Skip to main content
Erschienen in: Autonomous Robots 4/2018

09.01.2018

Multiple-place swarm foraging with dynamic depots

verfasst von: Qi Lu, Joshua P. Hecker, Melanie E. Moses

Erschienen in: Autonomous Robots | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Teams of robots can be organized to collectively complete complex real-world tasks, for example collective foraging in which robots search for, pick up, and drop off targets in a collection zone. In the previously proposed central-place foraging algorithm (CPFA), foraging performance decreases as swarm size and search areas scale up: more robots produce more inter-robot collisions and larger search areas produce longer travel distances. We propose the multiple-place foraging algorithm with dynamic depots (\(\hbox {MPFA}_{dynamic}\)) to address these problems. Depots are special robots which are initially distributed in the search area and can carry multiple targets. Depots move to the centroids of the positions of local targets recently detected by robots. The spatially distributed design reduces robot transport time and reduces collisions among robots. We simulate robot swarms that mimic foraging ants using the \(\hbox {MPFA}_{dynamic}\) strategy, employing a genetic algorithm to optimize their behavior in the robot simulator ARGoS. Robots using the \(\hbox {MPFA}_{dynamic}\) find and collect targets faster than both the CPFA and the static MPFA. \(\hbox {MPFA}_{dynamic}\) outperforms the static MPFA even when the static depots are optimally placed using global information, and it outperforms the CPFA even when the dynamic depots deliver targets to a central location. Further, the \(\hbox {MPFA}_{dynamic}\) scales up more efficiently, so that the improvement over the CPFA and the static MPFA is even greater in large (50 \(\times \) 50 m) areas. Including simulated error reduces foraging performance across all algorithms, but the MPFA still outperforms the other approaches. Our work demonstrates that dispersed agents that dynamically adapt to local information in their environment provide more flexible and scalable swarms. In addition, we illustrate a path to implement the \(\hbox {MPFA}_{dynamic}\) in the physical robot swarm of the NASA Swarmathon competition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ackerman, S. M., Fricke, G. M., Hecker, J. P., Hamed, K. M., Fowler, S. R., Griego, A. D., Jones, J. C., Nichol, J. J., Leucht, K. W., & Moses, M. E. (2018). The swarmathon: An autonomous swarm robotics competition. In 2018 IEEE international conference on robotics and automation (ICRA) (in review). Ackerman, S. M., Fricke, G. M., Hecker, J. P., Hamed, K. M., Fowler, S. R., Griego, A. D., Jones, J. C., Nichol, J. J., Leucht, K. W., & Moses, M. E. (2018). The swarmathon: An autonomous swarm robotics competition. In 2018 IEEE international conference on robotics and automation (ICRA) (in review).
Zurück zum Zitat Arthur, D. & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’07 (pp. 1027–1035). Philadelphia, PA: Society for Industrial and Applied Mathematics. Arthur, D. & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’07 (pp. 1027–1035). Philadelphia, PA: Society for Industrial and Applied Mathematics.
Zurück zum Zitat Bac, C. W., Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. Journal of Field Robotics, 31(6), 888–911.CrossRef Bac, C. W., Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. Journal of Field Robotics, 31(6), 888–911.CrossRef
Zurück zum Zitat Banavar, J. R., Moses, M. E., Brown, J. H., Damuth, J., Rinaldo, A., Sibly, R. M., et al. (2010). A general basis for quarter-power scaling in animals. Proceedings of the National Academy of Sciences, 107(36), 15816–15820.CrossRef Banavar, J. R., Moses, M. E., Brown, J. H., Damuth, J., Rinaldo, A., Sibly, R. M., et al. (2010). A general basis for quarter-power scaling in animals. Proceedings of the National Academy of Sciences, 107(36), 15816–15820.CrossRef
Zurück zum Zitat Banerjee, S., & Moses, M. (2010a). Modular RADAR: An immune system inspired search and response strategy for distributed systems (pp. 116–129). Berlin, Heidelberg: Springer. Banerjee, S., & Moses, M. (2010a). Modular RADAR: An immune system inspired search and response strategy for distributed systems (pp. 116–129). Berlin, Heidelberg: Springer.
