Skip to main content
Erschienen in: Journal of Network and Systems Management 4/2022

01.10.2022

Multi-objective Optimization Service Function Chain Placement Algorithm Based on Reinforcement Learning

verfasst von: Hongtai Liu, Shengduo Ding, Shunyi Wang, Gang Zhao, Chao Wang

Erschienen in: Journal of Network and Systems Management | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Network function virtualization (NFV) makes the realization of specific network functions no longer depend on inherent hardware by executing virtual network functions (VNFs), but realizes network functions in a more flexible programming manner, thereby reducing the pressure of resource allocation on the underlying network. Service function chain (SFC) is composed of a set of fixed order VNFs. These VNFs need to be deployed on appropriate physical nodes to meet user function requirements, i.e., the placement of SFC. Traditional solutions mostly use mathematical models or heuristic methods, which are not applicable in the context of large-scale networks. Secondly, the existing methods do not integrate intelligent learning algorithms into the service function chain placement (SFCP) problem, which limits the possibility of obtaining better solutions. This paper presents a multi-objective optimization service function chain placement (MOO-SFCP) algorithm based on reinforcement learning (RL). The goal of the algorithm is to optimize the resource allocation mode, including several performance indexes such as underlying resource consumption revenue, revenue cost ratio, VNF acceptance rate and network latency. We model the SFCP as a Markov decision process (MDP), and use a two-layer policy network as an intelligent agent. In the training stage of RL, the agent comprehensively considers the optimization objectives and formulates the optimal physical node mapping strategy for VNF requests. In the test phase, the whole SFCP is completed according to the trained node mapping strategy. Simulation results show that the algorithm proposed in this paper has excellent performance in the aspects of underlying resource allocation revenue, VNF acceptance rate and so on. In addition, we prove that the algorithm has good flexibility by changing the delay constraint.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, P., Wang, C., Jiang, C., Han, Z.: Deep reinforcement learning assisted federated learning algorithm for data management of IIoT. IEEE Trans. Ind. Inform. 17(12), 8475–8484 (2021)CrossRef Zhang, P., Wang, C., Jiang, C., Han, Z.: Deep reinforcement learning assisted federated learning algorithm for data management of IIoT. IEEE Trans. Ind. Inform. 17(12), 8475–8484 (2021)CrossRef
2.
Zurück zum Zitat Wang, X., Ma, R.T.B.: On the Tussle between over-the-top and internet service providers: analysis of the Netflix-Comcast type of deals. IEEE/ACM Trans. Netw. 28(6), 2823–2835 (2020)CrossRef Wang, X., Ma, R.T.B.: On the Tussle between over-the-top and internet service providers: analysis of the Netflix-Comcast type of deals. IEEE/ACM Trans. Netw. 28(6), 2823–2835 (2020)CrossRef
3.
Zurück zum Zitat Key, P., Steinberg, R.: Pricing, competition and content for internet service providers. IEEE/ACM Trans. Netw. 28(5), 2285–2298 (2020)CrossRef Key, P., Steinberg, R.: Pricing, competition and content for internet service providers. IEEE/ACM Trans. Netw. 28(5), 2285–2298 (2020)CrossRef
4.
Zurück zum Zitat Zhang, P., Wang, C., Aujla, G.S., Kumar, N., Guizani, M.: IoV scenario: implementation of a bandwidth aware algorithm in wireless network communication mode. IEEE Trans. Veh. Technol. 69(12), 15774–15785 (2020)CrossRef Zhang, P., Wang, C., Aujla, G.S., Kumar, N., Guizani, M.: IoV scenario: implementation of a bandwidth aware algorithm in wireless network communication mode. IEEE Trans. Veh. Technol. 69(12), 15774–15785 (2020)CrossRef
5.
Zurück zum Zitat Cherrared, S., Imadali, S., Fabre, E., Gössler, G., Yahia, I.G.B.: A survey of fault management in network virtualization environments: challenges and solutions. IEEE Trans. Netw. Serv. Manag. 16(4), 1537–1551 (2019)CrossRef Cherrared, S., Imadali, S., Fabre, E., Gössler, G., Yahia, I.G.B.: A survey of fault management in network virtualization environments: challenges and solutions. IEEE Trans. Netw. Serv. Manag. 16(4), 1537–1551 (2019)CrossRef
6.
Zurück zum Zitat Liu, Y., Lu, H., Li, X., Zhao, D.: An approach for service function chain reconfiguration in network function virtualization architectures. IEEE Access 7, 147224–147237 (2019)CrossRef Liu, Y., Lu, H., Li, X., Zhao, D.: An approach for service function chain reconfiguration in network function virtualization architectures. IEEE Access 7, 147224–147237 (2019)CrossRef
7.
