Skip to main content
Erschienen in: Autonomous Robots 5/2022

20.03.2022

Motion planning and control for mobile robot navigation using machine learning: a survey

verfasst von: Xuesu Xiao, Bo Liu, Garrett Warnell, Peter Stone

Erschienen in: Autonomous Robots | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Moving in complex environments is an essential capability of intelligent mobile robots. Decades of research and engineering have been dedicated to developing sophisticated navigation systems to move mobile robots from one point to another. Despite their overall success, a recently emerging research thrust is devoted to developing machine learning techniques to address the same problem, based in large part on the success of deep learning. However, to date, there has not been much direct comparison between the classical and emerging paradigms to this problem. In this article, we survey recent works that apply machine learning for motion planning and control in mobile robot navigation, within the context of classical navigation systems. The surveyed works are classified into different categories, which delineate the relationship of the learning approaches to classical methods. Based on this classification, we identify common challenges and promising future directions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In mobile robot navigation, “motion planning” mostly focuses on relatively long-term sequences of robot positions, orientations, and their high-order derivatives, while motion control generally refers to relatively low-level motor commands, e.g., linear and angular velocities. However, the line between them is blurry, and we do not adhere to any strict distinction in terminology in this survey.
 
Literatur
Zurück zum Zitat Becker-Ehmck, P., Karl, M., Peters, J., & van der Smagt, P. (2020). Learning to fly via deep model-based reinforcement learning. arXiv preprint arXiv:2003.08876 Becker-Ehmck, P., Karl, M., Peters, J., & van der Smagt, P. (2020). Learning to fly via deep model-based reinforcement learning. arXiv preprint arXiv:​2003.​08876
Zurück zum Zitat Bhardwaj, M., Boots, B., & Mukadam, M. (2020). Differentiable Gaussian process motion planning. In 2020 IEEE international conference on robotics and automation (ICRA) (pp. 10598–10604). IEEE. Bhardwaj, M., Boots, B., & Mukadam, M. (2020). Differentiable Gaussian process motion planning. In 2020 IEEE international conference on robotics and automation (ICRA) (pp. 10598–10604). IEEE.
Zurück zum Zitat Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. (2016). End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. (2016). End to end learning for self-driving cars. arXiv preprint arXiv:​1604.​07316
Zurück zum Zitat Bruce, J., Sünderhauf, N., Mirowski, P., Hadsell, R., & Milford, M. (2017). One-shot reinforcement learning for robot navigation with interactive replay. arXiv preprint arXiv:1711.10137 Bruce, J., Sünderhauf, N., Mirowski, P., Hadsell, R., & Milford, M. (2017). One-shot reinforcement learning for robot navigation with interactive replay. arXiv preprint arXiv:​1711.​10137
Zurück zum Zitat Chen, C., Liu, Y., Kreiss, S., & Alahi, A. (2019). Crowd–robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning. In 2019 international conference on robotics and automation (ICRA) (pp. 6015–6022). IEEE. Chen, C., Liu, Y., Kreiss, S., & Alahi, A. (2019). Crowd–robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning. In 2019 international conference on robotics and automation (ICRA) (pp. 6015–6022). IEEE.
Zurück zum Zitat Chen, Y. F., Everett, M., Liu, M., & How, J. P. (2017). Socially aware motion planning with deep reinforcement learning. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1343–1350). IEEE. Chen, Y. F., Everett, M., Liu, M., & How, J. P. (2017). Socially aware motion planning with deep reinforcement learning. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1343–1350). IEEE.
Zurück zum Zitat Chen, Y. F., Liu, M., Everett, M., & How, J. P. (2017). Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 285–292). IEEE Chen, Y. F., Liu, M., Everett, M., & How, J. P. (2017). Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 285–292). IEEE
Zurück zum Zitat Chiang, H. T. L., Faust, A., Fiser, M., & Francis, A. (2019). Learning navigation behaviors end-to-end with autorl. IEEE Robotics and Automation Letters, 4(2), 2007–2014.CrossRef Chiang, H. T. L., Faust, A., Fiser, M., & Francis, A. (2019). Learning navigation behaviors end-to-end with autorl. IEEE Robotics and Automation Letters, 4(2), 2007–2014.CrossRef
Zurück zum Zitat Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:​1412.​3555
Zurück zum Zitat Codevilla, F., Miiller, M., López, A., Koltun, V., & Dosovitskiy, A. (2018). End-to-end driving via conditional imitation learning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1–9). IEEE. Codevilla, F., Miiller, M., López, A., Koltun, V., & Dosovitskiy, A. (2018). End-to-end driving via conditional imitation learning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1–9). IEEE.
Zurück zum Zitat Daniel, K., Nash, A., Koenig, S., & Felner, A. (2010). Theta*: Any-angle path planning on grids. Journal of Artificial Intelligence Research, 39, 533–579.MathSciNetCrossRef Daniel, K., Nash, A., Koenig, S., & Felner, A. (2010). Theta*: Any-angle path planning on grids. Journal of Artificial Intelligence Research, 39, 533–579.MathSciNetCrossRef
Zurück zum Zitat Dennis, M., Jaques, N., Vinitsky, E., Bayen, A., Russell, S., Critch, A., & Levine, S. (2020). Emergent complexity and zero-shot transfer via unsupervised environment design. In Advances in neural information processing systems (Vol. 33, pp. 13049–13061). Curran Associates, Inc. Dennis, M., Jaques, N., Vinitsky, E., Bayen, A., Russell, S., Critch, A., & Levine, S. (2020). Emergent complexity and zero-shot transfer via unsupervised environment design. In Advances in neural information processing systems (Vol. 33, pp. 13049–13061). Curran Associates, Inc.
