Skip to main content
Erschienen in: Autonomous Robots 8/2018

19.02.2018

ALAN: adaptive learning for multi-agent navigation

verfasst von: Julio Godoy, Tiannan Chen, Stephen J. Guy, Ioannis Karamouzas, Maria Gini

Erschienen in: Autonomous Robots | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In multi-agent navigation, agents need to move towards their goal locations while avoiding collisions with other agents and obstacles, often without communication. Existing methods compute motions that are locally optimal but do not account for the aggregated motions of all agents, producing inefficient global behavior especially when agents move in a crowded space. In this work, we develop a method that allows agents to dynamically adapt their behavior to their local conditions. We formulate the multi-agent navigation problem as an action-selection problem and propose an approach, ALAN, that allows agents to compute time-efficient and collision-free motions. ALAN is highly scalable because each agent makes its own decisions on how to move, using a set of velocities optimized for a variety of navigation tasks. Experimental results show that agents using ALAN, in general, reach their destinations faster than using ORCA, a state-of-the-art collision avoidance framework, and two other navigation models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Videos highlighting our work can be found in http://​motion.​cs.​umn.​edu/​r/​ActionSelection.
 
Literatur
Zurück zum Zitat Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., & Siegwart, R. (2013). Optimal reciprocal collision avoidance for multiple non-holonomic robots. In A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, Hsieh M. Ani, et al. (Eds.), Distributed autonomous robotic systems (pp. 203–216). Berlin: Springer.CrossRef Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., & Siegwart, R. (2013). Optimal reciprocal collision avoidance for multiple non-holonomic robots. In A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, Hsieh M. Ani, et al. (Eds.), Distributed autonomous robotic systems (pp. 203–216). Berlin: Springer.CrossRef
Zurück zum Zitat Audibert, J. Y., Munos, R., & Szepesvári, C. (2009). Exploration-exploitation tradeoff using variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19), 1876–1902.MathSciNetCrossRef Audibert, J. Y., Munos, R., & Szepesvári, C. (2009). Exploration-exploitation tradeoff using variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19), 1876–1902.MathSciNetCrossRef
Zurück zum Zitat Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2–3), 235–256.CrossRef Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2–3), 235–256.CrossRef
Zurück zum Zitat Bayazit, O., Lien, J. M., & Amato, N. (2003). Better group behaviors in complex environments using global roadmaps. In 8th international conference on artificial life (pp. 362–370). Bayazit, O., Lien, J. M., & Amato, N. (2003). Better group behaviors in complex environments using global roadmaps. In 8th international conference on artificial life (pp. 362–370).
Zurück zum Zitat Buşoniu, L., Babuška, R., & De Schutter, B. (2008). A comprehensive survey of multi-agent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C Applications and Reviews, 38(2), 156–172.CrossRef Buşoniu, L., Babuška, R., & De Schutter, B. (2008). A comprehensive survey of multi-agent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C Applications and Reviews, 38(2), 156–172.CrossRef
Zurück zum Zitat Cunningham, B., & Cao, Y. (2012). Levels of realism for cooperative multi-agent reinforcement learning. In Advances in swarm intelligence (pp. 573–582). Springer. Cunningham, B., & Cao, Y. (2012). Levels of realism for cooperative multi-agent reinforcement learning. In Advances in swarm intelligence (pp. 573–582). Springer.
Zurück zum Zitat Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research, 17, 760–772.CrossRef Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research, 17, 760–772.CrossRef
Zurück zum Zitat Funge, J., Tu, X., & Terzopoulos, D. (1999). Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In 26th annual conference on computer graphics and interactive techniques (pp. 29–38). Funge, J., Tu, X., & Terzopoulos, D. (1999). Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In 26th annual conference on computer graphics and interactive techniques (pp. 29–38).
Zurück zum Zitat Giese, A., Latypov, D., & Amato, N. M. (2014). Reciprocally-rotating velocity obstacles. In IEEE international conference on robotics and automation (pp. 3234–3241). Giese, A., Latypov, D., & Amato, N. M. (2014). Reciprocally-rotating velocity obstacles. In IEEE international conference on robotics and automation (pp. 3234–3241).
