Skip to main content
Erschienen in: Neural Computing and Applications 10/2018

24.02.2017 | Original Article

Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem

verfasst von: Yanhong Feng, Gai-Ge Wang, Wenbin Li, Ning Li

Erschienen in: Neural Computing and Applications | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As an expanded classical 0-1 knapsack problem (0-1 KP), the discounted {0-1} knapsack problem (DKP) is proposed based on the concept of discount in the commercial world. The DKP contains a set of item groups where each group includes three items, whereas no more than one item in each group can be packed in the knapsack, which makes it more complex and challenging than 0-1 KP. At present, the main two algorithms for solving the DKP include exact algorithms and approximate algorithms. However, there are some topics which need to be further discussed, i.e., the improvement of the solution quality. In this paper, a novel multi-strategy monarch butterfly optimization (MMBO) algorithm for DKP is proposed. In MMBO, two effective strategies, neighborhood mutation with crowding and Gaussian perturbation, are introduced into MMBO. Experimental analyses show that the first strategy can enhance the global search ability, while the second strategy can strengthen local search ability and prevent premature convergence during the evolution process. Based on this, MBO is combined with each strategy, denoted as NCMBO and GMMBO, respectively. We compared MMBO with other six methods, including NCMBO, GMMBO, MBO, FirEGA, SecEGA and elephant herding optimization. The experimental results on three types of large-scale DKP instances show that NCMBO, GMMBO and MMBO are all suitable for solving DKP. In addition, MMBO outperforms other six methods and can achieve a good approximate solution with its approximation ratio close to 1 on almost all the DKP instances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cormen TH (2009) Introduction to algorithms. The MIT Press, CambridgeMATH Cormen TH (2009) Introduction to algorithms. The MIT Press, CambridgeMATH
2.
Zurück zum Zitat Du DZ, Ko KI (2011) Theory of computational complexity. Wiley, New YorkMATH Du DZ, Ko KI (2011) Theory of computational complexity. Wiley, New YorkMATH
3.
Zurück zum Zitat Guldan B (2007) Heuristic and exact algorithms for discounted knapsack problems. Master thesis, University of Erlangen-Nürnberg, Germany Guldan B (2007) Heuristic and exact algorithms for discounted knapsack problems. Master thesis, University of Erlangen-Nürnberg, Germany
4.
Zurück zum Zitat Rong A, Figueira JR, Klamroth K (2012) Dynamic programming based algorithms for the discounted 0–1 knapsack problem. Appl Math Comput 218(12):6921–6933MathSciNetMATH Rong A, Figueira JR, Klamroth K (2012) Dynamic programming based algorithms for the discounted 0–1 knapsack problem. Appl Math Comput 218(12):6921–6933MathSciNetMATH
6.
Zurück zum Zitat Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):96–101CrossRef Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):96–101CrossRef
7.
Zurück zum Zitat Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley, New York, p 102 Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley, New York, p 102
9.
Zurück zum Zitat He YC, Wang XZ, He YL et al (2016) Exact and approximate algorithms for discounted 0–1 knapsack problem. Inf Sci 369:634–647MathSciNetCrossRef He YC, Wang XZ, He YL et al (2016) Exact and approximate algorithms for discounted 0–1 knapsack problem. Inf Sci 369:634–647MathSciNetCrossRef
10.
Zurück zum Zitat Wang G-G, Tan Y (2017) Improving metaheuristic algorithms with information feedback models. IEEE Trans Cybern Wang G-G, Tan Y (2017) Improving metaheuristic algorithms with information feedback models. IEEE Trans Cybern
11.
Zurück zum Zitat Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, pp 39–43 Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, pp 39–43
12.
Zurück zum Zitat Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1):29–41CrossRef Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1):29–41CrossRef
13.
Zurück zum Zitat Wang G-G, Guo LH, Wang HQ et al (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871CrossRef Wang G-G, Guo LH, Wang HQ et al (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871CrossRef
14.
Zurück zum Zitat Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370CrossRef Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370CrossRef
16.
Zurück zum Zitat Wang G-G, Gandomi AH, Alavi AH et al (2014) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput Appl 25(2):297–308CrossRef Wang G-G, Gandomi AH, Alavi AH et al (2014) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput Appl 25(2):297–308CrossRef