Zurück zum Zitat Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.MathSciNetCrossRef Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.MathSciNetCrossRef
Zurück zum Zitat Ding, W., Li, S., Qian, H., & Chen, Y. (2018). Hierarchical reinforcement learning framework towards multi-agent navigation. In 2018 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 237–242). IEEE. Ding, W., Li, S., Qian, H., & Chen, Y. (2018). Hierarchical reinforcement learning framework towards multi-agent navigation. In 2018 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 237–242). IEEE.
Zurück zum Zitat Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine, 13(2), 99–110.CrossRef Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine, 13(2), 99–110.CrossRef
Zurück zum Zitat Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer, 22(6), 46–57.CrossRef Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer, 22(6), 46–57.CrossRef
Zurück zum Zitat Everett, M., Chen, Y. F., & How, J. P. (2018). Motion planning among dynamic, decision-making agents with deep reinforcement learning. In 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3052–3059). IEEE. Everett, M., Chen, Y. F., & How, J. P. (2018). Motion planning among dynamic, decision-making agents with deep reinforcement learning. In 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3052–3059). IEEE.
Zurück zum Zitat Faust, A., Oslund, K., Ramirez, O., Francis, A., Tapia, L., Fiser, M., & Davidson, J. (2018). Prm-rl: Long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 5113–5120). IEEE. Faust, A., Oslund, K., Ramirez, O., Francis, A., Tapia, L., Fiser, M., & Davidson, J. (2018). Prm-rl: Long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 5113–5120). IEEE.
Zurück zum Zitat Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23–33.CrossRef Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23–33.CrossRef
Zurück zum Zitat Gao, W., Hsu, D., Lee, W. S., Shen, S., & Subramanian, K. (2017). Intention-net: Integrating planning and deep learning for goal-directed autonomous navigation. In Conference on robot learning (pp. 185–194). PMLR. Gao, W., Hsu, D., Lee, W. S., Shen, S., & Subramanian, K. (2017). Intention-net: Integrating planning and deep learning for goal-directed autonomous navigation. In Conference on robot learning (pp. 185–194). PMLR.
Zurück zum Zitat Giusti, A., Guzzi, J., Cireşan, D. C., He, F. L., Rodríguez, J. P., Fontana, F., et al. (2015). A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robotics and Automation Letters, 1(2), 661–667.CrossRef Giusti, A., Guzzi, J., Cireşan, D. C., He, F. L., Rodríguez, J. P., Fontana, F., et al. (2015). A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robotics and Automation Letters, 1(2), 661–667.CrossRef
Zurück zum Zitat Godoy, J., Chen, T., Guy, S. J., Karamouzas, I., & Gini, M. (2018). ALAN: Adaptive learning for multi-agent navigation. Autonomous Robots, 42(8), 1543–1562.CrossRef Godoy, J., Chen, T., Guy, S. J., Karamouzas, I., & Gini, M. (2018). ALAN: Adaptive learning for multi-agent navigation. Autonomous Robots, 42(8), 1543–1562.CrossRef
Zurück zum Zitat Gupta, S., Davidson, J., Levine, S., Sukthankar, R., & Malik, J. (2017) Cognitive mapping and planning for visual navigation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2616–2625). Gupta, S., Davidson, J., Levine, S., Sukthankar, R., & Malik, J. (2017) Cognitive mapping and planning for visual navigation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2616–2625).
Zurück zum Zitat Gupta, S., Fouhey, D., Levine, S., & Malik, J. (2017). Unifying map and landmark based representations for visual navigation. arXiv preprint arXiv:1712.08125 Gupta, S., Fouhey, D., Levine, S., & Malik, J. (2017). Unifying map and landmark based representations for visual navigation. arXiv preprint arXiv:​1712.​08125
Zurück zum Zitat Henry, P., Vollmer, C., Ferris, B., & Fox, D. (2010). Learning to navigate through crowded environments. In 2010 IEEE international conference on robotics and automation (pp. 981–986). IEEE. Henry, P., Vollmer, C., Ferris, B., & Fox, D. (2010). Learning to navigate through crowded environments. In 2010 IEEE international conference on robotics and automation (pp. 981–986). IEEE.
Zurück zum Zitat Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRef Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRef
Zurück zum Zitat Jaillet, L., Cortés, J., & Siméon, T. (2010). Sampling-based path planning on configuration-space costmaps. IEEE Transactions on Robotics, 26(4), 635–646.CrossRef Jaillet, L., Cortés, J., & Siméon, T. (2010). Sampling-based path planning on configuration-space costmaps. IEEE Transactions on Robotics, 26(4), 635–646.CrossRef
Zurück zum Zitat Jiang, P., Osteen, P., Wigness, M., & Saripalli, S. (2021). Rellis-3d dataset: Data, benchmarks and analysis. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 1110–1116). IEEE. Jiang, P., Osteen, P., Wigness, M., & Saripalli, S. (2021). Rellis-3d dataset: Data, benchmarks and analysis. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 1110–1116). IEEE.