Zurück zum Zitat Godoy, J., Karamouzas, I., Guy, S. J., & Gini, M. (2015). Adaptive learning for multi-agent navigation. In Proceedings of international conference on autonomous agents and multi-agent systems (pp. 1577–1585). Godoy, J., Karamouzas, I., Guy, S. J., & Gini, M. (2015). Adaptive learning for multi-agent navigation. In Proceedings of international conference on autonomous agents and multi-agent systems (pp. 1577–1585).
Zurück zum Zitat Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., & Dubey, P. (2009). Clearpath: Highly parallel collision avoidance for multi-agent simulation. In ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 177–187). Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., & Dubey, P. (2009). Clearpath: Highly parallel collision avoidance for multi-agent simulation. In ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 177–187).
Zurück zum Zitat Guy, S., Kim, S., Lin, M., & Manocha, D. (2011). Simulating heterogeneous crowd behaviors using personality trait theory. In Proceedings ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 43–52). Guy, S., Kim, S., Lin, M., & Manocha, D. (2011). Simulating heterogeneous crowd behaviors using personality trait theory. In Proceedings ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 43–52).
Zurück zum Zitat Guy, S.J., Chhugani, J., Curtis, S., Pradeep, D., Lin, M., & Manocha, D. (2010). PLEdestrians: A least-effort approach to crowd simulation. In ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 119–128). Guy, S.J., Chhugani, J., Curtis, S., Pradeep, D., Lin, M., & Manocha, D. (2010). PLEdestrians: A least-effort approach to crowd simulation. In ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 119–128).
Zurück zum Zitat Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1), 97–109.MathSciNetCrossRef Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1), 97–109.MathSciNetCrossRef
Zurück zum Zitat Helbing, D., Buzna, L., & Werner, T. (2003). Self-organized pedestrian crowd dynamics and design solutions. Traffic Forum 12. Helbing, D., Buzna, L., & Werner, T. (2003). Self-organized pedestrian crowd dynamics and design solutions. Traffic Forum 12.
Zurück zum Zitat Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407(6803), 487–490.CrossRef Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407(6803), 487–490.CrossRef
Zurück zum Zitat Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5), 4282.CrossRef Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5), 4282.CrossRef
Zurück zum Zitat Helbing, D., Molnar, P., Farkas, I. J., & Bolay, K. (2001). Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, 28(3), 361–384.CrossRef Helbing, D., Molnar, P., Farkas, I. J., & Bolay, K. (2001). Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, 28(3), 361–384.CrossRef
Zurück zum Zitat Hennes, D., Claes, D., Meeussen, W., & Tuyls, K. (2012). Multi-robot collision avoidance with localization uncertainty. In Proceedings of international conference on autonomous agents and multi-agent systems (pp. 147–154). Hennes, D., Claes, D., Meeussen, W., & Tuyls, K. (2012). Multi-robot collision avoidance with localization uncertainty. In Proceedings of international conference on autonomous agents and multi-agent systems (pp. 147–154).
Zurück zum Zitat Henry, P., Vollmer, C., Ferris, B., & Fox, D. (2010). Learning to navigate through crowded environments. In Proceedings of ieee international conference on robotics and automation (pp. 981–986). Henry, P., Vollmer, C., Ferris, B., & Fox, D. (2010). Learning to navigate through crowded environments. In Proceedings of ieee international conference on robotics and automation (pp. 981–986).
Zurück zum Zitat Hettiarachchi, S. (2010). An evolutionary approach to swarm adaptation in dense environments. In IEEE Int’l conference on control automation and systems (pp. 962–966). Hettiarachchi, S. (2010). An evolutionary approach to swarm adaptation in dense environments. In IEEE Int’l conference on control automation and systems (pp. 962–966).