Zurück zum Zitat Yu, Y., Bu, X., Yang, K., Nguyen, H.K., Han, Z.: Network function virtualization resource allocation based on joint benders decomposition and ADMM. IEEE Trans. Veh. Technol. 69(2), 1706–1718 (2020)CrossRef Yu, Y., Bu, X., Yang, K., Nguyen, H.K., Han, Z.: Network function virtualization resource allocation based on joint benders decomposition and ADMM. IEEE Trans. Veh. Technol. 69(2), 1706–1718 (2020)CrossRef
8.
Zurück zum Zitat Wang, C., Batth, R.S., Zhang, P., Aujla, G.S., Duan, Y., Ren, L.: VNE solution for network differentiated QoS and security requirements: from the perspective of deep reinforcement learning. Computing 103(6), 1061–1083 (2021)MathSciNetCrossRef Wang, C., Batth, R.S., Zhang, P., Aujla, G.S., Duan, Y., Ren, L.: VNE solution for network differentiated QoS and security requirements: from the perspective of deep reinforcement learning. Computing 103(6), 1061–1083 (2021)MathSciNetCrossRef
9.
Zurück zum Zitat Thiruvasagam, P.K., Chakraborty, A., Mathew, A., Murthy, C.S.R.: Reliable placement of service function chains and virtual monitoring functions with minimal cost in softwarized 5G networks. IEEE Trans. Netw. Serv. Manag. 18(2), 1491–1507 (2021)CrossRef Thiruvasagam, P.K., Chakraborty, A., Mathew, A., Murthy, C.S.R.: Reliable placement of service function chains and virtual monitoring functions with minimal cost in softwarized 5G networks. IEEE Trans. Netw. Serv. Manag. 18(2), 1491–1507 (2021)CrossRef
11.
Zurück zum Zitat Dieye, M., Ahvar, S., Sahoo, J., Ahvar, E., Glitho, R., Elbiaze, H., Crespi, N.: CPVNF: cost-efficient proactive VNF placement and chaining for value-added services in content delivery networks. IEEE Trans. Netw. Serv. Manag. 15(2), 774–786 (2018)CrossRef Dieye, M., Ahvar, S., Sahoo, J., Ahvar, E., Glitho, R., Elbiaze, H., Crespi, N.: CPVNF: cost-efficient proactive VNF placement and chaining for value-added services in content delivery networks. IEEE Trans. Netw. Serv. Manag. 15(2), 774–786 (2018)CrossRef
12.
Zurück zum Zitat Zhang, P., Wang, C., Jiang, C., Benslimane, A.: Security-aware virtual network embedding algorithm based on reinforcement learning. IEEE Trans. Netw. Sci. Eng. 8(2), 1095–1105 (2020)CrossRef Zhang, P., Wang, C., Jiang, C., Benslimane, A.: Security-aware virtual network embedding algorithm based on reinforcement learning. IEEE Trans. Netw. Sci. Eng. 8(2), 1095–1105 (2020)CrossRef
13.
Zurück zum Zitat Wei, X., Zhao, J., Zhou, L., Qian, Y.: Broad reinforcement learning for supporting fast autonomous IoT. IEEE Internet Things J. 7(8), 7010–7020 (2020)CrossRef Wei, X., Zhao, J., Zhou, L., Qian, Y.: Broad reinforcement learning for supporting fast autonomous IoT. IEEE Internet Things J. 7(8), 7010–7020 (2020)CrossRef
14.
Zurück zum Zitat Lee, H., Cha, S.W.: Reinforcement learning based on equivalent consumption minimization strategy for optimal control of hybrid electric vehicles. IEEE Access 9, 860–871 (2021)CrossRef Lee, H., Cha, S.W.: Reinforcement learning based on equivalent consumption minimization strategy for optimal control of hybrid electric vehicles. IEEE Access 9, 860–871 (2021)CrossRef
15.
Zurück zum Zitat Li, D., Hong, P., Xue, K., Pei, J.: Virtual network function placement and resource optimization in NFV and edge computing enabled networks. Comput. Netw. 152, 12–24 (2019)CrossRef Li, D., Hong, P., Xue, K., Pei, J.: Virtual network function placement and resource optimization in NFV and edge computing enabled networks. Comput. Netw. 152, 12–24 (2019)CrossRef
16.