Zurück zum Zitat Jin, J., Nguyen, N. M., Sakib, N., Graves, D., Yao, H., & Jagersand, M. (2020). Mapless navigation among dynamics with social-safety-awareness: A reinforcement learning approach from 2d laser scans. In 2020 IEEE international conference on robotics and automation (ICRA) (pp. 6979–6985). IEEE. Jin, J., Nguyen, N. M., Sakib, N., Graves, D., Yao, H., & Jagersand, M. (2020). Mapless navigation among dynamics with social-safety-awareness: A reinforcement learning approach from 2d laser scans. In 2020 IEEE international conference on robotics and automation (ICRA) (pp. 6979–6985). IEEE.
Zurück zum Zitat Johnson, C., & Kuipers, B. (2018). Socially-aware navigation using topological maps and social norm learning. In Proceedings of the 2018 AAAI/ACM conference on AI, ethics, and society (pp. 151–157). Johnson, C., & Kuipers, B. (2018). Socially-aware navigation using topological maps and social norm learning. In Proceedings of the 2018 AAAI/ACM conference on AI, ethics, and society (pp. 151–157).
Zurück zum Zitat Kahn, G., Abbeel, P., & Levine, S. (2021). Badgr: An autonomous self-supervised learning-based navigation system. IEEE Robotics and Automation Letters, 6(2), 1312–1319.CrossRef Kahn, G., Abbeel, P., & Levine, S. (2021). Badgr: An autonomous self-supervised learning-based navigation system. IEEE Robotics and Automation Letters, 6(2), 1312–1319.CrossRef
Zurück zum Zitat Kahn, G., Villaflor, A., Abbeel, P., & Levine, S. (2018) Composable action-conditioned predictors: Flexible off-policy learning for robot navigation. In Conference on robot learning (pp. 806–816). PMLR. Kahn, G., Villaflor, A., Abbeel, P., & Levine, S. (2018) Composable action-conditioned predictors: Flexible off-policy learning for robot navigation. In Conference on robot learning (pp. 806–816). PMLR.
Zurück zum Zitat Kahn, G., Villaflor, A., Ding, B., Abbeel, P., & Levine, S. (2018). Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1–8). IEEE. Kahn, G., Villaflor, A., Ding, B., Abbeel, P., & Levine, S. (2018). Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1–8). IEEE.
Zurück zum Zitat Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894.CrossRef Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894.CrossRef
Zurück zum Zitat Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRef Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRef
Zurück zum Zitat Khan, A., Zhang, C., Atanasov, N., Karydis, K., Kumar, V., & Lee, D. D. (2018). Memory augmented control networks. In International conference on learning representations (ICLR). Khan, A., Zhang, C., Atanasov, N., Karydis, K., Kumar, V., & Lee, D. D. (2018). Memory augmented control networks. In International conference on learning representations (ICLR).
Zurück zum Zitat Kim, B., & Pineau, J. (2016). Socially adaptive path planning in human environments using inverse reinforcement learning. International Journal of Social Robotics, 8(1), 51–66.CrossRef Kim, B., & Pineau, J. (2016). Socially adaptive path planning in human environments using inverse reinforcement learning. International Journal of Social Robotics, 8(1), 51–66.CrossRef
Zurück zum Zitat Koenig, S., & Likhachev, M. (2002). D\(\hat{\,}{}^{*}\) lite. In AAAI/IAAI (Vol. 15). Koenig, S., & Likhachev, M. (2002). D\(\hat{\,}{}^{*}\) lite. In AAAI/IAAI (Vol. 15).
Zurück zum Zitat Kretzschmar, H., Spies, M., Sprunk, C., & Burgard, W. (2016). Socially compliant mobile robot navigation via inverse reinforcement learning. The International Journal of Robotics Research, 35(11), 1289–1307.CrossRef Kretzschmar, H., Spies, M., Sprunk, C., & Burgard, W. (2016). Socially compliant mobile robot navigation via inverse reinforcement learning. The International Journal of Robotics Research, 35(11), 1289–1307.CrossRef
Zurück zum Zitat Kroemer, O., Niekum, S., & Konidaris, G. (2021). A review of robot learning for manipulation: Challenges, representations, and algorithms. Journal of Machine Learning Research, 22, 30–1.MathSciNetMATH Kroemer, O., Niekum, S., & Konidaris, G. (2021). A review of robot learning for manipulation: Challenges, representations, and algorithms. Journal of Machine Learning Research, 22, 30–1.MathSciNetMATH
Zurück zum Zitat LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning. LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.
Zurück zum Zitat LaValle, S. M. (2006). Planning algorithms. Cambridge University Press. LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.
Zurück zum Zitat LeCunn, Y., Muller, U., Ben, J., Cosatto, E., & Flepp, B. (2006). Off-road obstacle avoidance through end-to-end learning. In Advances in neural information processing systems (pp. 739–746). LeCunn, Y., Muller, U., Ben, J., Cosatto, E., & Flepp, B. (2006). Off-road obstacle avoidance through end-to-end learning. In Advances in neural information processing systems (pp. 739–746).
Zurück zum Zitat Li, M., Jiang, R., Ge, S. S., & Lee, T. H. (2018). Role playing learning for socially concomitant mobile robot navigation. CAAI Transactions on Intelligence Technology, 3(1), 49–58.CrossRef Li, M., Jiang, R., Ge, S. S., & Lee, T. H. (2018). Role playing learning for socially concomitant mobile robot navigation. CAAI Transactions on Intelligence Technology, 3(1), 49–58.CrossRef
Zurück zum Zitat Liang, J., Patel, U., Sathyamoorthy, A. J., & Manocha, D. (2020). Crowd-steer: Realtime smooth and collision-free robot navigation in densely crowded scenarios trained using high-fidelity simulation. In IJCAI (pp. 4221–4228). Liang, J., Patel, U., Sathyamoorthy, A. J., & Manocha, D. (2020). Crowd-steer: Realtime smooth and collision-free robot navigation in densely crowded scenarios trained using high-fidelity simulation. In IJCAI (pp. 4221–4228).