18.
Zurück zum Zitat Wang G-G, Deb S, Gandomi AH et al (2016) Opposition-based krill herd algorithm with Cauchy mutation and position clamping. Neurocomputing 177:147–157CrossRef Wang G-G, Deb S, Gandomi AH et al (2016) Opposition-based krill herd algorithm with Cauchy mutation and position clamping. Neurocomputing 177:147–157CrossRef
20.
Zurück zum Zitat Cui ZH, Fan S, Zeng J et al (2013) Artificial plant optimization algorithm with three-period photosynthesis. Int J Bio Inspir Comput 5(2):133–139CrossRef Cui ZH, Fan S, Zeng J et al (2013) Artificial plant optimization algorithm with three-period photosynthesis. Int J Bio Inspir Comput 5(2):133–139CrossRef
21.
Zurück zum Zitat Wang G-G, Deb S, Gao X-Z, Coelho LdS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio Inspir Comput 8(6):394–409CrossRef Wang G-G, Deb S, Gao X-Z, Coelho LdS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio Inspir Comput 8(6):394–409CrossRef
23.
Zurück zum Zitat Rezoug A, Boughaci D (2016) A self-adaptive harmony search combined with a stochastic local search for the 0-1 multidimensional knapsack problem. Int J Bio Inspir Comput 8(4):234–239CrossRef Rezoug A, Boughaci D (2016) A self-adaptive harmony search combined with a stochastic local search for the 0-1 multidimensional knapsack problem. Int J Bio Inspir Comput 8(4):234–239CrossRef
24.
Zurück zum Zitat Wang H, Wang W, Sun H et al (2016) Firefly algorithm with random attraction. Int J Bio Inspir Comput 8(1):33–41CrossRef Wang H, Wang W, Sun H et al (2016) Firefly algorithm with random attraction. Int J Bio Inspir Comput 8(1):33–41CrossRef
25.
Zurück zum Zitat Shi Y (2011) Brain storm optimization algorithm. In: International conference in swarm intelligence. Springer, Berlin, pp 303–309 Shi Y (2011) Brain storm optimization algorithm. In: International conference in swarm intelligence. Springer, Berlin, pp 303–309
27.
Zurück zum Zitat Cheng S, Shi Y, Qin Q et al (2013) Solution clustering analysis in brain storm optimization algorithm. In: Swarm intelligence (SIS), 2013 IEEE symposium on. IEEE, pp 111–118 Cheng S, Shi Y, Qin Q et al (2013) Solution clustering analysis in brain storm optimization algorithm. In: Swarm intelligence (SIS), 2013 IEEE symposium on. IEEE, pp 111–118
29.
Zurück zum Zitat Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence. Springer, Berlin, pp 355–364 Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence. Springer, Berlin, pp 355–364
30.
Zurück zum Zitat Zheng S, Janecek A, Tan Y (2013) Enhanced fireworks algorithm. In: 2013 IEEE congress on evolutionary computation. IEEE, pp 2069–2077 Zheng S, Janecek A, Tan Y (2013) Enhanced fireworks algorithm. In: 2013 IEEE congress on evolutionary computation. IEEE, pp 2069–2077
31.
Zurück zum Zitat Cai X, Gao XZ, Xue Y (2016) Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int J Bio Inspir Comput 8(4):205–214CrossRef Cai X, Gao XZ, Xue Y (2016) Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int J Bio Inspir Comput 8(4):205–214CrossRef
35.
Zurück zum Zitat Qu BY, Suganthan PN, Liang JJ (2012) Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans Evol Comput 16(5):601–614CrossRef Qu BY, Suganthan PN, Liang JJ (2012) Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans Evol Comput 16(5):601–614CrossRef
36.
Zurück zum Zitat Reynolds AM, Rhodes CJ (2009) The Lévy flight paradigm: random search patterns and mechanisms. Ecology 90(4):877–887CrossRef Reynolds AM, Rhodes CJ (2009) The Lévy flight paradigm: random search patterns and mechanisms. Ecology 90(4):877–887CrossRef
37.
Zurück zum Zitat Hinterding R (1995) Gaussian mutation and self-adaption for numeric genetic algorithms. In: IEEE international conference on evolutionary computation, p 384 Hinterding R (1995) Gaussian mutation and self-adaption for numeric genetic algorithms. In: IEEE international conference on evolutionary computation, p 384
38.
Zurück zum Zitat Higashi N, Iba H (2003) Particle swarm optimization with Gaussian mutation. In: Swarm intelligence symposium, SIS’03. Proceedings of the 2003 IEEE, pp 72–79 Higashi N, Iba H (2003) Particle swarm optimization with Gaussian mutation. In: Swarm intelligence symposium, SIS’03. Proceedings of the 2003 IEEE, pp 72–79
39.
Zurück zum Zitat Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102CrossRef Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102CrossRef
40.
Zurück zum Zitat He YC, Wang XZ, Kou YZ (2007) A binary differential evolution algorithm with hybrid encoding. J Comput Res Dev 44(9):1476–1484CrossRef He YC, Wang XZ, Kou YZ (2007) A binary differential evolution algorithm with hybrid encoding. J Comput Res Dev 44(9):1476–1484CrossRef