Zurück zum Zitat Hopcroft, J. E., Schwartz, J. T., & Sharir, M. (1984). On the complexity of motion planning for multiple independent objects; pspace-hardness of the" warehouseman’s problem". The International Journal of Robotics Research, 3(4), 76–88.CrossRef Hopcroft, J. E., Schwartz, J. T., & Sharir, M. (1984). On the complexity of motion planning for multiple independent objects; pspace-hardness of the" warehouseman’s problem". The International Journal of Robotics Research, 3(4), 76–88.CrossRef
Zurück zum Zitat Johansson, A., Helbing, D., & Shukla, P. K. (2007). Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems, 10, 271–288.MathSciNetCrossRef Johansson, A., Helbing, D., & Shukla, P. K. (2007). Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems, 10, 271–288.MathSciNetCrossRef
Zurück zum Zitat Karamouzas, I., Geraerts, R., & van der Stappen, A. F. (2013). Space-time group motion planning. In E. Frazzoli, T. Lozano-Perez, N. Roy, & D. Rus (Eds.), Algorithmic foundations of robotics X (pp. 227–243). Berlin: Springer.CrossRef Karamouzas, I., Geraerts, R., & van der Stappen, A. F. (2013). Space-time group motion planning. In E. Frazzoli, T. Lozano-Perez, N. Roy, & D. Rus (Eds.), Algorithmic foundations of robotics X (pp. 227–243). Berlin: Springer.CrossRef
Zurück zum Zitat Karamouzas, I., Heil, P., van Beek, P., & Overmars, M. (2009). A predictive collision avoidance model for pedestrian simulation. In Motion in games, LNCS, (vol. 5884, pp. 41–52). Springer. Karamouzas, I., Heil, P., van Beek, P., & Overmars, M. (2009). A predictive collision avoidance model for pedestrian simulation. In Motion in games, LNCS, (vol. 5884, pp. 41–52). Springer.
Zurück zum Zitat Karamouzas, I., & Overmars, M. (2012). Simulating and evaluating the local behavior of small pedestrian groups. IEEE Transactions on Visualization and Computer Graphics, 18(3), 394–406.CrossRef Karamouzas, I., & Overmars, M. (2012). Simulating and evaluating the local behavior of small pedestrian groups. IEEE Transactions on Visualization and Computer Graphics, 18(3), 394–406.CrossRef
Zurück zum Zitat Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–98.CrossRef Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–98.CrossRef
Zurück zum Zitat Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simmulated annealing. Science, 220(4598), 671–680.MathSciNetCrossRef Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simmulated annealing. Science, 220(4598), 671–680.MathSciNetCrossRef
Zurück zum Zitat Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11), 1238–1274.CrossRef Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11), 1238–1274.CrossRef
Zurück zum Zitat Kornhauser, D. M., Miller, G. L., & Spirakis, P. G. (1984). Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. Master’s thesis, M. I. T., Deptartment of Electrical Engineering and Computer Science. Kornhauser, D. M., Miller, G. L., & Spirakis, P. G. (1984). Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. Master’s thesis, M. I. T., Deptartment of Electrical Engineering and Computer Science.
Zurück zum Zitat Macready, W. G., & Wolpert, D. H. (1998). Bandit problems and the exploration/exploitation tradeoff. IEEE Transactions on Evolutionary Computation, 2(1), 2–22.CrossRef Macready, W. G., & Wolpert, D. H. (1998). Bandit problems and the exploration/exploitation tradeoff. IEEE Transactions on Evolutionary Computation, 2(1), 2–22.CrossRef
Zurück zum Zitat Martinez-Gil, F., Lozano, M., & Fernández, F. (2012). Multi-agent reinforcement learning for simulating pedestrian navigation. In Adaptive and learning agents, (pp. 54–69). Springer. Martinez-Gil, F., Lozano, M., & Fernández, F. (2012). Multi-agent reinforcement learning for simulating pedestrian navigation. In Adaptive and learning agents, (pp. 54–69). Springer.
Zurück zum Zitat Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.CrossRef Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.CrossRef
Zurück zum Zitat Ondřej, J., Pettré, J., Olivier, A. H., & Donikian, S. (2010). A synthetic-vision based steering approach for crowd simulation. ACM Transactions on Graphics, 29(4), 123.CrossRef Ondřej, J., Pettré, J., Olivier, A. H., & Donikian, S. (2010). A synthetic-vision based steering approach for crowd simulation. ACM Transactions on Graphics, 29(4), 123.CrossRef
Zurück zum Zitat Pelechano, N., Allbeck, J., & Badler, N. (2007). Controlling individual agents in high-density crowd simulation. In Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 99–108). Pelechano, N., Allbeck, J., & Badler, N. (2007). Controlling individual agents in high-density crowd simulation. In Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 99–108).