Zurück zum Zitat Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:​1509.​02971
Zurück zum Zitat Lin, J., Wang, L., Gao, F., Shen, S., & Zhang, F. (2019). Flying through a narrow gap using neural network: An end-to-end planning and control approach. In 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3526–3533). IEEE. Lin, J., Wang, L., Gao, F., Shen, S., & Zhang, F. (2019). Flying through a narrow gap using neural network: An end-to-end planning and control approach. In 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3526–3533). IEEE.
Zurück zum Zitat Liu, B., Xiao, X., & Stone, P. (2021). A lifelong learning approach to mobile robot navigation. IEEE Robotics and Automation Letters, 6(2), 1090–1096.CrossRef Liu, B., Xiao, X., & Stone, P. (2021). A lifelong learning approach to mobile robot navigation. IEEE Robotics and Automation Letters, 6(2), 1090–1096.CrossRef
Zurück zum Zitat Long, P., Fanl, T., Liao, X., Liu, W., Zhang, H., & Pan, J. (2018). Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 6252–6259). IEEE. Long, P., Fanl, T., Liao, X., Liu, W., Zhang, H., & Pan, J. (2018). Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 6252–6259). IEEE.
Zurück zum Zitat Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for continual learning. In Advances in neural information processing systems (pp. 6467–6476). Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for continual learning. In Advances in neural information processing systems (pp. 6467–6476).
Zurück zum Zitat Loquercio, A., Maqueda, A. I., Del-Blanco, C. R., & Scaramuzza, D. (2018). Dronet: Learning to fly by driving. IEEE Robotics and Automation Letters, 3(2), 1088–1095.CrossRef Loquercio, A., Maqueda, A. I., Del-Blanco, C. R., & Scaramuzza, D. (2018). Dronet: Learning to fly by driving. IEEE Robotics and Automation Letters, 3(2), 1088–1095.CrossRef
Zurück zum Zitat Lu, D. V., Hershberger, D., & Smart, W. D. (2014). Layered costmaps for context-sensitive navigation. In 2014 IEEE/RSJ international conference on intelligent robots and systems (pp. 709–715). IEEE. Lu, D. V., Hershberger, D., & Smart, W. D. (2014). Layered costmaps for context-sensitive navigation. In 2014 IEEE/RSJ international conference on intelligent robots and systems (pp. 709–715). IEEE.
Zurück zum Zitat Luber, M., Spinello, L., Silva, J., & Arras, K. O. (2012). Socially-aware robot navigation: A learning approach. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 902–907). IEEE. Luber, M., Spinello, L., Silva, J., & Arras, K. O. (2012). Socially-aware robot navigation: A learning approach. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 902–907). IEEE.
Zurück zum Zitat Martins, G. S., Rocha, R. P., Pais, F. J., & Menezes, P. (2019). Clusternav: Learning-based robust navigation operating in cluttered environments. In 2019 international conference on robotics and automation (ICRA) (pp. 9624–9630). IEEE. Martins, G. S., Rocha, R. P., Pais, F. J., & Menezes, P. (2019). Clusternav: Learning-based robust navigation operating in cluttered environments. In 2019 international conference on robotics and automation (ICRA) (pp. 9624–9630). IEEE.
Zurück zum Zitat Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In International conference on machine learning (pp. 1928–1937). Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In International conference on machine learning (pp. 1928–1937).
Zurück zum Zitat Nistér, D., Naroditsky, O., & Bergen, J. (2004). Visual odometry. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004 (Vol. 1, p. I). IEEE. Nistér, D., Naroditsky, O., & Bergen, J. (2004). Visual odometry. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004 (Vol. 1, p. I). IEEE.
Zurück zum Zitat Okal, B., & Arras, K. O. (2016). Learning socially normative robot navigation behaviors with Bayesian inverse reinforcement learning. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 2889–2895). IEEE. Okal, B., & Arras, K. O. (2016). Learning socially normative robot navigation behaviors with Bayesian inverse reinforcement learning. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 2889–2895). IEEE.
Zurück zum Zitat Palmieri, L., & Arras, K. O. (2014). Efficient and smooth RRT motion planning using a novel extend function for wheeled mobile robots. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 205–211). Palmieri, L., & Arras, K. O. (2014). Efficient and smooth RRT motion planning using a novel extend function for wheeled mobile robots. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 205–211).
Zurück zum Zitat Pan, Y., Cheng, C. A., Saigol, K., Lee, K., Yan, X., Theodorou, E. A., & Boots, B. (2020). Imitation learning for agile autonomous driving. The International Journal of Robotics Research, 39(2–3), 286–302.CrossRef Pan, Y., Cheng, C. A., Saigol, K., Lee, K., Yan, X., Theodorou, E. A., & Boots, B. (2020). Imitation learning for agile autonomous driving. The International Journal of Robotics Research, 39(2–3), 286–302.CrossRef
Zurück zum Zitat Park, J. J. (2016). Graceful navigation for mobile robots in dynamic and uncertain environments. Ph.D. thesis. Park, J. J. (2016). Graceful navigation for mobile robots in dynamic and uncertain environments. Ph.D. thesis.