42.
43.
Zurück zum Zitat Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32CrossRef Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32CrossRef
44.
Zurück zum Zitat Kort BW, Bertsekas DP (1972) A new penalty function method for constrained minimization. In: Decision and control, 1972 and 11th symposium on adaptive processes. Proceedings of the 1972 IEEE conference on. IEEE, pp 162–166 Kort BW, Bertsekas DP (1972) A new penalty function method for constrained minimization. In: Decision and control, 1972 and 11th symposium on adaptive processes. Proceedings of the 1972 IEEE conference on. IEEE, pp 162–166
45.
Zurück zum Zitat Di Pillo G, Grippo L (1986) An exact penalty function method with global convergence properties for nonlinear programming problems. Math Program 36(1):1–18MathSciNetCrossRef Di Pillo G, Grippo L (1986) An exact penalty function method with global convergence properties for nonlinear programming problems. Math Program 36(1):1–18MathSciNetCrossRef
46.
Zurück zum Zitat Chih MC (2015) Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem. Appl Soft Comput 26:378–389CrossRef Chih MC (2015) Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem. Appl Soft Comput 26:378–389CrossRef
47.
Zurück zum Zitat Chu PC, Beasley JE (1998) A genetic algorithm for the multidimensional knapsack problem. J Heuristics 4(1):63–86CrossRef Chu PC, Beasley JE (1998) A genetic algorithm for the multidimensional knapsack problem. J Heuristics 4(1):63–86CrossRef
48.
Zurück zum Zitat He YC, Zhang XL, Li WB et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117MathSciNetCrossRef He YC, Zhang XL, Li WB et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117MathSciNetCrossRef
49.
Zurück zum Zitat Pisinger D (1995) Algorithms for knapsack problems 31 Pisinger D (1995) Algorithms for knapsack problems 31
50.
Zurück zum Zitat Alsuwaiyel MH (2009) Algorithms design techniques and analysis. World Scientific Publishing Company, BeijingMATH Alsuwaiyel MH (2009) Algorithms design techniques and analysis. World Scientific Publishing Company, BeijingMATH
51.
Zurück zum Zitat Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83CrossRef Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83CrossRef
52.
Zurück zum Zitat Wilcoxon F, Katti SK, Wilcox RA (1970) Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Sel Tables Math Stat 1:171–259MATH Wilcoxon F, Katti SK, Wilcox RA (1970) Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Sel Tables Math Stat 1:171–259MATH
53.
Zurück zum Zitat Wang G-G, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J of Bio Inspir Comput Wang G-G, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J of Bio Inspir Comput
54.
Zurück zum Zitat Zhou A, Qu BY, Li H et al (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut Comput 1(1):32–49CrossRef Zhou A, Qu BY, Li H et al (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut Comput 1(1):32–49CrossRef
55.
Zurück zum Zitat Bryden KM, Ashlock DA, Corns S et al (2006) Graph-based evolutionary algorithms. IEEE Trans Evol Comput 10(5):550–567CrossRef Bryden KM, Ashlock DA, Corns S et al (2006) Graph-based evolutionary algorithms. IEEE Trans Evol Comput 10(5):550–567CrossRef
56.
Zurück zum Zitat Li J, Pan Q (2015) Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Inf Sci 316:487–502CrossRef Li J, Pan Q (2015) Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Inf Sci 316:487–502CrossRef
57.
Zurück zum Zitat Han B, Leblet J, Simon G (2010) Hard multidimensional multiple choice knapsack problems, an empirical study. Comput Oper Res 37(1):172–181MathSciNetCrossRef Han B, Leblet J, Simon G (2010) Hard multidimensional multiple choice knapsack problems, an empirical study. Comput Oper Res 37(1):172–181MathSciNetCrossRef
58.
Zurück zum Zitat Ren Z, Feng Z, Zhang A (2012) Fusing ant colony optimization with Lagrangian relaxation for the multiple-choice multidimensional knapsack problem. Inf Sci 182(1):15–29MathSciNetCrossRef Ren Z, Feng Z, Zhang A (2012) Fusing ant colony optimization with Lagrangian relaxation for the multiple-choice multidimensional knapsack problem. Inf Sci 182(1):15–29MathSciNetCrossRef
Metadaten
Titel
Multi-strategy monarch butterfly optimization algorithm for discounted {0-1} knapsack problem
verfasst von
Yanhong Feng
Gai-Ge Wang
Wenbin Li
Ning Li
Publikationsdatum
24.02.2017
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 10/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-2903-1

Weitere Artikel der Ausgabe 10/2018

Neural Computing and Applications 10/2018 Zur Ausgabe

Premium Partner