Zurück zum Zitat Banerjee, S., & Moses, M. (2010b). Scale invariance of immune system response rates and times: Perspectives on immune system architecture and implications for artificial immune systems. Swarm Intelligence, 4(4), 301–318.CrossRef Banerjee, S., & Moses, M. (2010b). Scale invariance of immune system response rates and times: Perspectives on immune system architecture and implications for artificial immune systems. Swarm Intelligence, 4(4), 301–318.CrossRef
Zurück zum Zitat Berman, S., Halász, Á., Hsieh, M. A., & Kumar, V. (2008). Navigation-based optimization of stochastic strategies for allocating a robot swarm among multiple sites. In 47th IEEE conference on decision and control, 2008. CDC 2008 (pp. 4376–4381). Berman, S., Halász, Á., Hsieh, M. A., & Kumar, V. (2008). Navigation-based optimization of stochastic strategies for allocating a robot swarm among multiple sites. In 47th IEEE conference on decision and control, 2008. CDC 2008 (pp. 4376–4381).
Zurück zum Zitat Beverly, B. D., McLendon, H., Nacu, S., Holmes, S., & Gordon, D. M. (2009). How site fidelity leads to individual differences in the foraging activity of harvester ants. Behavioral Ecology, 20(3), 633.CrossRef Beverly, B. D., McLendon, H., Nacu, S., Holmes, S., & Gordon, D. M. (2009). How site fidelity leads to individual differences in the foraging activity of harvester ants. Behavioral Ecology, 20(3), 633.CrossRef
Zurück zum Zitat Bezzo, N., Hecker, J. P., Stolleis, K., Moses, M. E., & Fierro, R. (2015). Exploiting heterogeneous robotic systems in cooperative missions (pp. 1–23). arXiv:1509.00948. Bezzo, N., Hecker, J. P., Stolleis, K., Moses, M. E., & Fierro, R. (2015). Exploiting heterogeneous robotic systems in cooperative missions (pp. 1–23). arXiv:​1509.​00948.
Zurück zum Zitat Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRef Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRef
Zurück zum Zitat Brooks, R. A., & Flynn, A. M. (1989). Fast, cheap and out of control: A robot invasion of the solar system. Journal of the British Interplanetary Society, 42, 478–485. Brooks, R. A., & Flynn, A. M. (1989). Fast, cheap and out of control: A robot invasion of the solar system. Journal of the British Interplanetary Society, 42, 478–485.
Zurück zum Zitat Brown, J. H., Burnside, W. R., Davidson, A. D., DeLong, J. P., Dunn, W. C., Hamilton, M. J., et al. (2011). Energetic limits to economic growth. BioScience, 61(1), 19–26.CrossRef Brown, J. H., Burnside, W. R., Davidson, A. D., DeLong, J. P., Dunn, W. C., Hamilton, M. J., et al. (2011). Energetic limits to economic growth. BioScience, 61(1), 19–26.CrossRef
Zurück zum Zitat Camazine, S., Franks, N. R., Sneyd, J., Bonabeau, E., Deneubourg, J. L., & Theraula, G. (2001). Self-organization in biological systems. Princeton, NJ: Princeton University Press.MATH Camazine, S., Franks, N. R., Sneyd, J., Bonabeau, E., Deneubourg, J. L., & Theraula, G. (2001). Self-organization in biological systems. Princeton, NJ: Princeton University Press.MATH
Zurück zum Zitat Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S., et al. (2010). Artificial pheromone for path selection by a foraging swarm of robots. Biological Cybernetics, 103(5), 339–352.CrossRef Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S., et al. (2010). Artificial pheromone for path selection by a foraging swarm of robots. Biological Cybernetics, 103(5), 339–352.CrossRef
Zurück zum Zitat Chapman, C. A., Chapman, L. J., & McLaughlin, R. L. (1989). Multiple central place foraging by spider monkeys: Travel consequences of using many sleeping sites. Oecologia, 79(4), 506–511.CrossRef Chapman, C. A., Chapman, L. J., & McLaughlin, R. L. (1989). Multiple central place foraging by spider monkeys: Travel consequences of using many sleeping sites. Oecologia, 79(4), 506–511.CrossRef
Zurück zum Zitat Couture-Beil, A. & Vaughan, R. T. (2009). Adaptive mobile charging stations for multi-robot systems. In 2009 IEEE/RSJ international conference on intelligent robots and systems (pp. 1363–1368). Couture-Beil, A. & Vaughan, R. T. (2009). Adaptive mobile charging stations for multi-robot systems. In 2009 IEEE/RSJ international conference on intelligent robots and systems (pp. 1363–1368).