Zurück zum Zitat Pérez-Higueras, N., Caballero, F., & Merino, L. (2018). Learning human-aware path planning with fully convolutional networks. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1–5). IEEE. Pérez-Higueras, N., Caballero, F., & Merino, L. (2018). Learning human-aware path planning with fully convolutional networks. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1–5). IEEE.
Zurück zum Zitat Pérez-Higueras, N., Caballero, F., & Merino, L. (2018). Teaching robot navigation behaviors to optimal RRT planners. International Journal of Social Robotics, 10(2), 235–249.CrossRef Pérez-Higueras, N., Caballero, F., & Merino, L. (2018). Teaching robot navigation behaviors to optimal RRT planners. International Journal of Social Robotics, 10(2), 235–249.CrossRef
Zurück zum Zitat Pfeiffer, M., Schaeuble, M., Nieto, J., Siegwart, R., & Cadena, C. (2017). From perception to decision: A data-driven approach to end-to-end motion planning for autonomous ground robots. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 1527–1533). IEEE. Pfeiffer, M., Schaeuble, M., Nieto, J., Siegwart, R., & Cadena, C. (2017). From perception to decision: A data-driven approach to end-to-end motion planning for autonomous ground robots. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 1527–1533). IEEE.
Zurück zum Zitat Pfeiffer, M., Schwesinger, U., Sommer, H., Galceran, E., & Siegwart, R. (2016). Predicting actions to act predictably: Cooperative partial motion planning with maximum entropy models. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2096–2101). IEEE. Pfeiffer, M., Schwesinger, U., Sommer, H., Galceran, E., & Siegwart, R. (2016). Predicting actions to act predictably: Cooperative partial motion planning with maximum entropy models. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2096–2101). IEEE.
Zurück zum Zitat Pfeiffer, M., Shukla, S., Turchetta, M., Cadena, C., Krause, A., Siegwart, R., & Nieto, J. (2018). Reinforced imitation: Sample efficient deep reinforcement learning for mapless navigation by leveraging prior demonstrations. IEEE Robotics and Automation Letters, 3(4), 4423–4430.CrossRef Pfeiffer, M., Shukla, S., Turchetta, M., Cadena, C., Krause, A., Siegwart, R., & Nieto, J. (2018). Reinforced imitation: Sample efficient deep reinforcement learning for mapless navigation by leveraging prior demonstrations. IEEE Robotics and Automation Letters, 3(4), 4423–4430.CrossRef
Zurück zum Zitat Pokle, A., Martín-Martín, R., Goebel, P., Chow, V., Ewald, H. M., Yang, J., Wang, Z., Sadeghian, A., Sadigh, D., Savarese, S.,et al. (2019). Deep local trajectory replanning and control for robot navigation. In 2019 international conference on robotics and automation (ICRA) (pp. 5815–5822). IEEE. Pokle, A., Martín-Martín, R., Goebel, P., Chow, V., Ewald, H. M., Yang, J., Wang, Z., Sadeghian, A., Sadigh, D., Savarese, S.,et al. (2019). Deep local trajectory replanning and control for robot navigation. In 2019 international conference on robotics and automation (ICRA) (pp. 5815–5822). IEEE.
Zurück zum Zitat Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. In Advances in neural information processing systems (pp. 305–313). Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. In Advances in neural information processing systems (pp. 305–313).
Zurück zum Zitat Quinlan, S., & Khatib, O. (1993). Elastic bands: Connecting path planning and control. In [1993] Proceedings IEEE international conference on robotics and automation (pp. 802–807). IEEE. Quinlan, S., & Khatib, O. (1993). Elastic bands: Connecting path planning and control. In [1993] Proceedings IEEE international conference on robotics and automation (pp. 802–807). IEEE.
Zurück zum Zitat Ramachandran, D., & Amir, E. (2007). Bayesian inverse reinforcement learning. In IJCAI (Vol. 7, pp. 2586–2591). Ramachandran, D., & Amir, E. (2007). Bayesian inverse reinforcement learning. In IJCAI (Vol. 7, pp. 2586–2591).
Zurück zum Zitat Richter, C., & Roy, N. (2017). Safe visual navigation via deep learning and novelty detection. In Robotics: Science and systems (RSS). Richter, C., & Roy, N. (2017). Safe visual navigation via deep learning and novelty detection. In Robotics: Science and systems (RSS).
Zurück zum Zitat Ross, S., Gordon, G., & Bagnell, D. (2011). A reduction of imitation learning and structured prediction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 627–635). Ross, S., Gordon, G., & Bagnell, D. (2011). A reduction of imitation learning and structured prediction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 627–635).
Zurück zum Zitat Ross, S., Melik-Barkhudarov, N., Shankar, K. S., Wendel, A., Dey, D., Bagnell, J. A., & Hebert, M. (2013). Learning monocular reactive UAV control in cluttered natural environments. In 2013 IEEE international conference on robotics and automation (pp. 1765–1772). IEEE. Ross, S., Melik-Barkhudarov, N., Shankar, K. S., Wendel, A., Dey, D., Bagnell, J. A., & Hebert, M. (2013). Learning monocular reactive UAV control in cluttered natural environments. In 2013 IEEE international conference on robotics and automation (pp. 1765–1772). IEEE.
Zurück zum Zitat Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach. Pearson Education Limited. Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach. Pearson Education Limited.