Zurück zum Zitat Li, D., Hong, P., Xue, K., Pei, j: Virtual network function placement considering resource optimization and SFC requests in cloud datacenter. IEEE Trans. Parallel Distrib. Syst. 29(7), 1664–1677 (2018)CrossRef Li, D., Hong, P., Xue, K., Pei, j: Virtual network function placement considering resource optimization and SFC requests in cloud datacenter. IEEE Trans. Parallel Distrib. Syst. 29(7), 1664–1677 (2018)CrossRef
17.
Zurück zum Zitat Qi, D., Shen, S., Wang, G.: Towards an efficient VNF placement in network function virtualization. Comput. Commun. 138, 81–89 (2019)CrossRef Qi, D., Shen, S., Wang, G.: Towards an efficient VNF placement in network function virtualization. Comput. Commun. 138, 81–89 (2019)CrossRef
18.
Zurück zum Zitat Tang, H., Zhou, D., Chen, D.: Dynamic network function instance scaling based on traffic forecasting and VNF placement in operator data centers. IEEE Trans. Parallel Distrib. Syst. 30(3), 530–543 (2019)CrossRef Tang, H., Zhou, D., Chen, D.: Dynamic network function instance scaling based on traffic forecasting and VNF placement in operator data centers. IEEE Trans. Parallel Distrib. Syst. 30(3), 530–543 (2019)CrossRef
19.
Zurück zum Zitat Hawilo, H., Jammal, M., Shami, A.: Network function virtualization-aware orchestrator for service function chaining placement in the cloud. IEEE J. Sel. Areas Commun. 37(3), 643–655 (2019)CrossRef Hawilo, H., Jammal, M., Shami, A.: Network function virtualization-aware orchestrator for service function chaining placement in the cloud. IEEE J. Sel. Areas Commun. 37(3), 643–655 (2019)CrossRef
21.
Zurück zum Zitat Ghazizadeh, A., Akbari, B., Tajiki, M.M.: Joint reliability-aware and cost efficient path AllocationFig and VNF placement using sharing scheme. J. Netw. Syst. Manag. 30(1), 5 (2022)CrossRef Ghazizadeh, A., Akbari, B., Tajiki, M.M.: Joint reliability-aware and cost efficient path AllocationFig and VNF placement using sharing scheme. J. Netw. Syst. Manag. 30(1), 5 (2022)CrossRef
22.
Zurück zum Zitat Pei, J., Hong, P., Xue, K., Li, D.: Efficiently embedding service function chains with dynamic virtual network function placement in geo-distributed cloud system. IEEE Trans. Parallel Distrib. Syst. 30(10), 2179–2192 (2019)CrossRef Pei, J., Hong, P., Xue, K., Li, D.: Efficiently embedding service function chains with dynamic virtual network function placement in geo-distributed cloud system. IEEE Trans. Parallel Distrib. Syst. 30(10), 2179–2192 (2019)CrossRef
23.
Zurück zum Zitat Pei, J., Hong, P., Xue, K., Li, D.: Resource aware routing for service function chains in SDN and NFV-enabled network. IEEE Trans. Serv. Comput. 14(4), 985–997 (2021)CrossRef Pei, J., Hong, P., Xue, K., Li, D.: Resource aware routing for service function chains in SDN and NFV-enabled network. IEEE Trans. Serv. Comput. 14(4), 985–997 (2021)CrossRef
24.
Zurück zum Zitat Pei, J., Hong, P., Xue, K., Li, D., Wei, D.S.L., Wu, F.: Two-phase virtual network function selection and chaining algorithm based on deep learning in SDN/NFV-enabled networks. IEEE J. Sel. Areas Commun. 38(6), 1102–1117 (2020)CrossRef Pei, J., Hong, P., Xue, K., Li, D., Wei, D.S.L., Wu, F.: Two-phase virtual network function selection and chaining algorithm based on deep learning in SDN/NFV-enabled networks. IEEE J. Sel. Areas Commun. 38(6), 1102–1117 (2020)CrossRef
25.
Zurück zum Zitat Bari, F., Chowdhury, S.R., Ahmed, R., Boutaba, R., Duarte, O.C.M.B.: Orchestrating virtualized network functions. IEEE Trans. Netw. Serv. Manag. 13(4), 725–739 (2016)CrossRef Bari, F., Chowdhury, S.R., Ahmed, R., Boutaba, R., Duarte, O.C.M.B.: Orchestrating virtualized network functions. IEEE Trans. Netw. Serv. Manag. 13(4), 725–739 (2016)CrossRef
26.