Zurück zum Zitat Pelechano, N., Allbeck, J. M., & Badler, N. I. (2008). Virtual crowds: Methods, simulation, and control. Synthesis lectures on computer graphics and animation (vol. 3, No. 1, pp. 1–176).CrossRef Pelechano, N., Allbeck, J. M., & Badler, N. I. (2008). Virtual crowds: Methods, simulation, and control. Synthesis lectures on computer graphics and animation (vol. 3, No. 1, pp. 1–176).CrossRef
Zurück zum Zitat Pettré, J., Ondrej, J., Olivier, A. H., Crétual, A., & Donikian, S. (2009). Experiment-based modeling, simulation and validation of interactions between virtual walkers. In ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 189–198). Pettré, J., Ondrej, J., Olivier, A. H., Crétual, A., & Donikian, S. (2009). Experiment-based modeling, simulation and validation of interactions between virtual walkers. In ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 189–198).
Zurück zum Zitat Popelová, M., Bída, M., Brom, C., Gemrot, J., & Tomek, J. (2011). When a couple goes together: Walk along steering. In Motion in games, LNCS (vol. 7060, pp. 278–289). Springer. Popelová, M., Bída, M., Brom, C., Gemrot, J., & Tomek, J. (2011). When a couple goes together: Walk along steering. In Motion in games, LNCS (vol. 7060, pp. 278–289). Springer.
Zurück zum Zitat Ratering, S., & Gini, M. (1995). Robot navigation in a known environment with unknown moving obstacles. Autonomous Robots, 1(2), 149–165.CrossRef Ratering, S., & Gini, M. (1995). Robot navigation in a known environment with unknown moving obstacles. Autonomous Robots, 1(2), 149–165.CrossRef
Zurück zum Zitat Reynolds, C. (1999). Steering behaviors for autonomous characters. In Game developers conference (pp. 763–782). Reynolds, C. (1999). Steering behaviors for autonomous characters. In Game developers conference (pp. 763–782).
Zurück zum Zitat Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 24–34.CrossRef Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 24–34.CrossRef
Zurück zum Zitat Shao, W., & Terzopoulos, D. (2007). Autonomous pedestrians. Graphical Models, 69(5–6), 246–274.CrossRef Shao, W., & Terzopoulos, D. (2007). Autonomous pedestrians. Graphical Models, 69(5–6), 246–274.CrossRef
Zurück zum Zitat Sieben, A., Schumann, J., & Seyfried, A. (2017). Collective phenomena in crowdswhere pedestrian dynamics need social psychology. PLoS ONE, 12(6), 1–9.CrossRef Sieben, A., Schumann, J., & Seyfried, A. (2017). Collective phenomena in crowdswhere pedestrian dynamics need social psychology. PLoS ONE, 12(6), 1–9.CrossRef
Zurück zum Zitat Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3(1), 9–44. Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3(1), 9–44.
Zurück zum Zitat Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.
Zurück zum Zitat Torrey, L. (2010). Crowd simulation via multi-agent reinforcement learning. In Proceedings of artificial intelligence and interactive digital entertainment (pp. 89–94). Torrey, L. (2010). Crowd simulation via multi-agent reinforcement learning. In Proceedings of artificial intelligence and interactive digital entertainment (pp. 89–94).
Zurück zum Zitat Tsai, J., Bowring, E., Marsella, S., & Tambe, M. (2013). Empirical evaluation of computational fear contagion models in crowd dispersions. Autonomous agents and multi-agent systems (pp. 1–18).CrossRef Tsai, J., Bowring, E., Marsella, S., & Tambe, M. (2013). Empirical evaluation of computational fear contagion models in crowd dispersions. Autonomous agents and multi-agent systems (pp. 1–18).CrossRef
Zurück zum Zitat Uther, W., & Veloso, M. (1997). Adversarial reinforcement learning. Technical report, Carnegie Mellon University. Uther, W., & Veloso, M. (1997). Adversarial reinforcement learning. Technical report, Carnegie Mellon University.