Zurück zum Zitat Sadeghi, F., & Levine, S. (2017). CAD2RL: Real single-image flight without a single real image. In Robotics: Science and systems (RSS). Sadeghi, F., & Levine, S. (2017). CAD2RL: Real single-image flight without a single real image. In Robotics: Science and systems (RSS).
Zurück zum Zitat Sepulveda, G., Niebles, J. C., & Soto, A. (2018). A deep learning based behavioral approach to indoor autonomous navigation. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 4646–4653). IEEE. Sepulveda, G., Niebles, J. C., & Soto, A. (2018). A deep learning based behavioral approach to indoor autonomous navigation. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 4646–4653). IEEE.
Zurück zum Zitat Sergeant, J., Sünderhauf, N., Milford, M., & Upcroft, B. (2015). Multimodal deep autoencoders for control of a mobile robot. In Proceedings of Australasian conference for robotics and automation (ACRA). Sergeant, J., Sünderhauf, N., Milford, M., & Upcroft, B. (2015). Multimodal deep autoencoders for control of a mobile robot. In Proceedings of Australasian conference for robotics and automation (ACRA).
Zurück zum Zitat Shiarlis, K., Messias, J., & Whiteson, S. (2017). Rapidly exploring learning trees. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 1541–1548). IEEE. Shiarlis, K., Messias, J., & Whiteson, S. (2017). Rapidly exploring learning trees. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 1541–1548). IEEE.
Zurück zum Zitat Siva, S., Wigness, M., Rogers, J., & Zhang, H. (2019). Robot adaptation to unstructured terrains by joint representation and apprenticeship learning. In Robotics: Science and systems (RSS). Siva, S., Wigness, M., Rogers, J., & Zhang, H. (2019). Robot adaptation to unstructured terrains by joint representation and apprenticeship learning. In Robotics: Science and systems (RSS).
Zurück zum Zitat Sood, R., Vats, S., & Likhachev, M. (2020). Learning to use adaptive motion primitives in search-based planning for navigation. In 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 6923–6929). IEEE. Sood, R., Vats, S., & Likhachev, M. (2020). Learning to use adaptive motion primitives in search-based planning for navigation. In 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 6923–6929). IEEE.
Zurück zum Zitat Stein, G. J., Bradley, C., & Roy, N. (2018). Learning over subgoals for efficient navigation of structured, unknown environments. In Conference on robot learning (pp. 213–222). Stein, G. J., Bradley, C., & Roy, N. (2018). Learning over subgoals for efficient navigation of structured, unknown environments. In Conference on robot learning (pp. 213–222).
Zurück zum Zitat Stratonovich, R. L. (1965). Conditional Markov processes. In Non-linear transformations of stochastic processes (pp. 427–453). Elsevier. Stratonovich, R. L. (1965). Conditional Markov processes. In Non-linear transformations of stochastic processes (pp. 427–453). Elsevier.
Zurück zum Zitat Tai, L., Li, S., & Liu, M. (2016). A deep-network solution towards model-less obstacle avoidance. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2759–2764). IEEE. Tai, L., Li, S., & Liu, M. (2016). A deep-network solution towards model-less obstacle avoidance. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2759–2764). IEEE.
Zurück zum Zitat Tai, L., & Liu, M. (2016). Deep-learning in mobile robotics-from perception to control systems: A survey on why and why not. arXiv preprint arXiv:1612.07139 Tai, L., & Liu, M. (2016). Deep-learning in mobile robotics-from perception to control systems: A survey on why and why not. arXiv preprint arXiv:​1612.​07139
Zurück zum Zitat Tai, L., Paolo, G., & Liu, M. (2017). Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 31–36). IEEE. Tai, L., Paolo, G., & Liu, M. (2017). Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 31–36). IEEE.
Zurück zum Zitat Tai, L., Zhang, J., Liu, M., Boedecker, J., & Burgard, W. (2016). A survey of deep network solutions for learning control in robotics: From reinforcement to imitation. arXiv preprint arXiv:1612.07139 Tai, L., Zhang, J., Liu, M., Boedecker, J., & Burgard, W. (2016). A survey of deep network solutions for learning control in robotics: From reinforcement to imitation. arXiv preprint arXiv:​1612.​07139
Zurück zum Zitat Tai, L., Zhang, J., Liu, M., & Burgard, W. (2018). Socially compliant navigation through raw depth inputs with generative adversarial imitation learning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1111–1117). IEEE. Tai, L., Zhang, J., Liu, M., & Burgard, W. (2018). Socially compliant navigation through raw depth inputs with generative adversarial imitation learning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1111–1117). IEEE.
Zurück zum Zitat Tamar, A., Wu, Y., Thomas, G., Levine, S., & Abbeel, P. (2016). Value iteration networks. In Advances in neural information processing systems (pp. 2154–2162). Tamar, A., Wu, Y., Thomas, G., Levine, S., & Abbeel, P. (2016). Value iteration networks. In Advances in neural information processing systems (pp. 2154–2162).
Zurück zum Zitat Teso-Fz-Betoño, D., Zulueta, E., Fernandez-Gamiz, U., Saenz-Aguirre, A., & Martinez, R. (2019). Predictive dynamic window approach development with artificial neural fuzzy inference improvement. Electronics, 8(9), 935.CrossRef Teso-Fz-Betoño, D., Zulueta, E., Fernandez-Gamiz, U., Saenz-Aguirre, A., & Martinez, R. (2019). Predictive dynamic window approach development with artificial neural fuzzy inference improvement. Electronics, 8(9), 935.CrossRef
Zurück zum Zitat Thrun, S. (1995). An approach to learning mobile robot navigation. Robotics and Autonomous Systems, 15(4), 301–319.CrossRef Thrun, S. (1995). An approach to learning mobile robot navigation. Robotics and Autonomous Systems, 15(4), 301–319.CrossRef
Zurück zum Zitat Ullman, S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society of London. Series B. Biological Sciences, 203(1153), 405–426. Ullman, S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society of London. Series B. Biological Sciences, 203(1153), 405–426.
