Skip to main content
Erschienen in: Artificial Life and Robotics 4/2016

05.11.2016 | Special Feature: Original Article

Multi-objective optimization for efficient motion of underwater snake robots

verfasst von: E. Kelasidi, M. Jesmani, K. Y. Pettersen, J. T. Gravdahl

Erschienen in: Artificial Life and Robotics | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Underwater snake robots constitute a bio-inspired solution within underwater robotics. Increasing the motion efficiency in terms of the forward speed by improving the locomotion methods is a key issue for underwater robots. Furthermore, the energy efficiency is one of the main challenges for long-term autonomy of these systems. In this study, we will consider both these aspects of efficiency, which in some cases can be conflicting. To this end, we formulate a multi-objective optimization problem to minimize power consumption and maximize forward velocity. In particular, the optimal values of the gait parameters for different motion patterns are calculated in the presence of trade-offs between power consumption and velocity. As is the case with all multi-objective optimization problems, the solution is not a single point but rather a set of points. We present a weighted-sum method to combine power consumption and forward velocity optimization problems. Particle swarm optimization is applied to obtain optimal gait parameters for different weighting factors. Trade-off curves or Pareto fronts are illustrated in a power consumption–forward velocity plane for both lateral and eel-like motion pattern. They give information on objective trade-offs and can show how improving power consumption is related to deteriorating the forward velocity along the trade-off curve. Therefore, decision makers can specify the preferred Pareto optimal point along the trade-off curve. Moreover, we address some interesting questions regarding the optimal gait parameters, which is a significant issue for the control of underwater snake robots in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boyer F, Porez M, Khalil W (2006) Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans Robot 22(4):763–775CrossRef Boyer F, Porez M, Khalil W (2006) Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans Robot 22(4):763–775CrossRef
2.
Zurück zum Zitat Chatterjee S, Nachstedt T, Tamosiunaite M, Wörgötter F, Enomoto Y, Ariizumi R, Matsuno F, Manoonpong P (2015) Learning and chaining of motor primitives for goal-directed locomotion of a snakelike robot with screw-drive units. Int J Adv Robot Syst 12 Chatterjee S, Nachstedt T, Tamosiunaite M, Wörgötter F, Enomoto Y, Ariizumi R, Matsuno F, Manoonpong P (2015) Learning and chaining of motor primitives for goal-directed locomotion of a snakelike robot with screw-drive units. Int J Adv Robot Syst 12
3.
Zurück zum Zitat Chee WS, Teo J, Kinabalu, K (2014) Empirically comparing three multi-objective optimization approaches for the automated evolution of snake-like modular robots. In: Proceedings of the international conference on artificial intelligence and pattern recognition (AIPR), Malaysia, pp 175–183 Chee WS, Teo J, Kinabalu, K (2014) Empirically comparing three multi-objective optimization approaches for the automated evolution of snake-like modular robots. In: Proceedings of the international conference on artificial intelligence and pattern recognition (AIPR), Malaysia, pp 175–183
4.
Zurück zum Zitat Chen J, Friesen WO, Iwasaki T (2011) Mechanisms underlying rhythmic locomotion: bodyfluid interaction in undulatory swimming. J Exp Biol 214(4):561–574CrossRef Chen J, Friesen WO, Iwasaki T (2011) Mechanisms underlying rhythmic locomotion: bodyfluid interaction in undulatory swimming. J Exp Biol 214(4):561–574CrossRef
5.
Zurück zum Zitat Di Mario E, Talebpour Z, Martinoli A (2013) A comparison of PSO and reinforcement learning for multi-robot obstacle avoidance. In: Proceedings of IEEE congress on evolutionary computation (CEC), pp. 149–156. Cancun. doi:10.1109/CEC.2013.6557565 Di Mario E, Talebpour Z, Martinoli A (2013) A comparison of PSO and reinforcement learning for multi-robot obstacle avoidance. In: Proceedings of IEEE congress on evolutionary computation (CEC), pp. 149–156. Cancun. doi:10.​1109/​CEC.​2013.​6557565
6.
Zurück zum Zitat Fossen TI (2011) Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons Ltd, OxfordCrossRef Fossen TI (2011) Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons Ltd, OxfordCrossRef
7.