Zurück zum Zitat Crist, T. O., & MacMahon, J. A. (1991). Individual foraging components of harvester ants: Movement patterns and seed patch fidelity. Insectes Sociaux, 38(4), 379–396.CrossRef Crist, T. O., & MacMahon, J. A. (1991). Individual foraging components of harvester ants: Movement patterns and seed patch fidelity. Insectes Sociaux, 38(4), 379–396.CrossRef
Zurück zum Zitat Fewell, J. H. (1990). Directional fidelity as a foraging constraint in the western harvester ant, pogonomyrmex occidentalis. Oecologia, 82(1), 45–51.CrossRef Fewell, J. H. (1990). Directional fidelity as a foraging constraint in the western harvester ant, pogonomyrmex occidentalis. Oecologia, 82(1), 45–51.CrossRef
Zurück zum Zitat Fink, W., Dohm, J. M., Tarbell, M. A., Hare, T. M., & Baker, V. R. (2005). Next-generation robotic planetary reconnaissance missions: A paradigm shift. Planetary and Space Science, 53(14–15), 1419–1426.CrossRef Fink, W., Dohm, J. M., Tarbell, M. A., Hare, T. M., & Baker, V. R. (2005). Next-generation robotic planetary reconnaissance missions: A paradigm shift. Planetary and Space Science, 53(14–15), 1419–1426.CrossRef
Zurück zum Zitat Flanagan, T. P., Letendre, K., Burnside, W., Fricke, G. M., & Moses, M. E. (2011). How ants turn information into food. In 2011 IEEE symposium on artificial life (ALIFE) (pp. 178–185). IEEE. Flanagan, T. P., Letendre, K., Burnside, W., Fricke, G. M., & Moses, M. E. (2011). How ants turn information into food. In 2011 IEEE symposium on artificial life (ALIFE) (pp. 178–185). IEEE.
Zurück zum Zitat Flanagan, T. P., Letendre, K., Burnside, W. R., Fricke, G. M., & Moses, M. E. (2012). Quantifying the effect of colony size and food distribution on harvester ant foraging. PLOS ONE, 7(7), 1–9. Flanagan, T. P., Letendre, K., Burnside, W. R., Fricke, G. M., & Moses, M. E. (2012). Quantifying the effect of colony size and food distribution on harvester ant foraging. PLOS ONE, 7(7), 1–9.
Zurück zum Zitat Flanagan, T. P., Pinter-Wollman, N. M., Moses, M. E., & Gordon, D. M. (2013). Fast and flexible: Argentine ants recruit from nearby trails. PLOS ONE, 8(8), 1–7.CrossRef Flanagan, T. P., Pinter-Wollman, N. M., Moses, M. E., & Gordon, D. M. (2013). Fast and flexible: Argentine ants recruit from nearby trails. PLOS ONE, 8(8), 1–7.CrossRef
Zurück zum Zitat Fricke, G. M., Hecker, J. P., Griego, A. D., Tran, L. T., & Moses, E. M. (2016). A distributed deterministic spiral search algorithm for swarms. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2016). Fricke, G. M., Hecker, J. P., Griego, A. D., Tran, L. T., & Moses, E. M. (2016). A distributed deterministic spiral search algorithm for swarms. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2016).
Zurück zum Zitat Gazi, V., & Passino, K. M. (2004). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(1), 539–557.CrossRef Gazi, V., & Passino, K. M. (2004). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(1), 539–557.CrossRef
Zurück zum Zitat Gordon, D. M., & Kulig, A. W. (1996). Founding, foraging, and fighting: Colony size and the spatial distribution of harvester ant nests. Ecological Society of America, 77(8), 2393–2409. Gordon, D. M., & Kulig, A. W. (1996). Founding, foraging, and fighting: Colony size and the spatial distribution of harvester ant nests. Ecological Society of America, 77(8), 2393–2409.
Zurück zum Zitat Halász, Á., Hsieh, M. A., Berman, S., & Kumar, V. (2007). Dynamic redistribution of a swarm of robots among multiple sites. In 2007 IEEE/RSJ international conference on intelligent robots and systems (pp. 2320–2325). Halász, Á., Hsieh, M. A., Berman, S., & Kumar, V. (2007). Dynamic redistribution of a swarm of robots among multiple sites. In 2007 IEEE/RSJ international conference on intelligent robots and systems (pp. 2320–2325).
