Skip to main content
Erschienen in: Archive of Applied Mechanics 3/2023

21.11.2022 | Original

Multi-body musculoskeletal dynamic model of the human trunk based on an experimental approach

verfasst von: F. Moalla, S. Mehrez, F. Najar

Erschienen in: Archive of Applied Mechanics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To overcome certain back pain problems or enhance body performance in sports applications, a biomechanical study of the dynamic response of the human trunk is important to understand and predict its response in different loading conditions involving time-dependent excitations. In this work, it is proposed to use a simple experimental protocol and a 3D finite element dynamic model to extract effective stiffness, inertial and damping characteristics of the human trunk. A setup is designed to collect data from the motion of the trunk of a healthy subject attached around its pelvis, in an upright position with a small time-dependent applied force to its thoracic region via a securely designed small-amplitude crank–rod mechanism. The applied force and the subsequent displacements at the thoracic vertebrae T8 level are measured using a load cell and a laser displacement sensor, respectively. The experimental results are used to update a 3D multi-body musculoskeletal model. The model of the trunk is subdivided into 335 elements with independent geometrical and physical properties. A Newmark method is used to solve the derived equations in time, extract the dynamic properties of the trunk, and compare the results with those obtained experimentally. It is also shown that the simulated transient displacement is similar to the one obtained experimentally for relatively small time intervals. The collected experimental data are used to calculate the effective mass, stiffness, and damping factor and observe the effect of the applied excitation conditions on the dynamic response. These results are compared with those obtained numerically with the developed musculoskeletal model. Good agreement was observed for the variation of the effective dynamic properties of the trunk between the experimental and numerical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abouhossein, A., Weisse, B., Ferguson, S.J.: A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comp. Meth. Biomech. Biomed. Eng. 14(06), 527–537 (2011)CrossRef Abouhossein, A., Weisse, B., Ferguson, S.J.: A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comp. Meth. Biomech. Biomed. Eng. 14(06), 527–537 (2011)CrossRef
2.
Zurück zum Zitat Ackermann, M., Schiehlen, W.: Dynamic analysis of human gait disorder and metabolical cost estimation. Arch. Appl. Mech. 75(10), 569–594 (2006)CrossRefMATH Ackermann, M., Schiehlen, W.: Dynamic analysis of human gait disorder and metabolical cost estimation. Arch. Appl. Mech. 75(10), 569–594 (2006)CrossRefMATH
3.
Zurück zum Zitat Bazrgari, B., Shirazi-Adl, A., Arjmand, N.: Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. Eur. Spine J. 16(5), 687–699 (2007)CrossRef Bazrgari, B., Shirazi-Adl, A., Arjmand, N.: Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. Eur. Spine J. 16(5), 687–699 (2007)CrossRef
4.
Zurück zum Zitat Bazrgari, B., Shirazi-Adl, A., Kasra, M.: Computation of trunk muscle forces, spinal loads and stability in whole-body vibration. J. Sound Vibrat. 318(4–5), 1334–1347 (2008)CrossRef Bazrgari, B., Shirazi-Adl, A., Kasra, M.: Computation of trunk muscle forces, spinal loads and stability in whole-body vibration. J. Sound Vibrat. 318(4–5), 1334–1347 (2008)CrossRef
5.
Zurück zum Zitat Bergmark, A.: Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop. Scand. 60(sup230), 1–54 (1989)CrossRef Bergmark, A.: Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop. Scand. 60(sup230), 1–54 (1989)CrossRef
6.
Zurück zum Zitat Callaghan, J.P., McGill, S.M.: Low back joint loading and kinematics during standing and unsupported sitting. Ergonomics 44(3), 280–294 (2001)CrossRef Callaghan, J.P., McGill, S.M.: Low back joint loading and kinematics during standing and unsupported sitting. Ergonomics 44(3), 280–294 (2001)CrossRef
7.
Zurück zum Zitat Cameron, J.R., Skofronick, J.G., Grant, R.M., Morin, R.L.: Physics of the body. Wiley Online (2000) Cameron, J.R., Skofronick, J.G., Grant, R.M., Morin, R.L.: Physics of the body. Wiley Online (2000)
8.