Zurück zum Zitat van den Berg, J., Lin, M., & Manocha, D. (2008). Reciprocal velocity obstacles for real-time multi-agent navigation. In Proceedings of IEEE international conference on robotics and automation (pp. 1928–1935). van den Berg, J., Lin, M., & Manocha, D. (2008). Reciprocal velocity obstacles for real-time multi-agent navigation. In Proceedings of IEEE international conference on robotics and automation (pp. 1928–1935).
Zurück zum Zitat van den Berg, J., Guy, S.J., Lin, M., & Manocha, D. (2011). Reciprocal n-body collision avoidance. In Proceedings of international symposium of robotics research (pp. 3–19). Springer. van den Berg, J., Guy, S.J., Lin, M., & Manocha, D. (2011). Reciprocal n-body collision avoidance. In Proceedings of international symposium of robotics research (pp. 3–19). Springer.
Zurück zum Zitat van den Berg, J., Snape, J., Guy, S. J., & Manocha, D. (2011). Reciprocal collision avoidance with acceleration-velocity obstacles. In IEEE international conference on robotics and automation (pp. 3475–3482). van den Berg, J., Snape, J., Guy, S. J., & Manocha, D. (2011). Reciprocal collision avoidance with acceleration-velocity obstacles. In IEEE international conference on robotics and automation (pp. 3475–3482).
Zurück zum Zitat Whiteson, S., Taylor, M. E., & Stone, P. (2007). Empirical studies in action selection with reinforcement learning. Adaptive Behavior, 15(1), 33–50.CrossRef Whiteson, S., Taylor, M. E., & Stone, P. (2007). Empirical studies in action selection with reinforcement learning. Adaptive Behavior, 15(1), 33–50.CrossRef
Zurück zum Zitat Yu, J., & LaValle, S. M. (2013). Planning optimal paths for multiple robots on graphs. In Proceedings IEEE international conference on robotics and automation (pp. 3612–3617). IEEE. Yu, J., & LaValle, S. M. (2013). Planning optimal paths for multiple robots on graphs. In Proceedings IEEE international conference on robotics and automation (pp. 3612–3617). IEEE.
Zurück zum Zitat Zhang, C., & Lesser, V. (2012). Coordinated multi-agent learning for decentralized POMDPs. In 7th annual workshop on multiagent sequential decision-making under uncertainty (MSDM) at AAMAS (pp. 72–78). Zhang, C., & Lesser, V. (2012). Coordinated multi-agent learning for decentralized POMDPs. In 7th annual workshop on multiagent sequential decision-making under uncertainty (MSDM) at AAMAS (pp. 72–78).
Zurück zum Zitat Zhang, C., & Lesser, V. (2013). Coordinating multi-agent reinforcement learning with limited communication. In Proceedings of international conference on autonomous agents and multi-agent systems (pp. 1101–1108). Zhang, C., & Lesser, V. (2013). Coordinating multi-agent reinforcement learning with limited communication. In Proceedings of international conference on autonomous agents and multi-agent systems (pp. 1101–1108).
Zurück zum Zitat Ziebart, B. D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J. A., Hebert, M., Dey, A. K., & Srinivasa, S. (2009). Planning-based prediction for pedestrians. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 3931–3936). Ziebart, B. D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J. A., Hebert, M., Dey, A. K., & Srinivasa, S. (2009). Planning-based prediction for pedestrians. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 3931–3936).
Metadaten
Titel
ALAN: adaptive learning for multi-agent navigation
verfasst von
Julio Godoy
Tiannan Chen
Stephen J. Guy
Ioannis Karamouzas
Maria Gini
Publikationsdatum
19.02.2018
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 8/2018
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-018-9719-4

Weitere Artikel der Ausgabe 8/2018

Autonomous Robots 8/2018 Zur Ausgabe

Neuer Inhalt