Zurück zum Zitat Hirose S (1993) Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press, Oxford Hirose S (1993) Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press, Oxford
8.
Zurück zum Zitat Kelasidi E, Pettersen KY, Gravdahl JT (2014) Stability analysis of underwater snake robot locomotion based on averaging theory. In: Proceedings of IEEE international conference on robotics and biomimetics (ROBIO). Bali, Indonesia, pp. 574–581. doi:10.1109/ROBIO.2014.7090392 Kelasidi E, Pettersen KY, Gravdahl JT (2014) Stability analysis of underwater snake robot locomotion based on averaging theory. In: Proceedings of IEEE international conference on robotics and biomimetics (ROBIO). Bali, Indonesia, pp. 574–581. doi:10.​1109/​ROBIO.​2014.​7090392
9.
Zurück zum Zitat Kelasidi E, Pettersen KY, Gravdahl JT (2015) Energy efficiency of underwater robots. In: Proceedings of 10th IFAC conference on manoeuvring and control of marine craft (MCMC), pp 152–159. Copenhagen, Denmark. doi:10.1016/j.ifacol.2015.10.273 Kelasidi E, Pettersen KY, Gravdahl JT (2015) Energy efficiency of underwater robots. In: Proceedings of 10th IFAC conference on manoeuvring and control of marine craft (MCMC), pp 152–159. Copenhagen, Denmark. doi:10.​1016/​j.​ifacol.​2015.​10.​273
10.
Zurück zum Zitat Kelasidi E, Pettersen KY, Gravdahl JT (2015) Energy efficiency of underwater snake robot locomotion. In: Proceedings of 23th mediterranean conference on control automation (MED). Torremolinos, Spain, pp 1124–1131. doi:10.1109/MED.2015.7158907 Kelasidi E, Pettersen KY, Gravdahl JT (2015) Energy efficiency of underwater snake robot locomotion. In: Proceedings of 23th mediterranean conference on control automation (MED). Torremolinos, Spain, pp 1124–1131. doi:10.​1109/​MED.​2015.​7158907
11.
Zurück zum Zitat Kelasidi E, Pettersen KY, Gravdahl JT, Liljebäck P (2014) Modeling of underwater snake robots. In: Proceedings of IEEE international conference on robotics and automation (ICRA). Hong Kong, China, pp 4540–4547. doi:10.1109/ICRA.2014.6907522 Kelasidi E, Pettersen KY, Gravdahl JT, Liljebäck P (2014) Modeling of underwater snake robots. In: Proceedings of IEEE international conference on robotics and automation (ICRA). Hong Kong, China, pp 4540–4547. doi:10.​1109/​ICRA.​2014.​6907522
12.
Zurück zum Zitat Kelasidi E, Pettersen KY, Liljebäck P, Gravdahl JT (2014) Integral line-of-sight for path-following of underwater snake robots. In: Proceedings of IEEE multi-conference on systems and control. Juan Les Antibes, France, pp 1078–1085. doi:10.1109/CCA.2014.6981478 Kelasidi E, Pettersen KY, Liljebäck P, Gravdahl JT (2014) Integral line-of-sight for path-following of underwater snake robots. In: Proceedings of IEEE multi-conference on systems and control. Juan Les Antibes, France, pp 1078–1085. doi:10.​1109/​CCA.​2014.​6981478
13.
Zurück zum Zitat Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks. Perth, WA, pp 1942–1948. doi:10.1109/ICNN.1995.488968 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks. Perth, WA, pp 1942–1948. doi:10.​1109/​ICNN.​1995.​488968
14.
Zurück zum Zitat Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, Burlington Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, Burlington
15.
Zurück zum Zitat Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of congress on evolutionary computation (CEC). Honolulu, HI, pp 1671–1676. doi:10.1109/CEC.2002.1004493 Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of congress on evolutionary computation (CEC). Honolulu, HI, pp 1671–1676. doi:10.​1109/​CEC.​2002.​1004493
16.
Zurück zum Zitat Kern S, Koumoutsakos P (2006) Simulations of optimized anguilliform swimming. J Exp Biol 209(24):4841–4857CrossRef Kern S, Koumoutsakos P (2006) Simulations of optimized anguilliform swimming. J Exp Biol 209(24):4841–4857CrossRef
17.
Zurück zum Zitat Kober J, Bagnell JA, Peters J (2013) Reinforcement learning in robotics: a survey. Int J Robot Res 32(11):1238–1274CrossRef Kober J, Bagnell JA, Peters J (2013) Reinforcement learning in robotics: a survey. Int J Robot Res 32(11):1238–1274CrossRef
18.
Zurück zum Zitat Koziel S, Yang XS (eds) (2011) Computational optimization, methods and algorithms. Springer Science and Business Media, BerlinMATH Koziel S, Yang XS (eds) (2011) Computational optimization, methods and algorithms. Springer Science and Business Media, BerlinMATH
19.