Zurück zum Zitat Cholewicki, J., McGill, S.M., Norman, R.W.: Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J. Biomech. 28(3), 321–331 (1995)CrossRef Cholewicki, J., McGill, S.M., Norman, R.W.: Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach. J. Biomech. 28(3), 321–331 (1995)CrossRef
9.
Zurück zum Zitat Christophy, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11(1), 19–34 (2012)CrossRef Christophy, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11(1), 19–34 (2012)CrossRef
11.
Zurück zum Zitat Dreischarf, M., Zander, T., Shirazi-Adl, A., Puttlitz, C., Adam, C., Chen, C., Goel, V., Kiapour, A., Kim, Y., Labus, K., et al.: Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J. Biomech. 47(8), 1757–1766 (2014)CrossRef Dreischarf, M., Zander, T., Shirazi-Adl, A., Puttlitz, C., Adam, C., Chen, C., Goel, V., Kiapour, A., Kim, Y., Labus, K., et al.: Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J. Biomech. 47(8), 1757–1766 (2014)CrossRef
12.
Zurück zum Zitat Dreischarf, M., Shirazi-Adl, A., Arjmand, N., Rohlmann, A., Schmidt, H.: Estimation of loads on human lumbar spine: a review of in vivo and computational model studies. J. Biomech. 49(6), 833–845 (2016)CrossRef Dreischarf, M., Shirazi-Adl, A., Arjmand, N., Rohlmann, A., Schmidt, H.: Estimation of loads on human lumbar spine: a review of in vivo and computational model studies. J. Biomech. 49(6), 833–845 (2016)CrossRef
13.
Zurück zum Zitat Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22(2), 131–154 (2007)CrossRef Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22(2), 131–154 (2007)CrossRef
14.
Zurück zum Zitat Fice, J.B., Cronin, D.S., Panzer, M.B.: Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39(8), 2152–2162 (2011)CrossRef Fice, J.B., Cronin, D.S., Panzer, M.B.: Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39(8), 2152–2162 (2011)CrossRef
15.
Zurück zum Zitat Gareis, H., Moshe, S., Baratta, R., Best, R., D’Ambrosia, R.: The isometric length-force models of nine different skeletal muscles. J. Biomech. 25(8), 903–916 (1992)CrossRef Gareis, H., Moshe, S., Baratta, R., Best, R., D’Ambrosia, R.: The isometric length-force models of nine different skeletal muscles. J. Biomech. 25(8), 903–916 (1992)CrossRef
16.
Zurück zum Zitat Glowinski, S., Krzyzynski, T., Pecolt, S., Maciejewski, I.: Design of motion trajectory of an arm exoskeleton. Arch. Appl. Mech. 85(1), 75–87 (2015)CrossRef Glowinski, S., Krzyzynski, T., Pecolt, S., Maciejewski, I.: Design of motion trajectory of an arm exoskeleton. Arch. Appl. Mech. 85(1), 75–87 (2015)CrossRef
17.
Zurück zum Zitat Granata, K.P., Marras, W.: An EMG-assisted model of trunk loading during free-dynamic lifting. J. Biomech. 28(11), 1309–1317 (1995)CrossRef Granata, K.P., Marras, W.: An EMG-assisted model of trunk loading during free-dynamic lifting. J. Biomech. 28(11), 1309–1317 (1995)CrossRef
18.
Zurück zum Zitat Han, K.S., Zander, T., Taylor, W.R., Rohlmann, A.: An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med. Eng. & Phys. 34(6), 709–716 (2012)CrossRef Han, K.S., Zander, T., Taylor, W.R., Rohlmann, A.: An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med. Eng. & Phys. 34(6), 709–716 (2012)CrossRef
19.
Zurück zum Zitat Harrington, T.A., Thomas, E.L., Frost, G., Modi, N., Bell, J.D.: Distribution of adipose tissue in the newborn. Pediatr. Res. 55(3), 437–441 (2004)CrossRef Harrington, T.A., Thomas, E.L., Frost, G., Modi, N., Bell, J.D.: Distribution of adipose tissue in the newborn. Pediatr. Res. 55(3), 437–441 (2004)CrossRef
20.
21.
Zurück zum Zitat Honegger, J.D., Actis, J.A., Gates, D.H., Silverman, A.K., Munson, A.H., Petrella, A.J.: Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand. Biomech. Model. Mechanobiol. 20(1), 339–358 (2021)CrossRef Honegger, J.D., Actis, J.A., Gates, D.H., Silverman, A.K., Munson, A.H., Petrella, A.J.: Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand. Biomech. Model. Mechanobiol. 20(1), 339–358 (2021)CrossRef
23.
Zurück zum Zitat Inman DJ (2006) Vibration with control. Wiley Online Library Inman DJ (2006) Vibration with control. Wiley Online Library
24.
Zurück zum Zitat Jalalian, A., Gibson, I., Tay, E.H.: Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deformity 1(6), 401–411 (2013)CrossRef Jalalian, A., Gibson, I., Tay, E.H.: Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deformity 1(6), 401–411 (2013)CrossRef
25.
Zurück zum Zitat Keller, T.S., Colloca, C.J.: A rigid body model of the dynamic posteroanterior motion response of the human lumbar spine. J.Manipul. Pysiol. Therapeut. 25(8), 485–496 (2002)CrossRef Keller, T.S., Colloca, C.J.: A rigid body model of the dynamic posteroanterior motion response of the human lumbar spine. J.Manipul. Pysiol. Therapeut. 25(8), 485–496 (2002)CrossRef