Zurück zum Zitat Van Den Berg, J., Guy, S. J., Lin, M., & Manocha, D. (2011). Reciprocal n-body collision avoidance. In Robotics research (pp. 3–19). Springer. Van Den Berg, J., Guy, S. J., Lin, M., & Manocha, D. (2011). Reciprocal n-body collision avoidance. In Robotics research (pp. 3–19). Springer.
Zurück zum Zitat Wang, Y., He, H., & Sun, C. (2018). Learning to navigate through complex dynamic environment with modular deep reinforcement learning. IEEE Transactions on Games, 10(4), 400–412.CrossRef Wang, Y., He, H., & Sun, C. (2018). Learning to navigate through complex dynamic environment with modular deep reinforcement learning. IEEE Transactions on Games, 10(4), 400–412.CrossRef
Zurück zum Zitat Wang, Z., Xiao, X., Liu, B., Warnell, G., & Stone, P. (2021). Appli: Adaptive planner parameter learning from interventions. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 6079–6085). IEEE. Wang, Z., Xiao, X., Liu, B., Warnell, G., & Stone, P. (2021). Appli: Adaptive planner parameter learning from interventions. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 6079–6085). IEEE.
Zurück zum Zitat Wang, Z., Xiao, X., Nettekoven, A. J., Umasankar, K., Singh, A., Bommakanti, S., Topcu, U., & Stone, P. (2021). From agile ground to aerial navigation: Learning from learned hallucination. In 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE. Wang, Z., Xiao, X., Nettekoven, A. J., Umasankar, K., Singh, A., Bommakanti, S., Topcu, U., & Stone, P. (2021). From agile ground to aerial navigation: Learning from learned hallucination. In 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE.
Zurück zum Zitat Wang, Z., Xiao, X., Warnell, G., & Stone, P. (2021). Apple: Adaptive planner parameter learning from evaluative feedback. IEEE Robotics and Automation Letters, 6(4), 7744–7749.CrossRef Wang, Z., Xiao, X., Warnell, G., & Stone, P. (2021). Apple: Adaptive planner parameter learning from evaluative feedback. IEEE Robotics and Automation Letters, 6(4), 7744–7749.CrossRef
Zurück zum Zitat Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.MATH Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.MATH
Zurück zum Zitat Wigness, M., Rogers, J. G., & Navarro-Serment, L. E. (2018). Robot navigation from human demonstration: Learning control behaviors. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1150–1157). IEEE. Wigness, M., Rogers, J. G., & Navarro-Serment, L. E. (2018). Robot navigation from human demonstration: Learning control behaviors. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 1150–1157). IEEE.
Zurück zum Zitat Xiao, X., Biswas, J., & Stone, P. (2021a). Learning inverse kinodynamics for accurate high-speed off-road navigation on unstructured terrain. IEEE Robotics and Automation Letters, 6(3), 6054–6060. Xiao, X., Biswas, J., & Stone, P. (2021a). Learning inverse kinodynamics for accurate high-speed off-road navigation on unstructured terrain. IEEE Robotics and Automation Letters, 6(3), 6054–6060.
Zurück zum Zitat Xiao, X., Liu, B., & Stone, P. (2021b). Agile robot navigation through hallucinated learning and sober deployment. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 7316–7322). IEEE. Xiao, X., Liu, B., & Stone, P. (2021b). Agile robot navigation through hallucinated learning and sober deployment. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 7316–7322). IEEE.
Zurück zum Zitat Xiao, X., Liu, B., Warnell, G., Fink, J., & Stone, P. (2020). Appld: Adaptive planner parameter learning from demonstration. IEEE Robotics and Automation Letters, 5(3), 4541–4547.CrossRef Xiao, X., Liu, B., Warnell, G., Fink, J., & Stone, P. (2020). Appld: Adaptive planner parameter learning from demonstration. IEEE Robotics and Automation Letters, 5(3), 4541–4547.CrossRef
Zurück zum Zitat Xiao, X., Liu, B., Warnell, G., & Stone, P. (2021c). Toward agile maneuvers in highly constrained spaces: Learning from hallucination. IEEE Robotics and Automation Letters, 6(2), 1503–1510.CrossRef Xiao, X., Liu, B., Warnell, G., & Stone, P. (2021c). Toward agile maneuvers in highly constrained spaces: Learning from hallucination. IEEE Robotics and Automation Letters, 6(2), 1503–1510.CrossRef
Zurück zum Zitat Xiao, X., Wang, Z., Xu, Z., Liu, B., Warnell, G., Dhamankar, G., Nair, A., & Stone, P. (2021d). Appl: Adaptive planner parameter learning. arXiv preprint arXiv:2105.07620 Xiao, X., Wang, Z., Xu, Z., Liu, B., Warnell, G., Dhamankar, G., Nair, A., & Stone, P. (2021d). Appl: Adaptive planner parameter learning. arXiv preprint arXiv:​2105.​07620
Zurück zum Zitat Xie, L., Wang, S., Rosa, S., Markham, A., & Trigoni, N. (2018). Learning with training wheels: Speeding up training with a simple controller for deep reinforcement learning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 6276–6283). IEEE. Xie, L., Wang, S., Rosa, S., Markham, A., & Trigoni, N. (2018). Learning with training wheels: Speeding up training with a simple controller for deep reinforcement learning. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 6276–6283). IEEE.