Zurück zum Zitat Mechtri, M., Ghribi, C., Zeghlache, D.: A scalable algorithm for the placement of service function chains. IEEE Trans. Netw. Serv. Manag. 13(3), 533–546 (2016)CrossRef Mechtri, M., Ghribi, C., Zeghlache, D.: A scalable algorithm for the placement of service function chains. IEEE Trans. Netw. Serv. Manag. 13(3), 533–546 (2016)CrossRef
27.
Zurück zum Zitat Pham, C., Tran, N.H., Ren, S., Saad, W., Hong, C.S.: Traffic-aware and energy-efficient vNF placement for service chaining: joint sampling and matching approach. IEEE Trans. Serv. Comput. 13(1), 172–185 (2020)CrossRef Pham, C., Tran, N.H., Ren, S., Saad, W., Hong, C.S.: Traffic-aware and energy-efficient vNF placement for service chaining: joint sampling and matching approach. IEEE Trans. Serv. Comput. 13(1), 172–185 (2020)CrossRef
28.
Zurück zum Zitat Santos, G.L., Bezerra, D.D.F., Rocha, D.É.S., Ferreira, L., Moreira, A.L.C., Gonçalves, G.E., Marquezini, M.V., Recse, Á., Mehta, A., Kelner, J., Sadok, D., Endo, P.T.: Service function chain placement in distributed scenarios: a systematic review. J. Netw. Syst. Manag. 30(1), 1–39 (2022)CrossRef Santos, G.L., Bezerra, D.D.F., Rocha, D.É.S., Ferreira, L., Moreira, A.L.C., Gonçalves, G.E., Marquezini, M.V., Recse, Á., Mehta, A., Kelner, J., Sadok, D., Endo, P.T.: Service function chain placement in distributed scenarios: a systematic review. J. Netw. Syst. Manag. 30(1), 1–39 (2022)CrossRef
29.
Zurück zum Zitat Mahboob, T., Jung, Y.R., Chung, M.Y.: Dynamic VNF placement to manage user traffic flow in software-defined wireless networks. J. Netw. Syst. Manag. 28(3), 436–456 (2020)CrossRef Mahboob, T., Jung, Y.R., Chung, M.Y.: Dynamic VNF placement to manage user traffic flow in software-defined wireless networks. J. Netw. Syst. Manag. 28(3), 436–456 (2020)CrossRef
30.
Zurück zum Zitat Pei, J., Hong, P., Pan, M., Liu, J., Zhou, J.: Optimal VNF placement via deep reinforcement learning in SDN/NFV-enabled networks. IEEE J. Sel. Areas Commun. 38(2), 263–278 (2020)CrossRef Pei, J., Hong, P., Pan, M., Liu, J., Zhou, J.: Optimal VNF placement via deep reinforcement learning in SDN/NFV-enabled networks. IEEE J. Sel. Areas Commun. 38(2), 263–278 (2020)CrossRef
31.
Zurück zum Zitat Quang, P.T.A., Hadjadj-Aoul, Y., Outtagarts, A.: A deep reinforcement learning approach for VNF forwarding graph embedding. IEEE Trans. Netw. Serv. Manag. 16(4), 1318–1331 (2019)CrossRef Quang, P.T.A., Hadjadj-Aoul, Y., Outtagarts, A.: A deep reinforcement learning approach for VNF forwarding graph embedding. IEEE Trans. Netw. Serv. Manag. 16(4), 1318–1331 (2019)CrossRef
32.
Zurück zum Zitat Sun, P., Lan, J., Li, J., Guo, Z., Hu, Y.: Combining deep reinforcement learning with graph neural networks for optimal VNF placement. IEEE Commun. Lett. 25(1), 176–180 (2021)CrossRef Sun, P., Lan, J., Li, J., Guo, Z., Hu, Y.: Combining deep reinforcement learning with graph neural networks for optimal VNF placement. IEEE Commun. Lett. 25(1), 176–180 (2021)CrossRef
33.
Zurück zum Zitat Li, B., Lu, W., Liu, S., Zhu, Z.: Deep-learning-assisted network orchestration for on-demand and cost-effective VNF service chaining in inter-DC elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 10(10), D29–D41 (2018)CrossRef Li, B., Lu, W., Liu, S., Zhu, Z.: Deep-learning-assisted network orchestration for on-demand and cost-effective VNF service chaining in inter-DC elastic optical networks. IEEE/OSA J. Opt. Commun. Netw. 10(10), D29–D41 (2018)CrossRef
34.
Zurück zum Zitat Troia, S., Alvizu, R., Maier, G.: Reinforcement learning for service function chain reconfiguration in NFV-SDN metro-core optical networks. IEEE Access 7, 167944–167957 (2019)CrossRef Troia, S., Alvizu, R., Maier, G.: Reinforcement learning for service function chain reconfiguration in NFV-SDN metro-core optical networks. IEEE Access 7, 167944–167957 (2019)CrossRef
35.
