Skip to main content
Erschienen in: Autonomous Robots 4/2018

17.11.2017

Timed abstractions for distributed cooperative manipulation

verfasst von: Christos K. Verginis, Dimos V. Dimarogonas

Erschienen in: Autonomous Robots | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper addresses the problem of deriving well-defined timed abstractions for the decentralized cooperative manipulation of a single object by N robotic agents. In particular, we propose a distributed model-free control protocol for the trajectory tracking of the cooperatively manipulated object without necessitating feedback of the contact forces/torques or inter-agent communication. Certain prespecified performance functions determine the transient and steady state of the coupled object-agents system. The latter, along with a region partition of the workspace that depends on the physical volume of the object and the agents, allows us to define timed transitions for the coupled system among the derived workspace regions. Therefore, we abstract its motion as a finite transition system and, by employing standard automata-based methodologies, we define high level complex tasks for the object that can be encoded by timed temporal logics. In addition, we use load sharing coefficients to represent potential differences in power capabilities among the agents. Finally, realistic simulation studies verify the validity of the proposed scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We focus on robotic structures where such a function exists, which constitute the majority of cases.
 
2
It can be proven that if such a run exists, then there also exists a run that can be always represented as a finite prefix followed by infinite repetitions of a finite suffix (Baier et al. 2008).
 
3
Note that the nature of the quadrotors makes the whole system underactuated and values \(\phi _{r_j,r_{j'}}(t),\theta _{r_j,r_{j'}}(t) \ne 0\) are not possible to be achieved without interfering with \(p_{\scriptscriptstyle O}(t)\).
 
Literatur
Zurück zum Zitat Adzkiya, D., De Schutter, B., & Abate, A. (2013). Finite abstractions of max-plus-linear systems. IEEE Transactions on Automatic Control, 58(12), 3039–3053.MathSciNetCrossRefMATH Adzkiya, D., De Schutter, B., & Abate, A. (2013). Finite abstractions of max-plus-linear systems. IEEE Transactions on Automatic Control, 58(12), 3039–3053.MathSciNetCrossRefMATH
Zurück zum Zitat Aksaray, D., Vasile, C.-I., & Belta, C. (2016). Dynamic routing of energy-aware vehicles with temporal logic constraints. Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3141–3146). Aksaray, D., Vasile, C.-I., & Belta, C. (2016). Dynamic routing of energy-aware vehicles with temporal logic constraints. Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3141–3146).
Zurück zum Zitat Alur, R., Feder, T., & Henzinger, T. A. (1996). The benefits of relaxing punctuality. Journal of the ACM (JACM), 43(1), 116–146.MathSciNetCrossRefMATH Alur, R., Feder, T., & Henzinger, T. A. (1996). The benefits of relaxing punctuality. Journal of the ACM (JACM), 43(1), 116–146.MathSciNetCrossRefMATH
Zurück zum Zitat Baier, C., Katoen, J.-P., et al. (2008). Principles of model checking. Cambridge: MIT Press.MATH Baier, C., Katoen, J.-P., et al. (2008). Principles of model checking. Cambridge: MIT Press.MATH
Zurück zum Zitat Bechlioulis, C. P., & Rovithakis, G. A. (2014). A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica, 50(4), 1217–1226.MathSciNetCrossRefMATH Bechlioulis, C. P., & Rovithakis, G. A. (2014). A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica, 50(4), 1217–1226.MathSciNetCrossRefMATH
Zurück zum Zitat Belta, C., & Habets, L. C. (2006). Controlling a class of nonlinear systems on rectangles. IEEE Transactions on Automatic Control, 51(11), 1749–1759.MathSciNetCrossRefMATH Belta, C., & Habets, L. C. (2006). Controlling a class of nonlinear systems on rectangles. IEEE Transactions on Automatic Control, 51(11), 1749–1759.MathSciNetCrossRefMATH
Zurück zum Zitat Belta, C., & Kumar, V. (2004). Abstraction and control for groups of robots. IEEE Transactions on robotics, 20(5), 865–875.CrossRef Belta, C., & Kumar, V. (2004). Abstraction and control for groups of robots. IEEE Transactions on robotics, 20(5), 865–875.CrossRef
Zurück zum Zitat Boskos, D., & Dimarogonas, D. V. (2015). Decentralized abstractions for feedback interconnected multi-agent systems. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 282–287). Boskos, D., & Dimarogonas, D. V. (2015). Decentralized abstractions for feedback interconnected multi-agent systems. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 282–287).
Zurück zum Zitat Caccavale, F., Chiacchio, P., Marino, A., & Villani, L. (2008). Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Transactions on Mechatronics, 13(5), 576–586.CrossRef Caccavale, F., Chiacchio, P., Marino, A., & Villani, L. (2008). Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Transactions on Mechatronics, 13(5), 576–586.CrossRef
Zurück zum Zitat Chaimowicz, L., Campos, M. F. M., & Kumar, V. (2003). Hybrid systems modeling of cooperative robots. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 3, 4086–4091. Chaimowicz, L., Campos, M. F. M., & Kumar, V. (2003). Hybrid systems modeling of cooperative robots. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 3, 4086–4091.
Zurück zum Zitat Chen, Y., Ding, X. C., Stefanescu, A., & Belta, C. (2012). Formal approach to the deployment of distributed robotic teams. IEEE Transactions on Robotics, 28(1), 158–171.CrossRef Chen, Y., Ding, X. C., Stefanescu, A., & Belta, C. (2012). Formal approach to the deployment of distributed robotic teams. IEEE Transactions on Robotics, 28(1), 158–171.CrossRef
Zurück zum Zitat Cheng, P., Fink, J., & Kumar, V. (2009). Abstractions and algorithms for cooperative multiple robot planar manipulation. In Robotics: Science and Systems IV, p. 143. Cheng, P., Fink, J., & Kumar, V. (2009). Abstractions and algorithms for cooperative multiple robot planar manipulation. In Robotics: Science and Systems IV, p. 143.
Zurück zum Zitat Diaz-Mercado, Y., Jones, A., Belta, C., & Egerstedt, M. (2015). Correct-by-construction control synthesis for multi-robot mixing. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 221–226). Diaz-Mercado, Y., Jones, A., Belta, C., & Egerstedt, M. (2015). Correct-by-construction control synthesis for multi-robot mixing. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 221–226).
Zurück zum Zitat Erhart, S., & Hirche, S. (2013). Adaptive force/velocity control for multi-robot cooperative manipulation under uncertain kinematic parameters. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 307–314). Erhart, S., & Hirche, S. (2013). Adaptive force/velocity control for multi-robot cooperative manipulation under uncertain kinematic parameters. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 307–314).
Zurück zum Zitat Filippidis, I., & Murray, R. M. (2016). Symbolic construction of gr (1) contracts for systems with full information. In Proceedings of the American control conference (ACC) (pp. 782–789). Filippidis, I., & Murray, R. M. (2016). Symbolic construction of gr (1) contracts for systems with full information. In Proceedings of the American control conference (ACC) (pp. 782–789).
Zurück zum Zitat Franchi, A., Petitti, A., & Rizzo, A. (2014). Distributed estimation of the inertial parameters of an unknown load via multi-robot manipulation. In IEEE conference on decision and control (CDC) (pp. 6111–6116). Franchi, A., Petitti, A., & Rizzo, A. (2014). Distributed estimation of the inertial parameters of an unknown load via multi-robot manipulation. In IEEE conference on decision and control (CDC) (pp. 6111–6116).
Zurück zum Zitat Franchi, A., Petitti, A., & Rizzo, A. (2015). Decentralized parameter estimation and observation for cooperative mobile manipulation of an unknown load using noisy measurements. In IEEE international conference on robotics and automation (ICRA) (pp. 5517–5522). Franchi, A., Petitti, A., & Rizzo, A. (2015). Decentralized parameter estimation and observation for cooperative mobile manipulation of an unknown load using noisy measurements. In IEEE international conference on robotics and automation (ICRA) (pp. 5517–5522).
Zurück zum Zitat Guo, M., Tumova, J., & Dimarogonas, D. V. (2014). Cooperative decentralized multi-agent control under local ltl tasks and connectivity constraints. In Proceedings of the IEEE international conference on decision and control (pp. 75–80). Guo, M., Tumova, J., & Dimarogonas, D. V. (2014). Cooperative decentralized multi-agent control under local ltl tasks and connectivity constraints. In Proceedings of the IEEE international conference on decision and control (pp. 75–80).
Zurück zum Zitat He, K., Lahijanian, M., Kavraki, L. E., and Vardi, M. Y. (2015). Towards manipulation planning with temporal logic specifications. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 346–352). He, K., Lahijanian, M., Kavraki, L. E., and Vardi, M. Y. (2015). Towards manipulation planning with temporal logic specifications. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 346–352).
Zurück zum Zitat Heck, D., Kostic, D., Denasi, A., & Nijmeijer, H. (2013). Internal and external force-based impedance control for cooperative manipulation. In Proceedings of the IEEE European control conference (ECC) (pp. 2299–2304). Heck, D., Kostic, D., Denasi, A., & Nijmeijer, H. (2013). Internal and external force-based impedance control for cooperative manipulation. In Proceedings of the IEEE European control conference (ECC) (pp. 2299–2304).
Zurück zum Zitat Karaman, S., & Frazzoli, E. (2011). Linear temporal logic vehicle routing with applications to multi-uav mission planning. International Journal of Robust and Nonlinear Control, 21(12), 1372–1395.MathSciNetCrossRefMATH Karaman, S., & Frazzoli, E. (2011). Linear temporal logic vehicle routing with applications to multi-uav mission planning. International Journal of Robust and Nonlinear Control, 21(12), 1372–1395.MathSciNetCrossRefMATH
Zurück zum Zitat Kloetzer, M., & Belta, C. (2008). A fully automated framework for control of linear systems from temporal logic specifications. IEEE Transactions on Automatic Control, 53(1), 287–297.MathSciNetCrossRefMATH Kloetzer, M., & Belta, C. (2008). A fully automated framework for control of linear systems from temporal logic specifications. IEEE Transactions on Automatic Control, 53(1), 287–297.MathSciNetCrossRefMATH
Zurück zum Zitat Lionis, G., & Kyriakopoulos, K. J. (2005). Centralized motion planning for a group of micro agents manipulating a rigid object. In Proceedings of the IEEE international symposium on intelligent control, Mediterrean conference on control and automation (pp. 662–667). Lionis, G., & Kyriakopoulos, K. J. (2005). Centralized motion planning for a group of micro agents manipulating a rigid object. In Proceedings of the IEEE international symposium on intelligent control, Mediterrean conference on control and automation (pp. 662–667).
Zurück zum Zitat Lippiello, V., & Ruggiero, F. (2012). Cartesian impedance control of a uav with a robotic arm. IFAC Proceedings Volumes, 45(22), 704–709.CrossRef Lippiello, V., & Ruggiero, F. (2012). Cartesian impedance control of a uav with a robotic arm. IFAC Proceedings Volumes, 45(22), 704–709.CrossRef
Zurück zum Zitat Liu, Y.-H., & Arimoto, S. (1998). Decentralized adaptive and nonadaptive position/force controllers for redundant manipulators in cooperations. The International Journal of Robotics Research, 17(3), 232–247.CrossRef Liu, Y.-H., & Arimoto, S. (1998). Decentralized adaptive and nonadaptive position/force controllers for redundant manipulators in cooperations. The International Journal of Robotics Research, 17(3), 232–247.CrossRef
Zurück zum Zitat Markdahl, J., Karayiannidis, Y., & Hu, X. (2012). Cooperative object path following control by means of mobile manipulators: a switched systems approach. IFAC Proceedings Volumes, 45(22), 773–778.CrossRef Markdahl, J., Karayiannidis, Y., & Hu, X. (2012). Cooperative object path following control by means of mobile manipulators: a switched systems approach. IFAC Proceedings Volumes, 45(22), 773–778.CrossRef
Zurück zum Zitat Michael, N., Fink, J., & Kumar, V. (2011). Cooperative manipulation and transportation with aerial robots. Autonomous Robots, 30(1), 73–86.CrossRefMATH Michael, N., Fink, J., & Kumar, V. (2011). Cooperative manipulation and transportation with aerial robots. Autonomous Robots, 30(1), 73–86.CrossRefMATH
Zurück zum Zitat Muthusamy, R., & Kyrki, V. (2014). Decentralized approaches for cooperative grasp planning. In Proceedings of the international conference on control automation robotics & vision (ICARCV) (pp. 693–698). Muthusamy, R., & Kyrki, V. (2014). Decentralized approaches for cooperative grasp planning. In Proceedings of the international conference on control automation robotics & vision (ICARCV) (pp. 693–698).
Zurück zum Zitat Nikou, A., Tumova, J., & Dimarogonas, D. V. (2016). Cooperative task planning of multi-agent systems under timed temporal specifications. In Proceedings of the IEEE American control conference (ACC) (pp. 7104–7109). Nikou, A., Tumova, J., & Dimarogonas, D. V. (2016). Cooperative task planning of multi-agent systems under timed temporal specifications. In Proceedings of the IEEE American control conference (ACC) (pp. 7104–7109).
Zurück zum Zitat Ouaknine, J., & Worrell, J. (2005). On the decidability of metric temporal logic. Annual IEEE symposium on logic in computer science (LICS’05) (pp. 188–197). Ouaknine, J., & Worrell, J. (2005). On the decidability of metric temporal logic. Annual IEEE symposium on logic in computer science (LICS’05) (pp. 188–197).
Zurück zum Zitat Palunko, I., Donner, P., Buss, M., & Hirche, S. (2014). Cooperative suspended object manipulation using reinforcement learning and energy-based control. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2014) (pp. 885–891). Palunko, I., Donner, P., Buss, M., & Hirche, S. (2014). Cooperative suspended object manipulation using reinforcement learning and energy-based control. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2014) (pp. 885–891).
Zurück zum Zitat Parra-Vega, V., Sanchez, A., Izaguirre, C., Garcia, O., & Ruiz-Sanchez, F. (2013). Toward aerial grasping and manipulation with multiple uavs. Journal of Intelligent & Robotic Systems, 70(1–4), 575–593.CrossRef Parra-Vega, V., Sanchez, A., Izaguirre, C., Garcia, O., & Ruiz-Sanchez, F. (2013). Toward aerial grasping and manipulation with multiple uavs. Journal of Intelligent & Robotic Systems, 70(1–4), 575–593.CrossRef
Zurück zum Zitat Petitti, A., Franchi, A., Di Paola, D., & Rizzo, A. (2016). Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 441–446). Petitti, A., Franchi, A., Di Paola, D., & Rizzo, A. (2016). Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 441–446).
Zurück zum Zitat Reissig, G. (2011). Computing abstractions of nonlinear systems. IEEE Transactions on Automatic Control, 56(11), 2583–2598.MathSciNetCrossRefMATH Reissig, G. (2011). Computing abstractions of nonlinear systems. IEEE Transactions on Automatic Control, 56(11), 2583–2598.MathSciNetCrossRefMATH
Zurück zum Zitat Rohmer, E., Singh, S. P., & Freese, M. (2013). V-rep: a versatile and scalable robot simulation framework. In Proceedings of the international conference on intelligent robots and systems (IROS). Rohmer, E., Singh, S. P., & Freese, M. (2013). V-rep: a versatile and scalable robot simulation framework. In Proceedings of the international conference on intelligent robots and systems (IROS).
Zurück zum Zitat Rungger, M., Weber, A., & Reissig, G. (2015). State space grids for low complexity abstractions. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 6139–6146). Rungger, M., Weber, A., & Reissig, G. (2015). State space grids for low complexity abstractions. In Proceedings of the IEEE conference on decision and control (CDC) (pp. 6139–6146).
Zurück zum Zitat Siciliano, B., & Khatib, O. (2008). Springer handbook of robotics. New York: Springer.CrossRefMATH Siciliano, B., & Khatib, O. (2008). Springer handbook of robotics. New York: Springer.CrossRefMATH
Zurück zum Zitat Sontag, E. D. (2013). Mathematical control theory: Deterministic finite dimensional systems (Vol. 6). New York: Springer. Sontag, E. D. (2013). Mathematical control theory: Deterministic finite dimensional systems (Vol. 6). New York: Springer.
Zurück zum Zitat Souza, D., & Prabhakar, P. (2007). On the expressiveness of mtl in the pointwise and continuous semantics. International Journal on Software Tools for Technology Transfer, 9(1), 1–4.CrossRef Souza, D., & Prabhakar, P. (2007). On the expressiveness of mtl in the pointwise and continuous semantics. International Journal on Software Tools for Technology Transfer, 9(1), 1–4.CrossRef
Zurück zum Zitat Stroupe, A., Huntsberger, T., Okon, A., & Aghazarian, H. (2005). Precision manipulation with cooperative robots. Multi-Robot Systems. From Swarms to Intelligent Automata, III, 235–248. Stroupe, A., Huntsberger, T., Okon, A., & Aghazarian, H. (2005). Precision manipulation with cooperative robots. Multi-Robot Systems. From Swarms to Intelligent Automata, III, 235–248.
Zurück zum Zitat Sugar, T. G., & Kumar, V. (2002). Control of cooperating mobile manipulators. IEEE Transactions on robotics and automation, 18(1), 94–103.CrossRef Sugar, T. G., & Kumar, V. (2002). Control of cooperating mobile manipulators. IEEE Transactions on robotics and automation, 18(1), 94–103.CrossRef
Zurück zum Zitat Szewczyk, J., Plumet, F., & Bidaud, P. (2002). Planning and controlling cooperating robots through distributed impedance. Journal of Robotic Systems, 19(6), 283–297.CrossRefMATH Szewczyk, J., Plumet, F., & Bidaud, P. (2002). Planning and controlling cooperating robots through distributed impedance. Journal of Robotic Systems, 19(6), 283–297.CrossRefMATH
Zurück zum Zitat Tanner, H. G., Loizou, S. G., & Kyriakopoulos, K. J. (2003). Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Transactions on Robotics and Automation, 19(1), 53–64. Tanner, H. G., Loizou, S. G., & Kyriakopoulos, K. J. (2003). Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Transactions on Robotics and Automation, 19(1), 53–64.
Zurück zum Zitat Tiwari, A. (2008). Abstractions for hybrid systems. Formal Methods in System Design, 32(1), 57–83.CrossRefMATH Tiwari, A. (2008). Abstractions for hybrid systems. Formal Methods in System Design, 32(1), 57–83.CrossRefMATH
Zurück zum Zitat Tsiamis, A., Tumova, J., Bechlioulis, C. P., Karras, G. C., Dimarogonas, D. V., & Kyriakopoulos, K. J. (2015a). Decentralized leader-follower control under high level goals without explicit communication. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5790–5795). Tsiamis, A., Tumova, J., Bechlioulis, C. P., Karras, G. C., Dimarogonas, D. V., & Kyriakopoulos, K. J. (2015a). Decentralized leader-follower control under high level goals without explicit communication. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5790–5795).
Zurück zum Zitat Tsiamis, A., Verginis, C. K., Bechlioulis, C. P., & Kyriakopoulos, K. J. (2015b). Cooperative manipulation exploiting only implicit communication. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 864–869). Tsiamis, A., Verginis, C. K., Bechlioulis, C. P., & Kyriakopoulos, K. J. (2015b). Cooperative manipulation exploiting only implicit communication. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 864–869).
Zurück zum Zitat Verginis, C. K., & Dimarogonas, D. V. (2016). Distributed cooperative manipulation under timed temporal specifications. American Control Conference (ACC). Verginis, C. K., & Dimarogonas, D. V. (2016). Distributed cooperative manipulation under timed temporal specifications. American Control Conference (ACC).
Zurück zum Zitat Wang, Z., & Schwager, M. (2016). Multi-robot manipulation without communication. Distributed Autonomous Robotic Systems, 112, 135–149.CrossRef Wang, Z., & Schwager, M. (2016). Multi-robot manipulation without communication. Distributed Autonomous Robotic Systems, 112, 135–149.CrossRef
Zurück zum Zitat Yamashita, A., Arai, T., Ota, J., & Asama, H. (2003). Motion planning of multiple mobile robots for cooperative manipulation and transportation. IEEE Transactions on Robotics and Automation, 19(2), 223–237.CrossRef Yamashita, A., Arai, T., Ota, J., & Asama, H. (2003). Motion planning of multiple mobile robots for cooperative manipulation and transportation. IEEE Transactions on Robotics and Automation, 19(2), 223–237.CrossRef
Zurück zum Zitat Zamani, M., Mazo, M., & Abate, A. (2014). Finite abstractions of networked control systems. In Proceedings of the IEEE conference on decision and control (pp. 95–100). Zamani, M., Mazo, M., & Abate, A. (2014). Finite abstractions of networked control systems. In Proceedings of the IEEE conference on decision and control (pp. 95–100).
Zurück zum Zitat Zhang, Z., & Cowlagi, R. V. (2016). Motion-planning with global temporal logic specifications for multiple nonholonomic robotic vehicles. In Proceedings of the American control conference (ACC) (pp. 7098–7103). Zhang, Z., & Cowlagi, R. V. (2016). Motion-planning with global temporal logic specifications for multiple nonholonomic robotic vehicles. In Proceedings of the American control conference (ACC) (pp. 7098–7103).
Metadaten
Titel
Timed abstractions for distributed cooperative manipulation
verfasst von
Christos K. Verginis
Dimos V. Dimarogonas
Publikationsdatum
17.11.2017
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 4/2018
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9672-7

Weitere Artikel der Ausgabe 4/2018

Autonomous Robots 4/2018 Zur Ausgabe

Neuer Inhalt