26.
Zurück zum Zitat Lafage, V., Dubousset, J., Lavaste, F., Skalli, W.: 3D finite element simulation of cotrel-dubousset correction. Comp. Aid. Surg. 9(1–2), 17–25 (2004)CrossRef Lafage, V., Dubousset, J., Lavaste, F., Skalli, W.: 3D finite element simulation of cotrel-dubousset correction. Comp. Aid. Surg. 9(1–2), 17–25 (2004)CrossRef
27.
Zurück zum Zitat Marras, W.S., Granata, K.P.: The development of an emg-assisted model to assess spine loading during whole-body free-dynamic lifting. J. Electromyogr. Kinesiol. 7(4), 259–268 (1997)CrossRef Marras, W.S., Granata, K.P.: The development of an emg-assisted model to assess spine loading during whole-body free-dynamic lifting. J. Electromyogr. Kinesiol. 7(4), 259–268 (1997)CrossRef
29.
Zurück zum Zitat Mehrez, S., Smaoui, H., Ben Salah, F.Z.: A biomechanical model to simulate the effect of a high vertical loading on trunk flexural stiffness. Comp. Meth. Biomech. Biomed. Eng. 17(9), 1032–1041 (2014)CrossRef Mehrez, S., Smaoui, H., Ben Salah, F.Z.: A biomechanical model to simulate the effect of a high vertical loading on trunk flexural stiffness. Comp. Meth. Biomech. Biomed. Eng. 17(9), 1032–1041 (2014)CrossRef
30.
Zurück zum Zitat Meirovitch, L.: Fundamentals of vibrations. Waveland Press, Illinois (2010) Meirovitch, L.: Fundamentals of vibrations. Waveland Press, Illinois (2010)
31.
Zurück zum Zitat Méndez, J.: Density and composition of mammalian muscle. Metabolism 9, 184–188 (1960) Méndez, J.: Density and composition of mammalian muscle. Metabolism 9, 184–188 (1960)
32.
Zurück zum Zitat Moalla F, Mehrez S, Najar F (2018) Dynamic identification of human trunk behavior as a diagnosis tool for pathologic problems. In: 2018 IEEE 4th Middle east conference on biomedical engineering (MECBME), IEEE, pp 51–55 Moalla F, Mehrez S, Najar F (2018) Dynamic identification of human trunk behavior as a diagnosis tool for pathologic problems. In: 2018 IEEE 4th Middle east conference on biomedical engineering (MECBME), IEEE, pp 51–55
33.
Zurück zum Zitat Moorhouse, K.M., Granata, K.P.: Trunk stiffness and dynamics during active extension exertions. J. Biomech. 38(10), 2000–2007 (2005)CrossRef Moorhouse, K.M., Granata, K.P.: Trunk stiffness and dynamics during active extension exertions. J. Biomech. 38(10), 2000–2007 (2005)CrossRef
34.
Zurück zum Zitat Phillips, S., Mercer, S., Bogduk, N.: Anatomy and biomechanics of quadratus lumborum. Proceed. Institut. Mech. Eng., Part H: J. Eng. Med. 222(2), 151–159 (2008)CrossRef Phillips, S., Mercer, S., Bogduk, N.: Anatomy and biomechanics of quadratus lumborum. Proceed. Institut. Mech. Eng., Part H: J. Eng. Med. 222(2), 151–159 (2008)CrossRef
37.
Zurück zum Zitat Rupp, T., Ehlers, W., Karajan, N., Günther, M., Schmitt, S.: A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomech. Model. Mechanobiol. 14(5), 1081–1105 (2015)CrossRef Rupp, T., Ehlers, W., Karajan, N., Günther, M., Schmitt, S.: A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomech. Model. Mechanobiol. 14(5), 1081–1105 (2015)CrossRef
38.
Zurück zum Zitat Schmidt, H., Bashkuev, M., Dreischarf, M., Rohlmann, A., Duda, G., Wilke, H.J., Shirazi-Adl, A.: Computational biomechanics of a lumbar motion segment in pure and combined shear loads. J. Biomech. 46(14), 2513–2521 (2013)CrossRef Schmidt, H., Bashkuev, M., Dreischarf, M., Rohlmann, A., Duda, G., Wilke, H.J., Shirazi-Adl, A.: Computational biomechanics of a lumbar motion segment in pure and combined shear loads. J. Biomech. 46(14), 2513–2521 (2013)CrossRef
39.
Zurück zum Zitat Stokes, I.A., Gardner-Morse, M.: Quantitative anatomy of the lumbar musculature. J. Biomech. 32(3), 311–316 (1999)CrossRef Stokes, I.A., Gardner-Morse, M.: Quantitative anatomy of the lumbar musculature. J. Biomech. 32(3), 311–316 (1999)CrossRef
41.
Zurück zum Zitat Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989) Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)
Metadaten
Titel
Multi-body musculoskeletal dynamic model of the human trunk based on an experimental approach
verfasst von
F. Moalla
S. Mehrez
F. Najar
Publikationsdatum
21.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 3/2023
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-022-02323-x

Weitere Artikel der Ausgabe 3/2023

Archive of Applied Mechanics 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.