Zurück zum Zitat Hecker, J. P., Carmichael, J. C., & Moses, M. E. (2015). Exploiting clusters for complete resource collection in biologically-inspired robot swarms. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 434–440). Hecker, J. P., Carmichael, J. C., & Moses, M. E. (2015). Exploiting clusters for complete resource collection in biologically-inspired robot swarms. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 434–440).
Zurück zum Zitat Hecker, J. P., & Moses, M. E. (2015). Beyond pheromones: Evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intelligence, 9(1), 43–70. Hecker, J. P., & Moses, M. E. (2015). Beyond pheromones: Evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intelligence, 9(1), 43–70.
Zurück zum Zitat Hecker, J. P., Stolleis, K., Swenson, B., Letendre, K., & Moses, M. E. (2013). Evolving error tolerance in biologically inspired iant robots. In In ECAL 2013. Hecker, J. P., Stolleis, K., Swenson, B., Letendre, K., & Moses, M. E. (2013). Evolving error tolerance in biologically inspired iant robots. In In ECAL 2013.
Zurück zum Zitat Hölldobler, B. (1976). Recruitment behavior, home range orientation and territoriality in harvester ants, pogonomyrmex. Behavioral Ecology and Sociobiology, 1(1), 3–44.CrossRef Hölldobler, B. (1976). Recruitment behavior, home range orientation and territoriality in harvester ants, pogonomyrmex. Behavioral Ecology and Sociobiology, 1(1), 3–44.CrossRef
Zurück zum Zitat Hou, C., Kaspari, M., Zanden, H. V., & Gillooly, J. (2010). Energetic basis of colonial living in social insects. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3634–3638.CrossRef Hou, C., Kaspari, M., Zanden, H. V., & Gillooly, J. (2010). Energetic basis of colonial living in social insects. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3634–3638.CrossRef
Zurück zum Zitat Hsieh, M. A., Halász, Á., Berman, S., & Kumar, V. (2008). Biologically inspired redistribution of a swarm of robots among multiple sites. Swarm Intelligence, 2(2), 121–141.CrossRef Hsieh, M. A., Halász, Á., Berman, S., & Kumar, V. (2008). Biologically inspired redistribution of a swarm of robots among multiple sites. Swarm Intelligence, 2(2), 121–141.CrossRef
Zurück zum Zitat Jackson, D. E., Martin, S. J., Ratnieks, F. L. W., & Holcombe, M. (2007). Spatial and temporal variation in pheromone composition of ant foraging trails. Behavioral Ecology, 18(2), 444–450.CrossRef Jackson, D. E., Martin, S. J., Ratnieks, F. L. W., & Holcombe, M. (2007). Spatial and temporal variation in pheromone composition of ant foraging trails. Behavioral Ecology, 18(2), 444–450.CrossRef
Zurück zum Zitat Kleinberg, J. (2007). Computing: The wireless epidemic. Nature, 449(7160), 287–288.CrossRef Kleinberg, J. (2007). Computing: The wireless epidemic. Nature, 449(7160), 287–288.CrossRef
Zurück zum Zitat Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ international conference on intelligent robots and systems, 2004 (IROS 2004). Proceedings (Vol. 3, pp. 2149–2154). IEEE. Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ international conference on intelligent robots and systems, 2004 (IROS 2004). Proceedings (Vol. 3, pp. 2149–2154). IEEE.
Zurück zum Zitat Lanan, M. (2014). Spatiotemporal resource distribution and foraging strategies of ants (hymenoptera: Formicidae). Myrmecological news/Osterreichische Gesellschaft fur Entomofaunistik, 20, 53–70. Lanan, M. (2014). Spatiotemporal resource distribution and foraging strategies of ants (hymenoptera: Formicidae). Myrmecological news/Osterreichische Gesellschaft fur Entomofaunistik, 20, 53–70.
Zurück zum Zitat Landis, G. A. (2004). Robots and humans: Synergy in planetary exploration. Acta Astronautica, 55(12), 985–990.CrossRef Landis, G. A. (2004). Robots and humans: Synergy in planetary exploration. Acta Astronautica, 55(12), 985–990.CrossRef
Zurück zum Zitat Lein, A. & Vaughan, R. T. (2009). Adapting to non-uniform resource distributions in robotic swarm foraging through work-site relocation. In 2009 IEEE/RSJ international conference on intelligent robots and systems (pp. 601–606). Lein, A. & Vaughan, R. T. (2009). Adapting to non-uniform resource distributions in robotic swarm foraging through work-site relocation. In 2009 IEEE/RSJ international conference on intelligent robots and systems (pp. 601–606).
