Skip to main content
Erschienen in: Knowledge and Information Systems 4/2021

18.01.2021 | Short Paper

Multi-layer linear embedding with feature subset selection

verfasst von: F. Dornaika

Erschienen in: Knowledge and Information Systems | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many fundamental problems in machine learning require some form of dimensionality reduction. To this end, two different strategies were used: manifold learning and feature selection. Manifold learning (or data embedding) attempts to compute a subspace from original data by feature recombination/transformation. Feature selection aims to select the most relevant features in the original space. In this paper, we propose a novel cooperative manifold learning-feature selection that goes beyond the simple concatenation of these two modules. Our basic idea is to learn an embedding (or the subspace) by computing a cascade of embeddings in which each embedding undergoes feature selection and elimination. We use filter approaches in order to efficiently select irrelevant features at any stage of the process. For a case study, our proposed framework was used with two typical linear embedding algorithms: local discriminant embedding (a supervised technique) and locality preserving projections (unsupervised technique) on four challenging face databases and it has been conveniently compared with other cooperative schemes. Moreover, a comparison with several state-of-the-art manifold learning methods is provided. As it is exhibited by our experimental study, the proposed framework can achieve superior learning performance with respect to classic cooperative schemes and to many competing manifold learning methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aghazadeh RSA, LeJeune D, Dasarathy G, Shrivastava A, Baraniuk R (2018) Ultra large-scale feature selection using count-sketches. In: ICML Aghazadeh RSA, LeJeune D, Dasarathy G, Shrivastava A, Baraniuk R (2018) Ultra large-scale feature selection using count-sketches. In: ICML
2.
Zurück zum Zitat Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404CrossRef Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404CrossRef
3.
Zurück zum Zitat Belhumeur PN, Hespanha J P, Kriegman DJ (1997) Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef Belhumeur PN, Hespanha J P, Kriegman DJ (1997) Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef
4.
Zurück zum Zitat Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRef Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRef
5.
Zurück zum Zitat Cai D, He X, Han J (2011) Speed up kernel discriminant analysis. Int J Very Large Data Bases 20(1):21–33CrossRef Cai D, He X, Han J (2011) Speed up kernel discriminant analysis. Int J Very Large Data Bases 20(1):21–33CrossRef
6.
Zurück zum Zitat Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28CrossRef Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28CrossRef
7.
Zurück zum Zitat Chen H, Chang H, Liu T (2005) Local discriminant embedding and its variants. In: IEEE international conference on computer vision and pattern recognition Chen H, Chang H, Liu T (2005) Local discriminant embedding and its variants. In: IEEE international conference on computer vision and pattern recognition
8.
Zurück zum Zitat Dong X, Zhu L, Song X, Li J, Cheng Z (2018) Adaptive collaborative similarity learning for unsupervised multi-view feature selection. In: IJCIA Dong X, Zhu L, Song X, Li J, Cheng Z (2018) Adaptive collaborative similarity learning for unsupervised multi-view feature selection. In: IJCIA
9.
Zurück zum Zitat Dornaika F, Assoum A (2010) Linear dimensionality reduction through eigenvector selection for object recognition. In: International symposium on visual computing, volume LNCS 6453 Dornaika F, Assoum A (2010) Linear dimensionality reduction through eigenvector selection for object recognition. In: International symposium on visual computing, volume LNCS 6453
10.
Zurück zum Zitat Dornaika F, Assoum A (2013) Enhanced and parameterless locality preserving projections for face recognition. Neurocomputing 99:448–457CrossRef Dornaika F, Assoum A (2013) Enhanced and parameterless locality preserving projections for face recognition. Neurocomputing 99:448–457CrossRef
11.
Zurück zum Zitat Dornaika F, Bosaghzadeh A (2013) Exponential local discriminant embedding and its application to face recognition. IEEE Trans Cybern 43(3):921–934CrossRef Dornaika F, Bosaghzadeh A (2013) Exponential local discriminant embedding and its application to face recognition. IEEE Trans Cybern 43(3):921–934CrossRef
12.
Zurück zum Zitat Du W, Cao Z, Song T, Li Y, Liang Y (2017) A feature selection method based on multiple kernel learning with expression profiles of different types. BioData Min 10(4):1–16 Du W, Cao Z, Song T, Li Y, Liang Y (2017) A feature selection method based on multiple kernel learning with expression profiles of different types. BioData Min 10(4):1–16
13.
Zurück zum Zitat Gilad-Bachrach R, Navot A, Tishby N (2004) Margin based feature selection—theory and algorithms. In: International conference on machine learning Gilad-Bachrach R, Navot A, Tishby N (2004) Margin based feature selection—theory and algorithms. In: International conference on machine learning
14.
Zurück zum Zitat Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182MATH Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182MATH
15.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778
16.
Zurück zum Zitat Hou C, Nie F, Li X, Yi D, Wu Y (2014) Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans Cybern 44(6):793–804CrossRef Hou C, Nie F, Li X, Yi D, Wu Y (2014) Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans Cybern 44(6):793–804CrossRef
17.
Zurück zum Zitat Jain A, Duin R, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37CrossRef Jain A, Duin R, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37CrossRef