Zurück zum Zitat Kuo PD, Grierson D (2003) Genetic algorithm optimization of escape and normal swimming gaits for a hydrodynamical model of carangiform locomotion. In: Proceedings of genetic and evolutionary computing conference. Chicago, IL, pp 170–177 Kuo PD, Grierson D (2003) Genetic algorithm optimization of escape and normal swimming gaits for a hydrodynamical model of carangiform locomotion. In: Proceedings of genetic and evolutionary computing conference. Chicago, IL, pp 170–177
20.
Zurück zum Zitat Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for minimax problems. In: Proceedings of congress on evolutionary computation (CEC). Honolulu, HI, pp 1576–1581. doi:10.1109/CEC.2002.1004477 Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for minimax problems. In: Proceedings of congress on evolutionary computation (CEC). Honolulu, HI, pp 1576–1581. doi:10.​1109/​CEC.​2002.​1004477
21.
Zurück zum Zitat Lighthill MJ (1971) Large-amplitude elongated-body theory of fish locomotion. Proc R Soc Lond Ser B Biol Sci 179(1055):125–138CrossRef Lighthill MJ (1971) Large-amplitude elongated-body theory of fish locomotion. Proc R Soc Lond Ser B Biol Sci 179(1055):125–138CrossRef
22.
Zurück zum Zitat Liljebäck P, Pettersen KY, Stavdahl Ø, Gravdahl JT (2013) Snake Robots: Modelling, Mechatronics, and Control. Springer-Verlag, Advances in Industrial Control (2013) Liljebäck P, Pettersen KY, Stavdahl Ø, Gravdahl JT (2013) Snake Robots: Modelling, Mechatronics, and Control. Springer-Verlag, Advances in Industrial Control (2013)
23.
Zurück zum Zitat Liljebäck P, Stavdahl O, Pettersen KY, Gravdahl JT (2014) Mamba—a waterproof snake robot with tactile sensing. In: Proceedings of international conference on intelligent robots and systems (IROS). Chicago, IL, pp 294–301. doi:10.1109/IROS.2014.6942575 Liljebäck P, Stavdahl O, Pettersen KY, Gravdahl JT (2014) Mamba—a waterproof snake robot with tactile sensing. In: Proceedings of international conference on intelligent robots and systems (IROS). Chicago, IL, pp 294–301. doi:10.​1109/​IROS.​2014.​6942575
24.
Zurück zum Zitat McIsaac K, Ostrowski J (2003) Motion planning for anguilliform locomotion. IEEE Trans Robot Autom 19(4):637–652CrossRef McIsaac K, Ostrowski J (2003) Motion planning for anguilliform locomotion. IEEE Trans Robot Autom 19(4):637–652CrossRef
25.
Zurück zum Zitat Pareto V (1906) Manual of political economy. A. M. Kelley, New York Pareto V (1906) Manual of political economy. A. M. Kelley, New York
26.
Zurück zum Zitat Parsopoulos K, Vrahatis M (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1(2–3):235–306MathSciNetCrossRefMATH Parsopoulos K, Vrahatis M (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1(2–3):235–306MathSciNetCrossRefMATH
27.
Zurück zum Zitat Taylor G (1952) Analysis of the swimming of long and narrow animals. Proc R Soci Lond Ser A Math Phys Sci 214(1117):158–183CrossRefMATH Taylor G (1952) Analysis of the swimming of long and narrow animals. Proc R Soci Lond Ser A Math Phys Sci 214(1117):158–183CrossRefMATH
28.
Zurück zum Zitat Tesch M, Schneider J, Choset H (2013) Expensive multiobjective optimization for robotics. In: Proceedings of IEEE international conference on robotics and automation (ICRA). Karlsruhe, Germany, pp 973–980 Tesch M, Schneider J, Choset H (2013) Expensive multiobjective optimization for robotics. In: Proceedings of IEEE international conference on robotics and automation (ICRA). Karlsruhe, Germany, pp 973–980
29.
Zurück zum Zitat Wetter M (2011) GenOpt, generic optimization program, 3.1.0 edn. Simulation Research Group, Building Technologies Department, Lawrence Berkeley National Laboratory (Berkeley, CA 94720, 2011) Wetter M (2011) GenOpt, generic optimization program, 3.1.0 edn. Simulation Research Group, Building Technologies Department, Lawrence Berkeley National Laboratory (Berkeley, CA 94720, 2011)
30.
Zurück zum Zitat Wiens A, Nahon M (2012) Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery. Bioinspir Biomim 7(4) Wiens A, Nahon M (2012) Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery. Bioinspir Biomim 7(4)
31.
Zurück zum Zitat Zadeh L (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control 8(1):59–60CrossRef Zadeh L (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control 8(1):59–60CrossRef
Metadaten
Titel
Multi-objective optimization for efficient motion of underwater snake robots
verfasst von
E. Kelasidi
M. Jesmani
K. Y. Pettersen
J. T. Gravdahl
Publikationsdatum
05.11.2016
Verlag
Springer Japan
Erschienen in
Artificial Life and Robotics / Ausgabe 4/2016
Print ISSN: 1433-5298
Elektronische ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-016-0332-3

Weitere Artikel der Ausgabe 4/2016

Artificial Life and Robotics 4/2016 Zur Ausgabe

Neuer Inhalt