Zurück zum Zitat Levin, D. F. (2016). The environment constrains successful search strategies in natural distributed systems. Ph.D. Thesis, University of New Mexico. Levin, D. F. (2016). The environment constrains successful search strategies in natural distributed systems. Ph.D. Thesis, University of New Mexico.
Zurück zum Zitat Liu, W., & Winfield, A. F. T. (2010). Modeling and optimization of adaptive foraging in swarm robotic systems. International Journal of Robotics Research, 29(14), 1743–1760.CrossRef Liu, W., & Winfield, A. F. T. (2010). Modeling and optimization of adaptive foraging in swarm robotic systems. International Journal of Robotics Research, 29(14), 1743–1760.CrossRef
Zurück zum Zitat Lu, Q., Hecker, J. P., & Moses, E. M. (2016a). The MPFA: A multiple-place foraging algorithm for biologically-inspired robot swarms. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2016). Lu, Q., Hecker, J. P., & Moses, E. M. (2016a). The MPFA: A multiple-place foraging algorithm for biologically-inspired robot swarms. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2016).
Zurück zum Zitat Moses, M. & Banerjee, S. (2011). Biologically inspired design principles for scalable, robust, adaptive, decentralized search and automated response (radar). In 2011 IEEE symposium on artificial life (ALIFE) (pp. 30–37). IEEE. Moses, M. & Banerjee, S. (2011). Biologically inspired design principles for scalable, robust, adaptive, decentralized search and automated response (radar). In 2011 IEEE symposium on artificial life (ALIFE) (pp. 30–37). IEEE.
Zurück zum Zitat Moses, M., Bezerra, G., Edwards, B., Brown, J., & Forrest, S. (2016). Energy and time determine scaling in biological and computer designs. Philosophical Transactions of the Royal Society B, 371(1701), 20150446.CrossRef Moses, M., Bezerra, G., Edwards, B., Brown, J., & Forrest, S. (2016). Energy and time determine scaling in biological and computer designs. Philosophical Transactions of the Royal Society B, 371(1701), 20150446.CrossRef
Zurück zum Zitat Moses, M. E., & Brown, J. H. (2003). Allometry of human fertility and energy use. Ecology Letters, 6(4), 295–300.CrossRef Moses, M. E., & Brown, J. H. (2003). Allometry of human fertility and energy use. Ecology Letters, 6(4), 295–300.CrossRef
Zurück zum Zitat Moyron-Quiroz, J. E., Rangel-Moreno, J., Kusser, K., Hartson, L., Sprague, F., Goodrich, S., et al. (2004). Role of inducible bronchus associated lymphoid tissue (ibalt) in respiratory immunity. Nature Medicine, 10(9), 927–934.CrossRef Moyron-Quiroz, J. E., Rangel-Moreno, J., Kusser, K., Hartson, L., Sprague, F., Goodrich, S., et al. (2004). Role of inducible bronchus associated lymphoid tissue (ibalt) in respiratory immunity. Nature Medicine, 10(9), 927–934.CrossRef
Zurück zum Zitat Nelson, A., Grant, E., & Henderson, T. (2004). Evolution of neural controllers for competitive game playing with teams of mobile robots. Robotics and Autonomous Systems, 46(3), 135–150.CrossRef Nelson, A., Grant, E., & Henderson, T. (2004). Evolution of neural controllers for competitive game playing with teams of mobile robots. Robotics and Autonomous Systems, 46(3), 135–150.CrossRef
Zurück zum Zitat Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.CrossRef Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.CrossRef
Zurück zum Zitat Nurzaman, S. G., Matsumoto, Y., Nakamura, Y., Koizumi, S., & Ishiguro, H. (2009). Biologically inspired adaptive mobile robot search with and without gradient sensing. In 2009 IEEE/RSJ international conference on intelligent robots and systems. Nurzaman, S. G., Matsumoto, Y., Nakamura, Y., Koizumi, S., & Ishiguro, H. (2009). Biologically inspired adaptive mobile robot search with and without gradient sensing. In 2009 IEEE/RSJ international conference on intelligent robots and systems.