Zurück zum Zitat Wang, T., Zu, J., Hu, G., Peng, D.: Adaptive service function chain scheduling in mobile edge computing via deep reinforcement learning. IEEE Access 8, 164922–164935 (2020)CrossRef Wang, T., Zu, J., Hu, G., Peng, D.: Adaptive service function chain scheduling in mobile edge computing via deep reinforcement learning. IEEE Access 8, 164922–164935 (2020)CrossRef
36.
Zurück zum Zitat Xiao, Y., Zhang, Q., Liu, F., Wang, J., Zhao, M., Zhang, Z., Zhang, J.: NFVdeep: adaptive online service function chain deployment with deep reinforcement learning. In: 2019 IEEE/ACM 27th international symposium on quality of service (IWQoS)), pp. 1–10 (2019) Xiao, Y., Zhang, Q., Liu, F., Wang, J., Zhao, M., Zhang, Z., Zhang, J.: NFVdeep: adaptive online service function chain deployment with deep reinforcement learning. In: 2019 IEEE/ACM 27th international symposium on quality of service (IWQoS)), pp. 1–10 (2019)
37.
Zurück zum Zitat Hu, Q., Ma, L., Zhao, J.: DeepGraph: a PyCharm tool for visualizing and understanding deep learning models. In: 2018 25th Asia-Pacific software engineering conference (APSEC)), pp. 628–632 (2018) Hu, Q., Ma, L., Zhao, J.: DeepGraph: a PyCharm tool for visualizing and understanding deep learning models. In: 2018 25th Asia-Pacific software engineering conference (APSEC)), pp. 628–632 (2018)
38.
Zurück zum Zitat Suen, H., Hung, K., Lin, C.: TensorFlow-based automatic personality recognition used in asynchronous video interviews. IEEE Access 7, 61018–61023 (2019)CrossRef Suen, H., Hung, K., Lin, C.: TensorFlow-based automatic personality recognition used in asynchronous video interviews. IEEE Access 7, 61018–61023 (2019)CrossRef
39.
Zurück zum Zitat Santiago Iii, J. M., Nodalo, G., Valenzuela, J., Deja, J. A.: Explore, edit, guess: understanding novice programmers’ use of codeblocks for regression experiments. In: CEUR workshop proceedings, vol. 3054, pp. 3–17 (2021) Santiago Iii, J. M., Nodalo, G., Valenzuela, J., Deja, J. A.: Explore, edit, guess: understanding novice programmers’ use of codeblocks for regression experiments. In: CEUR workshop proceedings, vol. 3054, pp. 3–17 (2021)
40.
Zurück zum Zitat Yao, H., Chen, X., Li, M., Zhang, P., Wang, L.: A novel reinforcement learning algorithm for virtual network embedding. Neurocomputing 284, 1–9 (2018)CrossRef Yao, H., Chen, X., Li, M., Zhang, P., Wang, L.: A novel reinforcement learning algorithm for virtual network embedding. Neurocomputing 284, 1–9 (2018)CrossRef
41.
Zurück zum Zitat Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding: substrate support for path splitting and migration. ACM Sigcomm Comput. Commun. Rev. 38(2), 17–29 (2008)CrossRef Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding: substrate support for path splitting and migration. ACM Sigcomm Comput. Commun. Rev. 38(2), 17–29 (2008)CrossRef
42.
Zurück zum Zitat Zhang, P., Yao, H., Liu, Y.: Virtual network embedding based on computing, network, and storage resource constraints. IEEE Internet Things J. 5(5), 3298–3304 (2018)CrossRef Zhang, P., Yao, H., Liu, Y.: Virtual network embedding based on computing, network, and storage resource constraints. IEEE Internet Things J. 5(5), 3298–3304 (2018)CrossRef
Metadaten
Titel
Multi-objective Optimization Service Function Chain Placement Algorithm Based on Reinforcement Learning
verfasst von
Hongtai Liu
Shengduo Ding
Shunyi Wang
Gang Zhao
Chao Wang
Publikationsdatum
01.10.2022
Verlag
Springer US
Erschienen in
Journal of Network and Systems Management / Ausgabe 4/2022
Print ISSN: 1064-7570
Elektronische ISSN: 1573-7705
DOI
https://doi.org/10.1007/s10922-022-09673-5

Weitere Artikel der Ausgabe 4/2022

Journal of Network and Systems Management 4/2022 Zur Ausgabe

Premium Partner