18.
Zurück zum Zitat Lai C, Guo S, Cheng L, Wang WA (2017) A comparative study of feature selection methods for the discriminative analysis of temporal lobe epilepsy. Front. Neurol 8(633):1–13 Lai C, Guo S, Cheng L, Wang WA (2017) A comparative study of feature selection methods for the discriminative analysis of temporal lobe epilepsy. Front. Neurol 8(633):1–13
19.
Zurück zum Zitat Lai Z, Jin Z, Yang J, Wong W (2010) Sparse local discriminant projections for face feature extraction. In: International conference on pattern recognition Lai Z, Jin Z, Yang J, Wong W (2010) Sparse local discriminant projections for face feature extraction. In: International conference on pattern recognition
20.
21.
Zurück zum Zitat Nie F, Xiang S, Jia CZY, Yan S (2008) Trace ratio criterion for feature selection. In: AAAI conference on artificial intelligence Nie F, Xiang S, Jia CZY, Yan S (2008) Trace ratio criterion for feature selection. In: AAAI conference on artificial intelligence
22.
Zurück zum Zitat Perez-Riverol Y, Kun M, Vizcaino JA, Hitz M-P, Audain E (2017) Accurate and fast feature selection workflow for high-dimensional omics data. bioRxiv Perez-Riverol Y, Kun M, Vizcaino JA, Hitz M-P, Audain E (2017) Accurate and fast feature selection workflow for high-dimensional omics data. bioRxiv
23.
Zurück zum Zitat Rao VM, Sastry VN (2012) Unsupervised feature ranking based on representation entropy. In: International conference on recent advances in information technology Rao VM, Sastry VN (2012) Unsupervised feature ranking based on representation entropy. In: International conference on recent advances in information technology
24.
Zurück zum Zitat Stanczyk U, Zielosko B, Jain L (2018) Advances in feature selection for data and pattern recognition. Springer, New YorkCrossRef Stanczyk U, Zielosko B, Jain L (2018) Advances in feature selection for data and pattern recognition. Springer, New YorkCrossRef
25.
Zurück zum Zitat Suna Z, Bebisa G, Miller R (2004) Object detection using feature subset selection. Pattern Recogn 37:2165–2176CrossRef Suna Z, Bebisa G, Miller R (2004) Object detection using feature subset selection. Pattern Recogn 37:2165–2176CrossRef
26.
Zurück zum Zitat Wang F, Wang X, Zhang D, Zhang C, Li T (2009) Marginface: a novel face recognition method by average neighborhood margin maximization. Pattern Recogn 42:2863–2875CrossRef Wang F, Wang X, Zhang D, Zhang C, Li T (2009) Marginface: a novel face recognition method by average neighborhood margin maximization. Pattern Recogn 42:2863–2875CrossRef
27.
Zurück zum Zitat Wang S, Chen H, Peng X, Zhou C (2011) Exponential locality preserving projections for small sample size problem. Neurocomputing 74(17):3654–3662CrossRef Wang S, Chen H, Peng X, Zhou C (2011) Exponential locality preserving projections for small sample size problem. Neurocomputing 74(17):3654–3662CrossRef
28.
Zurück zum Zitat Wang W, Wang R, Huang Z, Shan S, Chen X (2018) Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets. IEEE Trans Image Process 27(1):151–163MathSciNetMATH Wang W, Wang R, Huang Z, Shan S, Chen X (2018) Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets. IEEE Trans Image Process 27(1):151–163MathSciNetMATH
29.
Zurück zum Zitat Wen J, Xu Y, Li Z, Ma Z i, Xu Y (2018) Inter-class sparsity based discriminative least square regression. Neural Netw 102:36–47CrossRef Wen J, Xu Y, Li Z, Ma Z i, Xu Y (2018) Inter-class sparsity based discriminative least square regression. Neural Netw 102:36–47CrossRef
30.
Zurück zum Zitat Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extension: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extension: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef
31.
Zurück zum Zitat Yang J, Frangi A F, Yang J-Y, Zhang D, Jin Z (2005) KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244CrossRef Yang J, Frangi A F, Yang J-Y, Zhang D, Jin Z (2005) KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244CrossRef
32.
Zurück zum Zitat Zhang L, Qiao L, Chen S (2010) Graph-optimized locality preserving projections. Pattern Recogn 43:1993–2002CrossRef Zhang L, Qiao L, Chen S (2010) Graph-optimized locality preserving projections. Pattern Recogn 43:1993–2002CrossRef
33.
Zurück zum Zitat Zhang L, Zhang Q, Zhang L, Tao D, Huang X, Du B (2015) Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recogn 48:3102–3112CrossRef Zhang L, Zhang Q, Zhang L, Tao D, Huang X, Du B (2015) Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recogn 48:3102–3112CrossRef
34.
Zurück zum Zitat Zhang P, You X, Ou W, Chen C, Cheung Y (2016) Sparse discriminative multi-manifold embedding for one-sample face identification. Pattern Recogn 52:249–259CrossRef Zhang P, You X, Ou W, Chen C, Cheung Y (2016) Sparse discriminative multi-manifold embedding for one-sample face identification. Pattern Recogn 52:249–259CrossRef
35.
Zurück zum Zitat Zhang X, Gao Y (2009) Face recognition across pose: a review. Pattern Recogn 42:2876–2896CrossRef Zhang X, Gao Y (2009) Face recognition across pose: a review. Pattern Recogn 42:2876–2896CrossRef
36.
Zurück zum Zitat Zhu X, Li X, Zhang S, Ju C, Wu X (2017) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6):1263–1275MathSciNetCrossRef Zhu X, Li X, Zhang S, Ju C, Wu X (2017) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6):1263–1275MathSciNetCrossRef
Metadaten
Titel
Multi-layer linear embedding with feature subset selection
verfasst von
F. Dornaika
Publikationsdatum
18.01.2021
Verlag
Springer London
Erschienen in
Knowledge and Information Systems / Ausgabe 4/2021
Print ISSN: 0219-1377
Elektronische ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-020-01535-3

Weitere Artikel der Ausgabe 4/2021

Knowledge and Information Systems 4/2021 Zur Ausgabe

Premium Partner