Zurück zum Zitat Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). Argos: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6, 271–295.CrossRef Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). Argos: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6, 271–295.CrossRef
Zurück zum Zitat Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009). Ros: An open-source robot operating system. In ICRA workshop on open source software. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009). Ros: An open-source robot operating system. In ICRA workshop on open source software.
Zurück zum Zitat Ritchie, M. E. (2009). Scale, heterogeneity, and the structure and diversity of ecological communities. Berlin, Boston: Princeton University Press.CrossRef Ritchie, M. E. (2009). Scale, heterogeneity, and the structure and diversity of ecological communities. Berlin, Boston: Princeton University Press.CrossRef
Zurück zum Zitat Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. Swarm robotics: SAB 2004 international workshop (Vol. 3342, pp. 10–20). Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. Swarm robotics: SAB 2004 international workshop (Vol. 3342, pp. 10–20).
Zurück zum Zitat Savage, V. M., Deeds, E. J., & Fontana, W. (2008). Sizing up allometric scaling theory. PLOS Computational Biology, 4(9), 1–17.MathSciNetCrossRef Savage, V. M., Deeds, E. J., & Fontana, W. (2008). Sizing up allometric scaling theory. PLOS Computational Biology, 4(9), 1–17.MathSciNetCrossRef
Zurück zum Zitat Schmolke, A. (2009). Benefits of dispersed centralplace foraging: An individualbased model of a polydomous ant colony. The American Naturalist, 173(6), 772–778.CrossRef Schmolke, A. (2009). Benefits of dispersed centralplace foraging: An individualbased model of a polydomous ant colony. The American Naturalist, 173(6), 772–778.CrossRef
Zurück zum Zitat Sebbane, Y. B. (2012). Lighter than air robots: Guidance and control of autonomous airships (p. 58). Dordrecht: Springer.CrossRefMATH Sebbane, Y. B. (2012). Lighter than air robots: Guidance and control of autonomous airships (p. 58). Dordrecht: Springer.CrossRefMATH
Zurück zum Zitat Singh, M. K., & Parhi, D. R. (2011). Path optimisation of a mobile robot using an artificial neural network controller. International Journal Systems Science, 42(1), 107–120.MathSciNetCrossRefMATH Singh, M. K., & Parhi, D. R. (2011). Path optimisation of a mobile robot using an artificial neural network controller. International Journal Systems Science, 42(1), 107–120.MathSciNetCrossRefMATH
Zurück zum Zitat Sumpter, D. J., & Beekman, M. (2003). From nonlinearity to optimality: Pheromone trail foraging by ants. Animal Behaviour, 66(2), 273–280.CrossRef Sumpter, D. J., & Beekman, M. (2003). From nonlinearity to optimality: Pheromone trail foraging by ants. Animal Behaviour, 66(2), 273–280.CrossRef
Zurück zum Zitat Tindo, M., Kenne, M., & Dejean, A. (2008). Advantages of multiple foundress colonies in belonogaster juncea juncea l.: Greater survival and increased productivity. Ecological Entomology, 33(2), 293–297.CrossRef Tindo, M., Kenne, M., & Dejean, A. (2008). Advantages of multiple foundress colonies in belonogaster juncea juncea l.: Greater survival and increased productivity. Ecological Entomology, 33(2), 293–297.CrossRef
Zurück zum Zitat Wall, M. (1996). GAlib: A C++ library of genetic algorithm components (Vol. 87). Cambridge: Mechanical Engineering Department, Massachusetts Institute of Technology. Wall, M. (1996). GAlib: A C++ library of genetic algorithm components (Vol. 87). Cambridge: Mechanical Engineering Department, Massachusetts Institute of Technology.
Zurück zum Zitat West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276(5309), 122–126.CrossRef West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276(5309), 122–126.CrossRef
Zurück zum Zitat Winfield, A. F. T. (2009). Foraging Robots (pp. 3682–3700). New York, NY: Springer. Winfield, A. F. T. (2009). Foraging Robots (pp. 3682–3700). New York, NY: Springer.
Metadaten
Titel
Multiple-place swarm foraging with dynamic depots
verfasst von
Qi Lu
Joshua P. Hecker
Melanie E. Moses
Publikationsdatum
09.01.2018
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 4/2018
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9693-2

Weitere Artikel der Ausgabe 4/2018

Autonomous Robots 4/2018 Zur Ausgabe

Neuer Inhalt