136, 29–38 (1998) CrossRef Weir, T., Mond, B.: Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 136, 29–38 (1998) CrossRef
7.
Zurück zum Zitat Noor, M.A., Noor, K.I.: Generalized preinvex functions and their properties. J. Appl. Math. Stoch. Anal. 26, Article ID 12736 (2006) MathSciNetMATH Noor, M.A., Noor, K.I.: Generalized preinvex functions and their properties. J. Appl. Math. Stoch. Anal. 26, Article ID 12736 (2006) MathSciNetMATH
8.
Zurück zum Zitat Iqbal, M., Qaisar, S., Muddassar, M.: A short note on integral inequality of type Hermite–Hadamard through convexity. J. Comput. Anal. Appl. 21(5), 946–956 (2016) MathSciNetMATH Iqbal, M., Qaisar, S., Muddassar, M.: A short note on integral inequality of type Hermite–Hadamard through convexity. J. Comput. Anal. Appl. 21(5), 946–956 (2016) MathSciNetMATH
9.
Zurück zum Zitat Qaisar, S., Iqbal, M., Muddassar, M.: New Hermite–Hadamard inequalities for preinvex function via fractional integrals. J. Comput. Anal. Appl. 20(7), 1318–1328 (2016) MathSciNetMATH Qaisar, S., Iqbal, M., Muddassar, M.: New Hermite–Hadamard inequalities for preinvex function via fractional integrals. J. Comput. Anal. Appl. 20(7), 1318–1328 (2016) MathSciNetMATH
10.
Zurück zum Zitat Qaisar, S., Hussain, S.: More results on Hermite–Hadamard type inequalities through preinvexity. J. Appl. Anal. Comput. 21(5), 293–305 (2016) Qaisar, S., Hussain, S.: More results on Hermite–Hadamard type inequalities through preinvexity. J. Appl. Anal. Comput. 21(5), 293–305 (2016)
11.
Zurück zum Zitat Bahtti, M.I., Iqbal, M., Dragomir, S.S.: Some new fractional integral inequalities Hermite–Hadamard type inequalities. J. Comput. Anal. Appl. 16(4), 643–653 (2014) MathSciNet Bahtti, M.I., Iqbal, M., Dragomir, S.S.: Some new fractional integral inequalities Hermite–Hadamard type inequalities. J. Comput. Anal. Appl. 16(4), 643–653 (2014) MathSciNet
12.
Zurück zum Zitat Iqbal, M., Qaisar, S., Hussain, S.: On Simpson type inequalities utilizing fractional integral. J. Comput. Anal. Appl. 23(6), 1137–1145 (2017) MathSciNet Iqbal, M., Qaisar, S., Hussain, S.: On Simpson type inequalities utilizing fractional integral. J. Comput. Anal. Appl. 23(6), 1137–1145 (2017) MathSciNet
13.
Zurück zum Zitat Zheng, S., Du, T.-S., Zhao, S.-S., Chen, L.-Z.: New Hermite–Hadamard’s inequalities for twice differentiable ϕ-MT-preinvex functions. J. Nonlinear Sci. Appl. 9, 5648–5660 (2016) MathSciNetCrossRef Zheng, S., Du, T.-S., Zhao, S.-S., Chen, L.-Z.: New Hermite–Hadamard’s inequalities for twice differentiable ϕ-MT-preinvex functions. J. Nonlinear Sci. Appl. 9, 5648–5660 (2016) MathSciNetCrossRef
14.
Zurück zum Zitat Tunc, M.: Ostrowski type inequalities for functions whose derivatives are MT-convex. J. Comput. Anal. Appl. 17, 691–696 (2014) MathSciNetMATH Tunc, M.: Ostrowski type inequalities for functions whose derivatives are MT-convex. J. Comput. Anal. Appl. 17, 691–696 (2014) MathSciNetMATH
15.
Zurück zum Zitat Qaisar, S., Iqbal, M., Hussain, S., Butt, S.I., Meraj, M.A.: New inequalities on Hermite–Hadamard utilizing fractional integrals whose absolute values of second derivatives is P-convex and related fractional inequalities. Kragujev. J. Math. 42(1), 15–27 (2018) CrossRef Qaisar, S., Iqbal, M., Hussain, S., Butt, S.I., Meraj, M.A.: New inequalities on Hermite–Hadamard utilizing fractional integrals whose absolute values of second derivatives is P-convex and related fractional inequalities. Kragujev. J. Math. 42(1), 15–27 (2018) CrossRef
16.
Zurück zum Zitat Qaisar, S., He, C., Hussain, S.: A generalizations of Simpson’s type inequality for differentiable functions using \(( {\alpha,m} ) \)-convex functions and applications. J. Inequal. Appl. 2013, 158 (2013) MathSciNetCrossRef Qaisar, S., He, C., Hussain, S.: A generalizations of Simpson’s type inequality for differentiable functions using \(( {\alpha,m} ) \)-convex functions and applications. J. Inequal. Appl. 2013, 158 (2013) MathSciNetCrossRef
17.
Zurück zum Zitat Liu, W., Wen, W., Park, J.: Hermite–Hadamard’s inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl. 9, 766–777 (2016) MathSciNetCrossRef Liu, W., Wen, W., Park, J.: Hermite–Hadamard’s inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl. 9, 766–777 (2016) MathSciNetCrossRef
18.
Zurück zum Zitat Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999) Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
19.
Zurück zum Zitat Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, USA (1993) MATH Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, USA (1993) MATH
20.
Zurück zum Zitat Dahmani, Z., Tabharit, L., Taf, S.: Some fractional integral inequalities. Nonlinear Sci. Lett. A, Math. Phys. Mech. 1(2), 155–160 (2010) MATH Dahmani, Z., Tabharit, L., Taf, S.: Some fractional integral inequalities. Nonlinear Sci. Lett. A, Math. Phys. Mech. 1(2), 155–160 (2010) MATH
21.
Zurück zum Zitat Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order. In: Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997) CrossRef Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order. In: Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997) CrossRef
22.
Zurück zum Zitat Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) MATH Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) MATH
23.
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993) MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993) MATH
Metadaten
Titel
More results on integral inequalities for strongly generalized -preinvex functions
verfasst von
Shahid Qaisar
Jamshed Nasir
Saad Ihsan Butt
Sabir Hussain
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2060-4

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe