Skip to main content
Erschienen in: Journal of Elasticity 1-2/2017

15.11.2016

Multi-scale Structural Modeling of Soft Tissues Mechanics and Mechanobiology

verfasst von: Yoram Lanir

Erschienen in: Journal of Elasticity | Ausgabe 1-2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soft tissues account for a major fraction of the body volume and mass. They are present in all non-skeletal organs, being responsible for protecting the body, maintaining internal homeostasis, and allowing for mobility. Their function in different organs is highly diverse, as are their properties which are optimally suited for their specific tasks. From a mechanical perspective, specificity of structure and properties is acquired via evolutionary adaptation of the tissue composition and multi-scale structure. In modeling tissue mechanics and mechano-biology, it is thus natural to seek the structural determinants of tissues and their evolution (the “structural approach”). Earlier models were exclusively phenomenological, based either on the general principles of non-linear continuum mechanics or alternatively, on empirical mathematical expressions that fit specific response patterns. In the late 1970’s, structural models were introduced to tissue mechanics (Lanir in J. Biomechanics 12(6): 423–436, 1979; Lanir in J. Biomechanics 16(1): 1–12, 1983). Ever since, a gradually increasing number of structural models have been developed for different types of tissues, and today, it is the method of choice (Cowin and Humphrey in J. Elasticity 61: ix–xii, 2000). The structural approach was recently extended to incorporate a mechanistic formulation of mechano-biological pathways by which tissue structures remodel during growth (Lanir in Biomech Model Mechanobiol, 14(2): 245–266, 2015). Here, the characteristic features of soft tissue structures and their constitutive modeling are reviewed. The presentation starts with a brief survey of the multi-scale and multi-phasic soft tissues structure. The global mechanical characteristics of soft tissues and of their constituents are then briefly reviewed. These two aspects form the basis for structural constitutive formulation via the multi-scale structure-function link. Based on established criteria for model validity, predictions of the formulated theory are contrasted against measured response characteristics. Using this structure-function relationship, the evolutionary pathway by which tissue structure and mechanics remodel during growth to adapt to their physiological function, is laid down. The review concludes with an account of the state of the art, the big picture, and future research challenges in tissue mechanobiological modeling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The integration limits must account for the orientation symmetry since each fiber has two opposite orientations. One possibility for limits is \(0 \le \varPhi \le \pi\), \(0 \le \varTheta \le \pi\), another one is \(0 \le \varPhi \le \pi /2\), \(0 \le \varTheta \le 2\pi\).
 
2
For example, in an isotropic network \(\mathbb{R}(\varPhi,\varTheta ) = \sin\varPhi /2\pi\).
 
3
The Prony series in Eq. (3.5) is not related to the underlying mechanisms which give rise to the fiber’s viscoelasticity. These mechanisms are insufficiently known. In common with other phenomenological VE models, this Prony representation is not unique.
 
4
The beta function was preferred over the normal one since it is physically more realistic and more general: it is bounded, can be symmetric and non-symmetric, and can assume different shapes.
 
5
\(D(q,t)\) has the same physical meaning at a given growth time \(t\) as the function \(D(q,\mathbf{N})\) in Eq. (2.5) in a uniaxial fiber network (no dependence on \(\mathbf{N}\)).
 
Literatur
1.
Zurück zum Zitat Fung, Y.C.: Elasticity of soft tissues in simple elongation. Physiol. Entomol. 213(6), 1532–1544 (1967) Fung, Y.C.: Elasticity of soft tissues in simple elongation. Physiol. Entomol. 213(6), 1532–1544 (1967)
2.
Zurück zum Zitat Lanir, Y.: Autobiographical postscript. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs. Springer, New York (2016). pp. v–xxi Lanir, Y.: Autobiographical postscript. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs. Springer, New York (2016). pp. v–xxi
3.
Zurück zum Zitat Humphrey, J.D.: From stress-strain relations to growth and remodeling theories: a historical reflection on microstructurally motivated constitutive relations. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 123–133. Springer, New York (2016) CrossRef Humphrey, J.D.: From stress-strain relations to growth and remodeling theories: a historical reflection on microstructurally motivated constitutive relations. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 123–133. Springer, New York (2016) CrossRef
4.
Zurück zum Zitat Fratzl, P. (ed.) Collagen Structure and Mechanics, p. 508. Springer, New York (2008) Fratzl, P. (ed.) Collagen Structure and Mechanics, p. 508. Springer, New York (2008)
5.
Zurück zum Zitat Ross, R., Fialkov, P.J., Altman, L.K.: The Moorphogenesis of Elasic Fibers. In: Sandberg, L.B., Gray, W.R., Franzblau, C. (eds.) Elastin and Elastic Tissue, pp. 7–17. Plenum Press, New York (1977) CrossRef Ross, R., Fialkov, P.J., Altman, L.K.: The Moorphogenesis of Elasic Fibers. In: Sandberg, L.B., Gray, W.R., Franzblau, C. (eds.) Elastin and Elastic Tissue, pp. 7–17. Plenum Press, New York (1977) CrossRef
6.
Zurück zum Zitat Borg, T.K., Caulfield, J.B.: Collagen in the heart. Tex. Rep. Biol. Med. 39, 321–333 (1979) Borg, T.K., Caulfield, J.B.: Collagen in the heart. Tex. Rep. Biol. Med. 39, 321–333 (1979)
7.
Zurück zum Zitat Borg, T.K., Caulfield, J.B.: Association of collagen struts with cardiac myocytes. J. Cell Biol. 87(2), A126–A126 (1980) Borg, T.K., Caulfield, J.B.: Association of collagen struts with cardiac myocytes. J. Cell Biol. 87(2), A126–A126 (1980)
8.
Zurück zum Zitat Maroudas, A.: Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554), 808–809 (1976) ADSCrossRef Maroudas, A.: Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554), 808–809 (1976) ADSCrossRef
9.
Zurück zum Zitat Eckert, C.E., Fan, R., Mikulis, B., Barron, M., Carruthers, C.A., Friebe, V.M., Vyavahare, N.R., Sacks, M.S.: On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater. 9(1), 4653–4660 (2013) CrossRef Eckert, C.E., Fan, R., Mikulis, B., Barron, M., Carruthers, C.A., Friebe, V.M., Vyavahare, N.R., Sacks, M.S.: On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater. 9(1), 4653–4660 (2013) CrossRef
10.
Zurück zum Zitat Emery, J.L., Omens, J.H., McCulloch, A.D.: Strain softening in rat left ventricular myocardium. J. Biomech. Eng. 119(1), 6–12 (1997) CrossRef Emery, J.L., Omens, J.H., McCulloch, A.D.: Strain softening in rat left ventricular myocardium. J. Biomech. Eng. 119(1), 6–12 (1997) CrossRef
11.
Zurück zum Zitat Fung, Y.C.: Stree-strain-history relations of soft tissues in simple elongation. In: Fung, Y.C., Perrone, N., Anliker, M. (eds.) Biomechanic—Its Foundations and Objectives, pp. 181–208. Prentice-Hall, Englewood Cliffs (1972) Fung, Y.C.: Stree-strain-history relations of soft tissues in simple elongation. In: Fung, Y.C., Perrone, N., Anliker, M. (eds.) Biomechanic—Its Foundations and Objectives, pp. 181–208. Prentice-Hall, Englewood Cliffs (1972)
12.
Zurück zum Zitat Gregersen, H., Emery, J.L., McCulloch, A.D.: History-dependent mechanical behavior of Guinea-pig small intestine. Ann. Biomed. Eng. 26(5), 850–858 (1998) CrossRef Gregersen, H., Emery, J.L., McCulloch, A.D.: History-dependent mechanical behavior of Guinea-pig small intestine. Ann. Biomed. Eng. 26(5), 850–858 (1998) CrossRef
13.
Zurück zum Zitat Lanir, Y., Fung, Y.C.: 2-dimensional mechanical-properties of rabbit skin. 2. Experimental results. J. Biomech. 7(2), 171 (1974) CrossRef Lanir, Y., Fung, Y.C.: 2-dimensional mechanical-properties of rabbit skin. 2. Experimental results. J. Biomech. 7(2), 171 (1974) CrossRef
14.
Zurück zum Zitat Lokshin, O., Lanir, Y.: Micro and macro rheology of planar tissues. Biomaterials 30(17), 3118–3127 (2009) CrossRef Lokshin, O., Lanir, Y.: Micro and macro rheology of planar tissues. Biomaterials 30(17), 3118–3127 (2009) CrossRef
15.
Zurück zum Zitat Sverdlik, A., Lanir, Y.: Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124(1), 78–84 (2002) CrossRef Sverdlik, A., Lanir, Y.: Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124(1), 78–84 (2002) CrossRef
16.
Zurück zum Zitat Chuong, C.J., Fung, Y.C.: On residual stresses in arteries. J. Biomech. Eng. 108(2), 189–192 (1986) CrossRef Chuong, C.J., Fung, Y.C.: On residual stresses in arteries. J. Biomech. Eng. 108(2), 189–192 (1986) CrossRef
17.
Zurück zum Zitat Vaishnav, R.N., Vossoughi, J.: Estimation of residual strains in aortic segments. In: Hall, C.W. (ed.) Biomedical Engineering II: Recent Developments, pp. 330–333. Pergamon, New York (1983) CrossRef Vaishnav, R.N., Vossoughi, J.: Estimation of residual strains in aortic segments. In: Hall, C.W. (ed.) Biomedical Engineering II: Recent Developments, pp. 330–333. Pergamon, New York (1983) CrossRef
18.
Zurück zum Zitat Lanir, Y., Hayam, G., Abovsky, M., Zlotnick, A.Y., Uretzky, G., Nevo, E., BenHaim, S.A.: Effect of myocardial swelling on residual strain in the left ventricle of the rat. Am. J. Physiol., Heart Circ. Physiol. 270(5), H1736–H1743 (1996) Lanir, Y., Hayam, G., Abovsky, M., Zlotnick, A.Y., Uretzky, G., Nevo, E., BenHaim, S.A.: Effect of myocardial swelling on residual strain in the left ventricle of the rat. Am. J. Physiol., Heart Circ. Physiol. 270(5), H1736–H1743 (1996)
19.
Zurück zum Zitat Omens, J.H., Fung, Y.C.: Residual strain in rat left ventricle. Circ. Res. 66(1), 37–45 (1990) CrossRef Omens, J.H., Fung, Y.C.: Residual strain in rat left ventricle. Circ. Res. 66(1), 37–45 (1990) CrossRef
20.
Zurück zum Zitat Lanir, Y.: Mechanisms of residual stress in soft tissues. J. Biomech. Eng. 131(4) (2009) Lanir, Y.: Mechanisms of residual stress in soft tissues. J. Biomech. Eng. 131(4) (2009)
21.
Zurück zum Zitat Lanir, Y.: Osmotic swelling and residual stress in cardiovascular tissues. J. Biomech. 45(5), 780–789 (2012) CrossRef Lanir, Y.: Osmotic swelling and residual stress in cardiovascular tissues. J. Biomech. 45(5), 780–789 (2012) CrossRef
22.
Zurück zum Zitat Fung, Y.C.: What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19(3), 237–249 (1991) CrossRef Fung, Y.C.: What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19(3), 237–249 (1991) CrossRef
23.
Zurück zum Zitat Fung, Y.C., Liu, S.Q.: Strain distribution in small blood vessels with zero-stress state taken into consideration. Physiol. Entomol. 262 (2 Pt 2), H544–H552 (1992) Fung, Y.C., Liu, S.Q.: Strain distribution in small blood vessels with zero-stress state taken into consideration. Physiol. Entomol. 262 (2 Pt 2), H544–H552 (1992)
24.
Zurück zum Zitat Brown, I.A.: A scanning electron microscope study of the effects of uniaxial tension on human skin. Br. J. Dermatol. 89(4), 383–393 (1973) CrossRef Brown, I.A.: A scanning electron microscope study of the effects of uniaxial tension on human skin. Br. J. Dermatol. 89(4), 383–393 (1973) CrossRef
25.
Zurück zum Zitat Chu, B.M., Frasher, W.G., Wayland, H.: Hysteretic behavior of soft living animal tissue. Ann. Biomed. Eng. 1(2), 182–203 (1972) CrossRef Chu, B.M., Frasher, W.G., Wayland, H.: Hysteretic behavior of soft living animal tissue. Ann. Biomed. Eng. 1(2), 182–203 (1972) CrossRef
26.
Zurück zum Zitat Viidik, A., Ekholm, R.: Light and electron microscopic studies of collagen fibers under strain. Z. Anat. Entwickl. Gesch. 127, 154–164 (1968) CrossRef Viidik, A., Ekholm, R.: Light and electron microscopic studies of collagen fibers under strain. Z. Anat. Entwickl. Gesch. 127, 154–164 (1968) CrossRef
27.
Zurück zum Zitat Butler, D.L., Grood, E.S., Noyes, F.R., Zernicke, R.F., Brackett, K.: Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomech. 17(8), 579–596 (1984) CrossRef Butler, D.L., Grood, E.S., Noyes, F.R., Zernicke, R.F., Brackett, K.: Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomech. 17(8), 579–596 (1984) CrossRef
28.
Zurück zum Zitat Aaron, B.B., Gosline, J.M.: Elastin as a random-network elastomer—a mechanical and optical analysis of single elastin fibers. Biopolymers 20(6), 1247–1260 (1981) CrossRef Aaron, B.B., Gosline, J.M.: Elastin as a random-network elastomer—a mechanical and optical analysis of single elastin fibers. Biopolymers 20(6), 1247–1260 (1981) CrossRef
29.
Zurück zum Zitat Grinnell, F.: Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124(4), 401–404 (1994) CrossRef Grinnell, F.: Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124(4), 401–404 (1994) CrossRef
30.
Zurück zum Zitat Eastwood, M., Porter, R., Khan, U., McGrouther, G., Brown, R.: Quantitative analysis of collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell morphology. J. Cell. Physiol. 166(1), 33–42 (1996) CrossRef Eastwood, M., Porter, R., Khan, U., McGrouther, G., Brown, R.: Quantitative analysis of collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell morphology. J. Cell. Physiol. 166(1), 33–42 (1996) CrossRef
31.
Zurück zum Zitat Harris, A.K., Stopak, D., Wild, P.: Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290(5803), 249–251 (1981) ADSCrossRef Harris, A.K., Stopak, D., Wild, P.: Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290(5803), 249–251 (1981) ADSCrossRef
32.
Zurück zum Zitat Pourati, J., Maniotis, A., Spiegel, D., Schaffer, J.L., Butler, J.P., Fredberg, J.J., Ingber, D.E., Stamenovic, D., Wang, N.: Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Physiol. Entomol. 274(5 Pt 1), C1283–C1289 (1998) Pourati, J., Maniotis, A., Spiegel, D., Schaffer, J.L., Butler, J.P., Fredberg, J.J., Ingber, D.E., Stamenovic, D., Wang, N.: Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Physiol. Entomol. 274(5 Pt 1), C1283–C1289 (1998)
33.
Zurück zum Zitat Kumar, S., Maxwell, I.Z., Heisterkamp, A., Polte, T.R., Lele, T.P., Salanga, M., Mazur, E., Ingber, D.E.: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90(10), 3762–3773 (2006) ADSCrossRef Kumar, S., Maxwell, I.Z., Heisterkamp, A., Polte, T.R., Lele, T.P., Salanga, M., Mazur, E., Ingber, D.E.: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90(10), 3762–3773 (2006) ADSCrossRef
34.
Zurück zum Zitat Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993). xviii, 568 p. CrossRef Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993). xviii, 568 p. CrossRef
35.
Zurück zum Zitat Murphy, R.A.: Mechanics of smooth muscle. In: Bohr, D.F., Somlyo, A.P., Sparks, A.V.J. (eds.) Handbook of Physiology, Sect. 2: The Cardiovascular System, pp. 325–351. American Physiological Society Bathesda (1980) Murphy, R.A.: Mechanics of smooth muscle. In: Bohr, D.F., Somlyo, A.P., Sparks, A.V.J. (eds.) Handbook of Physiology, Sect. 2: The Cardiovascular System, pp. 325–351. American Physiological Society Bathesda (1980)
36.
Zurück zum Zitat Bosse, Y., Solomon, D., Chin, L.Y., Lian, K., Pare, P.D., Seow, C.Y.: Increase in passive stiffness at reduced airway smooth muscle length: potential impact on airway responsiveness. Am. J. Physiol., Lung Cell. Mol. Physiol. 298(3), L277–L287 (2010) CrossRef Bosse, Y., Solomon, D., Chin, L.Y., Lian, K., Pare, P.D., Seow, C.Y.: Increase in passive stiffness at reduced airway smooth muscle length: potential impact on airway responsiveness. Am. J. Physiol., Lung Cell. Mol. Physiol. 298(3), L277–L287 (2010) CrossRef
37.
Zurück zum Zitat Herrera, A.M., McParland, B.E., Bienkowska, A., Tait, R., Pare, P.D., Seow, C.Y.: ‘Sarcomeres’ of smooth muscle: functional characteristics and ultrastructural evidence. J. Cell Sci. 118(Pt 113), 2381–2392 (2005) CrossRef Herrera, A.M., McParland, B.E., Bienkowska, A., Tait, R., Pare, P.D., Seow, C.Y.: ‘Sarcomeres’ of smooth muscle: functional characteristics and ultrastructural evidence. J. Cell Sci. 118(Pt 113), 2381–2392 (2005) CrossRef
38.
Zurück zum Zitat Seow, C.Y., Pratusevich, V.R., Ford, L.E.: Series-to-parallel transition in the filament lattice of airway smooth muscle. J. Appl. Physiol. 89(3), 869–876 (1985). 2000 Seow, C.Y., Pratusevich, V.R., Ford, L.E.: Series-to-parallel transition in the filament lattice of airway smooth muscle. J. Appl. Physiol. 89(3), 869–876 (1985). 2000
39.
Zurück zum Zitat Speich, J.E., Almasri, A.M., Bhatia, H., Klausner, A.P., Ratz, P.H.: Adaptation of the length-active tension relationship in rabbit detrusor. Am. J. Physiol., Ren. Fluid Electrolyte Physiol. 297(4), F1119–F1128 (2009) CrossRef Speich, J.E., Almasri, A.M., Bhatia, H., Klausner, A.P., Ratz, P.H.: Adaptation of the length-active tension relationship in rabbit detrusor. Am. J. Physiol., Ren. Fluid Electrolyte Physiol. 297(4), F1119–F1128 (2009) CrossRef
40.
Zurück zum Zitat Wang, L., Pare, P.D., Seow, C.Y.: Selected contribution: effect of chronic passive length change on airway smooth muscle length-tension relationship. J. Appl. Physiol. 90(2), 734–740 (1985). 2001 Wang, L., Pare, P.D., Seow, C.Y.: Selected contribution: effect of chronic passive length change on airway smooth muscle length-tension relationship. J. Appl. Physiol. 90(2), 734–740 (1985). 2001
41.
Zurück zum Zitat Sacks, M.D.: In: Kassab, G.S., Sacks, M.S. (eds.) Finite Element Implementation of Structural Constitutive Models in Structure-Based Mechanics of Tissues and Organs, pp. 347–363. Springer, New York (2016) CrossRef Sacks, M.D.: In: Kassab, G.S., Sacks, M.S. (eds.) Finite Element Implementation of Structural Constitutive Models in Structure-Based Mechanics of Tissues and Organs, pp. 347–363. Springer, New York (2016) CrossRef
42.
Zurück zum Zitat Nguyen, T.D.: Biomechanics of the cornea and sclera. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 285–315. Springer, New York (2016) CrossRef Nguyen, T.D.: Biomechanics of the cornea and sclera. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 285–315. Springer, New York (2016) CrossRef
43.
Zurück zum Zitat Lee, L.C., Wenk, J., Klepach, D., Kassab, G.S., Guccione, J.M.: Structure-based models of ventricular myocardium. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 249–263. Springer, New York (2016) CrossRef Lee, L.C., Wenk, J., Klepach, D., Kassab, G.S., Guccione, J.M.: Structure-based models of ventricular myocardium. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 249–263. Springer, New York (2016) CrossRef
44.
Zurück zum Zitat Krishnamurthy, A., Coppola, B., Tangney, J., Kerckhoffs, R.C.P., McCulloch, A.D.: A microstructurally based multi-scale constitutive model of active myocardial mechanics. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 439–460. Springer, New York (2016) CrossRef Krishnamurthy, A., Coppola, B., Tangney, J., Kerckhoffs, R.C.P., McCulloch, A.D.: A microstructurally based multi-scale constitutive model of active myocardial mechanics. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 439–460. Springer, New York (2016) CrossRef
45.
Zurück zum Zitat Jor, J.W.Y., Babarenda Gamage, T.P., Nielsen, P.M.F., Nash, M.P., Hunter, P.J.: Relationship between structure and mechanics for membranous tissues. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 135–173. Springer, New York (2016) CrossRef Jor, J.W.Y., Babarenda Gamage, T.P., Nielsen, P.M.F., Nash, M.P., Hunter, P.J.: Relationship between structure and mechanics for membranous tissues. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 135–173. Springer, New York (2016) CrossRef
46.
Zurück zum Zitat Grytz, R., Meschke, G., Jonas, J.B., Downs, C.: Glaucoma and structure-based mechanics of the lamina cribrosa at multiple scales. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 93–122. Springer, New York (2016) CrossRef Grytz, R., Meschke, G., Jonas, J.B., Downs, C.: Glaucoma and structure-based mechanics of the lamina cribrosa at multiple scales. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 93–122. Springer, New York (2016) CrossRef
47.
Zurück zum Zitat Gasser, T.C.: Histomechanical modeling of the wall of abdominal aortic aneurysm. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 57–78. Springer, New York (2016) CrossRef Gasser, T.C.: Histomechanical modeling of the wall of abdominal aortic aneurysm. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 57–78. Springer, New York (2016) CrossRef
48.
Zurück zum Zitat Cortes, D.H., Elliott, D.M.: Modeling of collageneous tissues using distributed fiber orientation. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 15–39. Springer, New York (2016) CrossRef Cortes, D.H., Elliott, D.M.: Modeling of collageneous tissues using distributed fiber orientation. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 15–39. Springer, New York (2016) CrossRef
49.
Zurück zum Zitat Chen, H., Zhao, X., Lu, X., Kassab, G.S.: Microstructure-based constitutive models for coronary artery adventitia. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 225–248. Springer, New York (2016) CrossRef Chen, H., Zhao, X., Lu, X., Kassab, G.S.: Microstructure-based constitutive models for coronary artery adventitia. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 225–248. Springer, New York (2016) CrossRef
50.
Zurück zum Zitat Bilston, L.E.: The influence of microstructure on neural tissue mechanics. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 1–14. Springer, New York (2016) Bilston, L.E.: The influence of microstructure on neural tissue mechanics. In: Kassab, G.S., Sacks, M.S. (eds.) Structure-Based Mechanics of Tissues and Organs, pp. 1–14. Springer, New York (2016)
51.
Zurück zum Zitat Lanir, Y., Namani, R.: Reliability of structure tensors in representing soft tissues structure. J. Mech. Behav. Biomed. Mater. 46, 222–228 (2015) CrossRef Lanir, Y., Namani, R.: Reliability of structure tensors in representing soft tissues structure. J. Mech. Behav. Biomed. Mater. 46, 222–228 (2015) CrossRef
52.
Zurück zum Zitat Fan, R., Sacks, M.S.: Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47(9), 2043–2054 (2014) CrossRef Fan, R., Sacks, M.S.: Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47(9), 2043–2054 (2014) CrossRef
53.
Zurück zum Zitat Rezakhaniha, R., Agianniotis, A., Schrauwen, J.T., Griffa, A., Sage, D., Bouten, C.V., van de Vosse, F.N., Unser, M., Stergiopulos, N.: Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11(3–4), 461–473 (2012) CrossRef Rezakhaniha, R., Agianniotis, A., Schrauwen, J.T., Griffa, A., Sage, D., Bouten, C.V., van de Vosse, F.N., Unser, M., Stergiopulos, N.: Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11(3–4), 461–473 (2012) CrossRef
54.
Zurück zum Zitat Viidik, A.: Simultaneous mechanical and light microscopic studies of collagen fibers. Z. Anat. Entwicklungsgesch. 136(2), 204–212 (1972) CrossRef Viidik, A.: Simultaneous mechanical and light microscopic studies of collagen fibers. Z. Anat. Entwicklungsgesch. 136(2), 204–212 (1972) CrossRef
55.
Zurück zum Zitat Evans, J.H., Barbenel, J.C., Steel, T.R., Ashby, A.M.: Structure and mechanics of tendon. Symp. Soc. Exp. Biol. 34, 465–469 (1980) Evans, J.H., Barbenel, J.C., Steel, T.R., Ashby, A.M.: Structure and mechanics of tendon. Symp. Soc. Exp. Biol. 34, 465–469 (1980)
56.
Zurück zum Zitat Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6), 423–436 (1979) CrossRef Lanir, Y.: A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6), 423–436 (1979) CrossRef
57.
Zurück zum Zitat Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16(1), 1–12 (1983) CrossRef Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16(1), 1–12 (1983) CrossRef
58.
Zurück zum Zitat Lee, C.H., Zhang, W., Liao, J., Carruthers, C.A., Sacks, J.I., Sacks, M.S.: On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet. Biophys. J. 108(8), 2074–2087 (2015) ADSCrossRef Lee, C.H., Zhang, W., Liao, J., Carruthers, C.A., Sacks, J.I., Sacks, M.S.: On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet. Biophys. J. 108(8), 2074–2087 (2015) ADSCrossRef
59.
Zurück zum Zitat Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61(1–3), 1–48 (2000) MathSciNetMATHCrossRef Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61(1–3), 1–48 (2000) MathSciNetMATHCrossRef
60.
Zurück zum Zitat Humphrey, J.D.: An evaluation of pseudoelastic descriptors used in arterial mechanics. J. Biomech. Eng. 121(2), 259–262 (1999) CrossRef Humphrey, J.D.: An evaluation of pseudoelastic descriptors used in arterial mechanics. J. Biomech. Eng. 121(2), 259–262 (1999) CrossRef
61.
Zurück zum Zitat Lanir, Y.: Plausibility of structural constitutive equations for swelling tissues—implications of the C-N and S-E conditions. J. Biomech. Eng. 118(1), 10–16 (1996) CrossRef Lanir, Y.: Plausibility of structural constitutive equations for swelling tissues—implications of the C-N and S-E conditions. J. Biomech. Eng. 118(1), 10–16 (1996) CrossRef
62.
Zurück zum Zitat Hollander, Y., Durban, D., Lu, X.A., Kassab, G.S., Lanir, Y.: Experimentally validated microstructural 3D constitutive model of coronary arterial media. J. Biomech. Eng. 133(3) (2011) Hollander, Y., Durban, D., Lu, X.A., Kassab, G.S., Lanir, Y.: Experimentally validated microstructural 3D constitutive model of coronary arterial media. J. Biomech. Eng. 133(3) (2011)
63.
Zurück zum Zitat Lu, X., Yang, J., Zhao, J.B., Gregersen, H., Kassab, G.S.: Shear modulus of porcine coronary artery: contributions of media and adventitia. Am. J. Physiol., Heart Circ. Physiol. 285(5), H1966–H1975 (2003) CrossRef Lu, X., Yang, J., Zhao, J.B., Gregersen, H., Kassab, G.S.: Shear modulus of porcine coronary artery: contributions of media and adventitia. Am. J. Physiol., Heart Circ. Physiol. 285(5), H1966–H1975 (2003) CrossRef
64.
Zurück zum Zitat Wang, C., Garcia, M., Lu, X., Lanir, Y., Kassab, G.S.: Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am. J. Physiol., Heart Circ. Physiol. 291(3), H1200–H1209 (2006) CrossRef Wang, C., Garcia, M., Lu, X., Lanir, Y., Kassab, G.S.: Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am. J. Physiol., Heart Circ. Physiol. 291(3), H1200–H1209 (2006) CrossRef
65.
Zurück zum Zitat Hollander, Y., Durban, D., Lu, X., Kassab, G.S., Lanir, Y.: Constitutive modeling of coronary arterial media-comparison of three model classes. J. Biomech. Eng. 133(6) (2011) Hollander, Y., Durban, D., Lu, X., Kassab, G.S., Lanir, Y.: Constitutive modeling of coronary arterial media-comparison of three model classes. J. Biomech. Eng. 133(6) (2011)
66.
Zurück zum Zitat Katchalsky, A.C., Peter, F.: Nonequilibrium Thermodynamics in Biophysics. Cambridge University Press, Cambridge (1967) Katchalsky, A.C., Peter, F.: Nonequilibrium Thermodynamics in Biophysics. Cambridge University Press, Cambridge (1967)
67.
Zurück zum Zitat Richards, E.G.: An Introduction to the Physical Properties of Large Molecules in Solution. Cambridge University Press, Cambridge, U.K. (1980) Richards, E.G.: An Introduction to the Physical Properties of Large Molecules in Solution. Cambridge University Press, Cambridge, U.K. (1980)
68.
Zurück zum Zitat Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336–2344 (1962) ADSCrossRef Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336–2344 (1962) ADSCrossRef
69.
Zurück zum Zitat Lanir, Y.: Biorheology and fluid flux in swelling tissues. 1. Bicomponent theory for small deformations, including concentration effects. Biorheology 24(2), 173–187 (1987) Lanir, Y.: Biorheology and fluid flux in swelling tissues. 1. Bicomponent theory for small deformations, including concentration effects. Biorheology 24(2), 173–187 (1987)
70.
Zurück zum Zitat Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994) CrossRef Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994) CrossRef
71.
Zurück zum Zitat Skalak, R., Zargaryan, S., Jain, R.K., Netti, P.A., Hoger, A.: Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34(8), 889–914 (1996) MATHCrossRef Skalak, R., Zargaryan, S., Jain, R.K., Netti, P.A., Hoger, A.: Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34(8), 889–914 (1996) MATHCrossRef
72.
Zurück zum Zitat Taber, L.A., Humphrey, J.D.: Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123(6), 528–535 (2001) CrossRef Taber, L.A., Humphrey, J.D.: Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123(6), 528–535 (2001) CrossRef
73.
Zurück zum Zitat Azeloglu, E.U., Albro, M.B., Thimmappa, V.A., Ateshian, G.A., Costa, K.D.: Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am. J. Physiol., Heart Circ. Physiol. 294(3), H1197–H1205 (2008) CrossRef Azeloglu, E.U., Albro, M.B., Thimmappa, V.A., Ateshian, G.A., Costa, K.D.: Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am. J. Physiol., Heart Circ. Physiol. 294(3), H1197–H1205 (2008) CrossRef
74.
Zurück zum Zitat Greenwald, S.E., Moore, J.E. Jr., Rachev, A., Kane, T.P., Meister, J.J.: Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119(4), 438–444 (1997) CrossRef Greenwald, S.E., Moore, J.E. Jr., Rachev, A., Kane, T.P., Meister, J.J.: Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119(4), 438–444 (1997) CrossRef
75.
Zurück zum Zitat Stergiopulos, N., Vulliemoz, S., Rachev, A., Meister, J.J., Greenwald, S.E.: Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J. Vasc. Res. 38(3), 237–246 (2001) CrossRef Stergiopulos, N., Vulliemoz, S., Rachev, A., Meister, J.J., Greenwald, S.E.: Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J. Vasc. Res. 38(3), 237–246 (2001) CrossRef
76.
Zurück zum Zitat Guo, X.M., Lanir, Y., Kassab, G.S.: Effect of osmolarity on the zero-stress state and mechanical properties of aorta. Am. J. Physiol., Heart Circ. Physiol. 293(4), H2328–H2334 (2007) CrossRef Guo, X.M., Lanir, Y., Kassab, G.S.: Effect of osmolarity on the zero-stress state and mechanical properties of aorta. Am. J. Physiol., Heart Circ. Physiol. 293(4), H2328–H2334 (2007) CrossRef
77.
Zurück zum Zitat Thornton, G.M., Oliynyk, A., Frank, C.B., Shrive, N.G.: Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J. Orthop. Res. 15(5), 652–656 (1997) CrossRef Thornton, G.M., Oliynyk, A., Frank, C.B., Shrive, N.G.: Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J. Orthop. Res. 15(5), 652–656 (1997) CrossRef
78.
Zurück zum Zitat Raz, E., Lanir, Y.: Recruitment viscoelasticity of the tendon. J. Biomech. Eng. 131(11), 111008 (2009) CrossRef Raz, E., Lanir, Y.: Recruitment viscoelasticity of the tendon. J. Biomech. Eng. 131(11), 111008 (2009) CrossRef
79.
Zurück zum Zitat Eshel, H., Lanir, Y.: Effects of strain level and proteoglycan depletion on preconditioning and viscoelastic responses of rat dorsal skin. Ann. Biomed. Eng. 29(2), 164–172 (2001) CrossRef Eshel, H., Lanir, Y.: Effects of strain level and proteoglycan depletion on preconditioning and viscoelastic responses of rat dorsal skin. Ann. Biomed. Eng. 29(2), 164–172 (2001) CrossRef
80.
Zurück zum Zitat Mullins, L.: Softening of rubber by deformation. Rubber Chem. Technol. 42, 339–362 (1969) CrossRef Mullins, L.: Softening of rubber by deformation. Rubber Chem. Technol. 42, 339–362 (1969) CrossRef
81.
Zurück zum Zitat Tong, P., Fung, Y.C.: The stress-strain relationship for the skin. J. Biomech. 9(10), 649–657 (1976) CrossRef Tong, P., Fung, Y.C.: The stress-strain relationship for the skin. J. Biomech. 9(10), 649–657 (1976) CrossRef
82.
Zurück zum Zitat Chuong, C.J., Fung, Y.C.: Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17(1), 35–40 (1984) CrossRef Chuong, C.J., Fung, Y.C.: Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17(1), 35–40 (1984) CrossRef
83.
Zurück zum Zitat Fung, Y.C., Fronek, K., Patitucci, P.: Pseudoelasticity of arteries and the choice of its mathematical expression. Physiol. Entomol. 237(5), H620–H631 (1979) Fung, Y.C., Fronek, K., Patitucci, P.: Pseudoelasticity of arteries and the choice of its mathematical expression. Physiol. Entomol. 237(5), H620–H631 (1979)
84.
Zurück zum Zitat Lanir, Y.: Biaxial stress-strain relationship in the skin. Isr. J. Technol. 17(2), 78–85 (1979) MATH Lanir, Y.: Biaxial stress-strain relationship in the skin. Isr. J. Technol. 17(2), 78–85 (1979) MATH
85.
Zurück zum Zitat Vawter, D.L., Fung, Y.C., West, J.B.: Constitutive equation of lung-tissue elasticity. J. Biomech. Eng. 101(1), 38–45 (1979) CrossRef Vawter, D.L., Fung, Y.C., West, J.B.: Constitutive equation of lung-tissue elasticity. J. Biomech. Eng. 101(1), 38–45 (1979) CrossRef
86.
Zurück zum Zitat Humphrey, J.D., Vawter, D.L., Vito, R.P.: Pseudoelasticity of excised visceral pleura. J. Biomech. Eng. 109(2), 115–120 (1987) CrossRef Humphrey, J.D., Vawter, D.L., Vito, R.P.: Pseudoelasticity of excised visceral pleura. J. Biomech. Eng. 109(2), 115–120 (1987) CrossRef
87.
Zurück zum Zitat Yin, F.C.: Ventricular wall stress. Circ. Res. 49(4), 829–842 (1981) CrossRef Yin, F.C.: Ventricular wall stress. Circ. Res. 49(4), 829–842 (1981) CrossRef
88.
Zurück zum Zitat Glass, L., Hunter, P.J., McCulloch, A.D. (eds.): Theory of Heart. Springer, New York (1991) Glass, L., Hunter, P.J., McCulloch, A.D. (eds.): Theory of Heart. Springer, New York (1991)
89.
Zurück zum Zitat Schnid, H., Hunter, P.J.: Multi-scale modeling of the heart. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanical Modeling at the Molecular, Cellular and Tissue Levels, pp. 83–107. Springer, Wien (2009) CrossRef Schnid, H., Hunter, P.J.: Multi-scale modeling of the heart. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanical Modeling at the Molecular, Cellular and Tissue Levels, pp. 83–107. Springer, Wien (2009) CrossRef
90.
Zurück zum Zitat Frank, J.S., Langer, G.A.: The myocardial interstitium: its structure and its role in ionic exchange. J. Cell Biol. 60(3), 586–601 (1974) CrossRef Frank, J.S., Langer, G.A.: The myocardial interstitium: its structure and its role in ionic exchange. J. Cell Biol. 60(3), 586–601 (1974) CrossRef
91.
Zurück zum Zitat Caspari, P.G., Newcomb, M., Gibson, K., Harris, P.: Collagen in the normal and hypertrophied human ventricle. Cardiovasc. Res. 11(6), 554–558 (1977) CrossRef Caspari, P.G., Newcomb, M., Gibson, K., Harris, P.: Collagen in the normal and hypertrophied human ventricle. Cardiovasc. Res. 11(6), 554–558 (1977) CrossRef
92.
Zurück zum Zitat Weber, K.T.: Cardiac interstitium in health and disease: the fibrillar collagen network. J. Am. Coll. Cardiol. 13(7), 1637–1652 (1989) CrossRef Weber, K.T.: Cardiac interstitium in health and disease: the fibrillar collagen network. J. Am. Coll. Cardiol. 13(7), 1637–1652 (1989) CrossRef
93.
Zurück zum Zitat Streeter, D.D. Jr., Spotnitz, H.M., Patel, D.P., Ross, J. Jr., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3), 339–347 (1969) CrossRef Streeter, D.D. Jr., Spotnitz, H.M., Patel, D.P., Ross, J. Jr., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3), 339–347 (1969) CrossRef
94.
Zurück zum Zitat Borg, T.K., Caulfield, J.B.: The collagen matrix of the heart. Fed. Proc. 40(7), 2037–2041 (1981) Borg, T.K., Caulfield, J.B.: The collagen matrix of the heart. Fed. Proc. 40(7), 2037–2041 (1981)
95.
Zurück zum Zitat Caulfield, J.B., Borg, T.K.: The collagen network of the heart. Labor Invest. 40(3), 364–372 (1979) Caulfield, J.B., Borg, T.K.: The collagen network of the heart. Labor Invest. 40(3), 364–372 (1979)
96.
Zurück zum Zitat Robinson, T.F., Cohen-Gould, L., Factor, S.M.: Skeletal framework of mammalian heart muscle: arrangement of inter- and pericellular connective tissue structures. Labor Invest. 49(4), 482–498 (1983) Robinson, T.F., Cohen-Gould, L., Factor, S.M.: Skeletal framework of mammalian heart muscle: arrangement of inter- and pericellular connective tissue structures. Labor Invest. 49(4), 482–498 (1983)
97.
Zurück zum Zitat Robinson, T.F., Factor, S.M., Capasso, J.M., Wittenberg, B.A., Blumenfeld, O.O., Seifter, S.: Morphology, composition, and function of struts between cardiac myocytes of rat and hamster. Cell Tissue Res. 249(2), 247–255 (1987) CrossRef Robinson, T.F., Factor, S.M., Capasso, J.M., Wittenberg, B.A., Blumenfeld, O.O., Seifter, S.: Morphology, composition, and function of struts between cardiac myocytes of rat and hamster. Cell Tissue Res. 249(2), 247–255 (1987) CrossRef
98.
Zurück zum Zitat Caulfield, J.B., Borg, T.K.: Collagen network of the heart. Lab. Invest. 40(3), 364–372 (1979) Caulfield, J.B., Borg, T.K.: Collagen network of the heart. Lab. Invest. 40(3), 364–372 (1979)
99.
Zurück zum Zitat Horowitz, A., Lanir, Y., Yin, F.C.P., Perl, M., Sheinman, I., Strumpf, R.K.: Structural 3-dimensional constitutive law for the passive myocardium. J. Biomech. Eng. 110(3), 200–207 (1988) CrossRef Horowitz, A., Lanir, Y., Yin, F.C.P., Perl, M., Sheinman, I., Strumpf, R.K.: Structural 3-dimensional constitutive law for the passive myocardium. J. Biomech. Eng. 110(3), 200–207 (1988) CrossRef
100.
Zurück zum Zitat Nevo, E., Lanir, Y.: Structural finite deformation model of the left-ventricle during diastole and systole. J. Biomech. Eng. 111(4), 342–349 (1989) CrossRef Nevo, E., Lanir, Y.: Structural finite deformation model of the left-ventricle during diastole and systole. J. Biomech. Eng. 111(4), 342–349 (1989) CrossRef
101.
Zurück zum Zitat Labeit, S., Kolmerer, B.: Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270(5234), 293–296 (1995) ADSCrossRef Labeit, S., Kolmerer, B.: Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270(5234), 293–296 (1995) ADSCrossRef
102.
Zurück zum Zitat Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Edinb. Sect. B. Biol. 126, 136–195 (1938) ADSCrossRef Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Edinb. Sect. B. Biol. 126, 136–195 (1938) ADSCrossRef
103.
Zurück zum Zitat Jockenhoevel, S., Zund, G., Hoerstrup, S.P., Schnell, A., Turina, M.: Cardiovascular tissue engineering: a new laminar flow chamber for in vitro improvement of mechanical tissue properties. ASAIO J. 48(1), 8–11 (2002) CrossRef Jockenhoevel, S., Zund, G., Hoerstrup, S.P., Schnell, A., Turina, M.: Cardiovascular tissue engineering: a new laminar flow chamber for in vitro improvement of mechanical tissue properties. ASAIO J. 48(1), 8–11 (2002) CrossRef
104.
Zurück zum Zitat Nerem, R.M., Seliktar, D.: Vascular tissue engineering. Annu. Rev. Biomed. Eng. 3, 225–243 (2001) CrossRef Nerem, R.M., Seliktar, D.: Vascular tissue engineering. Annu. Rev. Biomed. Eng. 3, 225–243 (2001) CrossRef
105.
Zurück zum Zitat Niklason, L.E., Yeh, A.T., Calle, E.A., Bai, Y., Valentin, A., Humphrey, J.D.: Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proc. Natl. Acad. Sci. USA 107(8), 3335–3339 (2010) ADSCrossRef Niklason, L.E., Yeh, A.T., Calle, E.A., Bai, Y., Valentin, A., Humphrey, J.D.: Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proc. Natl. Acad. Sci. USA 107(8), 3335–3339 (2010) ADSCrossRef
106.
Zurück zum Zitat Jackson, Z.S., Gotlieb, A.I., Langille, B.L.: Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90(8), 918–925 (2002) CrossRef Jackson, Z.S., Gotlieb, A.I., Langille, B.L.: Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90(8), 918–925 (2002) CrossRef
107.
Zurück zum Zitat Kamiya, A., Togawa, T.: Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239(1), H14–H21 (1980) Kamiya, A., Togawa, T.: Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239(1), H14–H21 (1980)
108.
Zurück zum Zitat Langille, B.L., Bendeck, M.P., Keeley, F.W.: Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am. J. Physiol. 256(4 Pt 2), H931–H939 (1989) Langille, B.L., Bendeck, M.P., Keeley, F.W.: Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am. J. Physiol. 256(4 Pt 2), H931–H939 (1989)
109.
Zurück zum Zitat Wayman, B.H., Taylor, W.R., Rachev, A., Vito, R.P.: Arteries respond to independent control of circumferential and shear stress in organ culture. Ann. Biomed. Eng. 36(5), 673–684 (2008) CrossRef Wayman, B.H., Taylor, W.R., Rachev, A., Vito, R.P.: Arteries respond to independent control of circumferential and shear stress in organ culture. Ann. Biomed. Eng. 36(5), 673–684 (2008) CrossRef
110.
Zurück zum Zitat Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3), 407–430 (2002) MathSciNetMATHCrossRef Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3), 407–430 (2002) MathSciNetMATHCrossRef
111.
Zurück zum Zitat Cowin, S.C.: Tissue growth and remodeling. Annu. Rev. Biomed. Eng. 6, 77–107 (2004) CrossRef Cowin, S.C.: Tissue growth and remodeling. Annu. Rev. Biomed. Eng. 6, 77–107 (2004) CrossRef
112.
Zurück zum Zitat Lanir, Y.: Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fibers. Biomech. Model. Mechanobiol. 14(2), 245–266 (2015) CrossRef Lanir, Y.: Mechanistic micro-structural theory of soft tissues growth and remodeling: tissues with unidirectional fibers. Biomech. Model. Mechanobiol. 14(2), 245–266 (2015) CrossRef
113.
Zurück zum Zitat Gleason, R.L., Jr., Humphrey, J.D.: A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch. Math. Med. Biol. 22(4), 347–369 (2005) MATHCrossRef Gleason, R.L., Jr., Humphrey, J.D.: A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch. Math. Med. Biol. 22(4), 347–369 (2005) MATHCrossRef
114.
Zurück zum Zitat Cowin, S.C.: Continuum kinematical modeling of mass increasing biological growth. Int. J. Eng. Sci. 48(11), 1137–1145 (2010) MathSciNetMATHCrossRef Cowin, S.C.: Continuum kinematical modeling of mass increasing biological growth. Int. J. Eng. Sci. 48(11), 1137–1145 (2010) MathSciNetMATHCrossRef
115.
Zurück zum Zitat Chen, H., Liu, Y., Slipchenko, M.N., Zhao, X., Cheng, J.X., Kassab, G.S.: The layered structure of coronary adventitia under mechanical load. Biophys. J. 101(11), 2555–2562 (2011) ADSCrossRef Chen, H., Liu, Y., Slipchenko, M.N., Zhao, X., Cheng, J.X., Kassab, G.S.: The layered structure of coronary adventitia under mechanical load. Biophys. J. 101(11), 2555–2562 (2011) ADSCrossRef
116.
Zurück zum Zitat Hill, M.R., Duan, X., Gibson, G.A., Watkins, S., Robertson, A.M.: A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45(5), 762–771 (2012) CrossRef Hill, M.R., Duan, X., Gibson, G.A., Watkins, S., Robertson, A.M.: A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45(5), 762–771 (2012) CrossRef
117.
Zurück zum Zitat Horny, L., Chlup, H., Zitny, R.: Collagen orientation and waviness within the vein wall. In: XI International Conference on Computational Plasticity: Fundamentals and Applications, Spain. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (2011) Horny, L., Chlup, H., Zitny, R.: Collagen orientation and waviness within the vein wall. In: XI International Conference on Computational Plasticity: Fundamentals and Applications, Spain. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (2011)
118.
Zurück zum Zitat Zeinali-Davarani, S., Chow, M.J., Turcotte, R., Zhang, Y.: Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation. Ann. Biomed. Eng. 41(7), 1528–1538 (2013) CrossRef Zeinali-Davarani, S., Chow, M.J., Turcotte, R., Zhang, Y.: Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation. Ann. Biomed. Eng. 41(7), 1528–1538 (2013) CrossRef
119.
Zurück zum Zitat Chen, H., Liu, Y., Zhao, X.F., Lanir, Y., Kassab, G.S.: A micromechanics finite-strain constitutive model of fibrous tissue. J. Mech. Phys. Solids 59(9), 1823–1837 (2011) ADSMathSciNetMATHCrossRef Chen, H., Liu, Y., Zhao, X.F., Lanir, Y., Kassab, G.S.: A micromechanics finite-strain constitutive model of fibrous tissue. J. Mech. Phys. Solids 59(9), 1823–1837 (2011) ADSMathSciNetMATHCrossRef
120.
Zurück zum Zitat Imanuel, O.: Stress analysis in the left ventricle of the heart. PhD thesis, Faculty of Biomedical Engineering, Technion–I.I.T.: Haifa (1996) Imanuel, O.: Stress analysis in the left ventricle of the heart. PhD thesis, Faculty of Biomedical Engineering, Technion–I.I.T.: Haifa (1996)
122.
Zurück zum Zitat Zoumi, A., Lu, X., Kassab, G.S., Tromberg, B.J.: Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys. J. 87(4), 2778–2786 (2004) ADSCrossRef Zoumi, A., Lu, X., Kassab, G.S., Tromberg, B.J.: Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys. J. 87(4), 2778–2786 (2004) ADSCrossRef
123.
Zurück zum Zitat Freed, A.D., Einstein, D.R., Vesely, I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4(2–3), 100–117 (2005) CrossRef Freed, A.D., Einstein, D.R., Vesely, I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4(2–3), 100–117 (2005) CrossRef
124.
Zurück zum Zitat Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. Roy. Soc. Interface 3, 15–35 (2006) CrossRef Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. Roy. Soc. Interface 3, 15–35 (2006) CrossRef
125.
Zurück zum Zitat Cortes, D.H., Lake, S.P., Kadlowec, J.A., Soslowsky, L.J., Elliott, D.M.: Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech. Model. Mechanobiol. 9(5), 651–658 (2010) CrossRef Cortes, D.H., Lake, S.P., Kadlowec, J.A., Soslowsky, L.J., Elliott, D.M.: Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech. Model. Mechanobiol. 9(5), 651–658 (2010) CrossRef
126.
Zurück zum Zitat Federico, S., Herzog, W.: Towards an analytical model of soft biological tissues. J. Biomech. 41(16), 3309–3313 (2008) CrossRef Federico, S., Herzog, W.: Towards an analytical model of soft biological tissues. J. Biomech. 41(16), 3309–3313 (2008) CrossRef
127.
Zurück zum Zitat Bischoff, J.E., Arruda, E.A., Grosh, K.: A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570–579 (2002) ADSMATHCrossRef Bischoff, J.E., Arruda, E.A., Grosh, K.: A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69, 570–579 (2002) ADSMATHCrossRef
128.
Zurück zum Zitat Elata, D., Rubin, M.: Isotropy of strain energy functions which depend only on a finite number of directional strain measures. J. Appl. Mech. 61(2), 284–289 (1994) ADSMATHCrossRef Elata, D., Rubin, M.: Isotropy of strain energy functions which depend only on a finite number of directional strain measures. J. Appl. Mech. 61(2), 284–289 (1994) ADSMATHCrossRef
129.
130.
Zurück zum Zitat Ehret, A.E., Itskov, M., Schmid, H.: Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—a comparative study. Internat. J. Numer. Methods Engrg. 81(2), 189–206 (2010) MATH Ehret, A.E., Itskov, M., Schmid, H.: Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—a comparative study. Internat. J. Numer. Methods Engrg. 81(2), 189–206 (2010) MATH
132.
Zurück zum Zitat Hardin, R.H., Sloane, N.J.A.: McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom. 15, 429–441 (1996) MathSciNetMATHCrossRef Hardin, R.H., Sloane, N.J.A.: McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom. 15, 429–441 (1996) MathSciNetMATHCrossRef
133.
Zurück zum Zitat Federico, S., Gasser, T.C.: Nonlinear elasticity of biological tissues with statistical fiber orientation. J. Roy. Soc. Interface 7(47), 955–966 (2010) CrossRef Federico, S., Gasser, T.C.: Nonlinear elasticity of biological tissues with statistical fiber orientation. J. Roy. Soc. Interface 7(47), 955–966 (2010) CrossRef
134.
Zurück zum Zitat Martufi, G., Gasser, T.C.: A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. J. Biomech. 44(14), 2544–2550 (2011) CrossRef Martufi, G., Gasser, T.C.: A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. J. Biomech. 44(14), 2544–2550 (2011) CrossRef
135.
Zurück zum Zitat Gray, M.L., Pizzanelli, A.M., Grodzinsky, A.J., Lee, R.C.: Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6(6), 777–792 (1988) CrossRef Gray, M.L., Pizzanelli, A.M., Grodzinsky, A.J., Lee, R.C.: Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6(6), 777–792 (1988) CrossRef
136.
Zurück zum Zitat Palmoski, M.J., Brandt, K.D.: Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum. 27(6), 675–681 (1984) CrossRef Palmoski, M.J., Brandt, K.D.: Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum. 27(6), 675–681 (1984) CrossRef
137.
Zurück zum Zitat Sah, R.L., Kim, Y.J., Doong, J.Y., Grodzinsky, A.J., Plaas, A.H., Sandy, J.D.: Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7(5), 619–636 (1989) CrossRef Sah, R.L., Kim, Y.J., Doong, J.Y., Grodzinsky, A.J., Plaas, A.H., Sandy, J.D.: Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7(5), 619–636 (1989) CrossRef
138.
Zurück zum Zitat Torzilli, P.A., Grigiene, R., Huang, C., Friedman, S.M., Doty, S.B., Boskey, A.L., Lust, G.: Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech. 30(1), 1–9 (1997) CrossRef Torzilli, P.A., Grigiene, R., Huang, C., Friedman, S.M., Doty, S.B., Boskey, A.L., Lust, G.: Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech. 30(1), 1–9 (1997) CrossRef
139.
Zurück zum Zitat Lee, D.A., Bader, D.L.: Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15(2), 181–188 (1997) CrossRef Lee, D.A., Bader, D.L.: Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15(2), 181–188 (1997) CrossRef
140.
Zurück zum Zitat Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3), 519–560 (1995) Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3), 519–560 (1995)
141.
Zurück zum Zitat Akhyari, P., Fedak, P.W., Weisel, R.D., Lee, T.Y., Verma, S., Mickle, D.A., Li, R.K.: Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106(12 Suppl 1), I137–I142 (2002) Akhyari, P., Fedak, P.W., Weisel, R.D., Lee, T.Y., Verma, S., Mickle, D.A., Li, R.K.: Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106(12 Suppl 1), I137–I142 (2002)
142.
Zurück zum Zitat Kim, B.S., Nikolovski, J., Bonadio, J., Mooney, D.J.: Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17(10), 979–983 (1999) CrossRef Kim, B.S., Nikolovski, J., Bonadio, J., Mooney, D.J.: Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17(10), 979–983 (1999) CrossRef
143.
Zurück zum Zitat Langer, R., Vacanti, J.P.: Tissue engineering. Science 260(5110), 920–926 (1993) ADSCrossRef Langer, R., Vacanti, J.P.: Tissue engineering. Science 260(5110), 920–926 (1993) ADSCrossRef
144.
Zurück zum Zitat Fung, Y.C.: Biorheology of soft tissues. Biorheology 10(2), 139–155 (1973) Fung, Y.C.: Biorheology of soft tissues. Biorheology 10(2), 139–155 (1973)
Metadaten
Titel
Multi-scale Structural Modeling of Soft Tissues Mechanics and Mechanobiology
verfasst von
Yoram Lanir
Publikationsdatum
15.11.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 1-2/2017
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-016-9607-0

Weitere Artikel der Ausgabe 1-2/2017

Journal of Elasticity 1-2/2017 Zur Ausgabe

EditorialNotes

Preface

OriginalPaper

Bulging Brains

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.