Zurück zum Zitat Xu, Z., Dhamankar, G., Nair, A., Xiao, X., Warnell, G., Liu, B., Wang, Z., & Stone, P. (2021). Applr: Adaptive planner parameter learning from reinforcement. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 6086–6092). IEEE. Xu, Z., Dhamankar, G., Nair, A., Xiao, X., Warnell, G., Liu, B., Wang, Z., & Stone, P. (2021). Applr: Adaptive planner parameter learning from reinforcement. In 2021 IEEE international conference on robotics and automation (ICRA) (pp. 6086–6092). IEEE.
Zurück zum Zitat Yao, X., Zhang, J., & Oh, J. (2019). Following social groups: Socially compliant autonomous navigation in dense crowds. arXiv preprint arXiv:1911.12063 Yao, X., Zhang, J., & Oh, J. (2019). Following social groups: Socially compliant autonomous navigation in dense crowds. arXiv preprint arXiv:​1911.​12063
Zurück zum Zitat Zeng, J., Ju, R., Qin, L., Hu, Y., Yin, Q., & Hu, C. (2019). Navigation in unknown dynamic environments based on deep reinforcement learning. Sensors, 19(18), 3837.CrossRef Zeng, J., Ju, R., Qin, L., Hu, Y., Yin, Q., & Hu, C. (2019). Navigation in unknown dynamic environments based on deep reinforcement learning. Sensors, 19(18), 3837.CrossRef
Zurück zum Zitat Zhang, J., Springenberg, J. T., Boedecker, J., & Burgard, W. (2017). Deep reinforcement learning with successor features for navigation across similar environments. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2371–2378). IEEE. Zhang, J., Springenberg, J. T., Boedecker, J., & Burgard, W. (2017). Deep reinforcement learning with successor features for navigation across similar environments. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2371–2378). IEEE.
Zurück zum Zitat Zhang, J., Tai, L., Boedecker, J., Burgard, W., & Liu, M. (2017). Neural slam: Learning to explore with external memory. arXiv preprint arXiv:1706.09520 Zhang, J., Tai, L., Boedecker, J., Burgard, W., & Liu, M. (2017). Neural slam: Learning to explore with external memory. arXiv preprint arXiv:​1706.​09520
Zurück zum Zitat Zhang, T., Kahn, G., Levine, S., & Abbeel, P. (2016). Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 528–535). IEEE. Zhang, T., Kahn, G., Levine, S., & Abbeel, P. (2016). Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 528–535). IEEE.
Zurück zum Zitat Zhao, L., & Roh, M. I. (2019). Colregs-compliant multiship collision avoidance based on deep reinforcement learning. Ocean Engineering, 191, 106436.CrossRef Zhao, L., & Roh, M. I. (2019). Colregs-compliant multiship collision avoidance based on deep reinforcement learning. Ocean Engineering, 191, 106436.CrossRef
Zurück zum Zitat Zhelo, O., Zhang, J., Tai, L., Liu, M., & Burgard, W. (2018). Curiosity-driven exploration for mapless navigation with deep reinforcement learning. arXiv preprint arXiv:1804.00456 Zhelo, O., Zhang, J., Tai, L., Liu, M., & Burgard, W. (2018). Curiosity-driven exploration for mapless navigation with deep reinforcement learning. arXiv preprint arXiv:​1804.​00456
Zurück zum Zitat Zhou, X., Gao, Y., & Guan, L. (2019). Towards goal-directed navigation through combining learning based global and local planners. Sensors, 19(1), 176.CrossRef Zhou, X., Gao, Y., & Guan, L. (2019). Towards goal-directed navigation through combining learning based global and local planners. Sensors, 19(1), 176.CrossRef
Zurück zum Zitat Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., & Farhadi, A. (2017). Target-driven visual navigation in indoor scenes using deep reinforcement learning. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 3357–3364). IEEE. Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., & Farhadi, A. (2017). Target-driven visual navigation in indoor scenes using deep reinforcement learning. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 3357–3364). IEEE.
Zurück zum Zitat Zhu, Y., Schwab, D., & Veloso, M. (2019). Learning primitive skills for mobile robots. In 2019 international conference on robotics and automation (ICRA) (pp. 7597–7603). IEEE. Zhu, Y., Schwab, D., & Veloso, M. (2019). Learning primitive skills for mobile robots. In 2019 international conference on robotics and automation (ICRA) (pp. 7597–7603). IEEE.
Zurück zum Zitat Ziebart, B. D., Maas, A. L., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse reinforcement learning. In AAAI (Vol. 8, pp. 1433–1438). Ziebart, B. D., Maas, A. L., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse reinforcement learning. In AAAI (Vol. 8, pp. 1433–1438).
Metadaten
Titel
Motion planning and control for mobile robot navigation using machine learning: a survey
verfasst von
Xuesu Xiao
Bo Liu
Garrett Warnell
Peter Stone
Publikationsdatum
20.03.2022
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 5/2022
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-022-10039-8

Weitere Artikel der Ausgabe 5/2022

Autonomous Robots 5/2022 Zur Ausgabe

Neuer Inhalt