Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 7/2013

01.07.2013 | Review Article

Myocardial-vessel interaction: role of LV pressure and myocardial contractility

verfasst von: Ghassan S. Kassab, Dotan Algranati, Yoram Lanir

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coronary heart disease is one of the most important health problems in Western society. The principal mechanism in this problem is the failure of sufficient blood supply to reach the heart muscle for cardiac metabolic needs and hence failure of the heart as a pump. Despite the magnitude of this health problem, the system of blood supply to the heart (the coronary circulation) remains poorly understood. The reason for this is that clinical work has largely focused on the diseased vessels (e.g., atherosclerosis) rather than on the dynamics of the coronary blood flow system as a whole. The latter requires a bioengineering understanding of both the highly complex system and associated mechanical determinants. Despite progress in this area, many issues remain unresolved. Advancements in high-performance computers make it possible now to attempt anatomically based computational (distributive) models rather than the “lumped” models used in the past, where the anatomical details of the coronary vascular system were ignored. Computer simulation and modeling are an important tool in this work because experimental avenues to the problem are highly limited, particularly in the circulation of the deeper layer of the heart which is not amenable to direct visualization. The mechanism of the effect of the cyclic contraction on coronary blood flow remains unresolved. This review will consider the major cardiac mechanical interactions with coronary blood flow including previous models, current hypotheses, and future directions. Experimental validation of present and future mechanical interaction models will be emphasized as well as the utility of the models to explain the mechanical propensity of the subendocardium to ischemia.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Algranati D, Kassab GS, Lanir Y (2010) Mechanisms of coronary vessel/myocardial interaction. Am J Physiol Heart Circ Physiol 298(3):H861–H873PubMedCrossRef Algranati D, Kassab GS, Lanir Y (2010) Mechanisms of coronary vessel/myocardial interaction. Am J Physiol Heart Circ Physiol 298(3):H861–H873PubMedCrossRef
2.
Zurück zum Zitat Algranati D, Kassab GS, Lanir Y (2011) Why is the Subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 300(3):H1090–H1100PubMedCrossRef Algranati D, Kassab GS, Lanir Y (2011) Why is the Subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 300(3):H1090–H1100PubMedCrossRef
3.
Zurück zum Zitat Allaart CP, Westerhof N (1996) Effect of length and contraction on coronary perfusion in isolated perfused papillary muscle of rat heart. Am J Physiol 271:H447–H454PubMed Allaart CP, Westerhof N (1996) Effect of length and contraction on coronary perfusion in isolated perfused papillary muscle of rat heart. Am J Physiol 271:H447–H454PubMed
4.
Zurück zum Zitat Anrep GV, Cruickshank EWH, Downing AC, Sabba Rau A (1927) The coronary circulation in relation to the cardiac cycle. Heart 14:111–133 Anrep GV, Cruickshank EWH, Downing AC, Sabba Rau A (1927) The coronary circulation in relation to the cardiac cycle. Heart 14:111–133
5.
Zurück zum Zitat Arts T, Kruger RTI, Van Gerven W, Lambregts JAC, Reneman RS (1979) Propagation velocity and reflection of pressure waves in the canine coronary artery. Am J Physiol 237:H469–H474PubMed Arts T, Kruger RTI, Van Gerven W, Lambregts JAC, Reneman RS (1979) Propagation velocity and reflection of pressure waves in the canine coronary artery. Am J Physiol 237:H469–H474PubMed
6.
Zurück zum Zitat Ashikawa K, Kanatsuka H, Suzuki T, Takishima T (1986) Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res 59(6):704–711PubMedCrossRef Ashikawa K, Kanatsuka H, Suzuki T, Takishima T (1986) Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res 59(6):704–711PubMedCrossRef
7.
Zurück zum Zitat Bassingthwaighte JB, Beard DA, Li Z, Yipintsoi T (1998) Is the fractal nature of intraogan spatial flow distributions based on vascular network growth of local metabolic needs?. Birkhauser, Boston, pp 241–259 Bassingthwaighte JB, Beard DA, Li Z, Yipintsoi T (1998) Is the fractal nature of intraogan spatial flow distributions based on vascular network growth of local metabolic needs?. Birkhauser, Boston, pp 241–259
8.
Zurück zum Zitat Beyar R, Manor D, Zinemans D, Sideman S (1993) Concepts and controversies in modeling the coronary circulation. Springer, New York, pp 135–149 Beyar R, Manor D, Zinemans D, Sideman S (1993) Concepts and controversies in modeling the coronary circulation. Springer, New York, pp 135–149
9.
Zurück zum Zitat Brugada J, Brugada P, Boersma L, Mont L, Kirchhof C, Wellens HJ, Allessie MA (1991) On the mechanisms of ventricular tachycardia acceleration during programmed electrical stimulation. Circulation 83:1621–1629PubMedCrossRef Brugada J, Brugada P, Boersma L, Mont L, Kirchhof C, Wellens HJ, Allessie MA (1991) On the mechanisms of ventricular tachycardia acceleration during programmed electrical stimulation. Circulation 83:1621–1629PubMedCrossRef
10.
Zurück zum Zitat Bruinsma P, Arts T, Spaan JAE (1998) Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol 83:510–524CrossRef Bruinsma P, Arts T, Spaan JAE (1998) Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol 83:510–524CrossRef
11.
Zurück zum Zitat Chadwick RS, Tedgul A, Michel IB, Ohayon I, Levy BI (1990) Phasic regional myocardial inflow and outflow: comparison of theory and experiments. Am J Physiol 258:H1687–H1698PubMed Chadwick RS, Tedgul A, Michel IB, Ohayon I, Levy BI (1990) Phasic regional myocardial inflow and outflow: comparison of theory and experiments. Am J Physiol 258:H1687–H1698PubMed
12.
Zurück zum Zitat Chillian WM (1991) Microvascular pressure and resistance in the left ventricular subepicardium and subendocardium. Circ Res 69:561–570CrossRef Chillian WM (1991) Microvascular pressure and resistance in the left ventricular subepicardium and subendocardium. Circ Res 69:561–570CrossRef
13.
Zurück zum Zitat Chillian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML (1989) Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol 256(25):H383–H390 Chillian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML (1989) Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol 256(25):H383–H390
14.
Zurück zum Zitat Cookson AN, Lee J, Michler C, Chabiniok R, Hyde E, Nordsletten DA, Sinclair M, Siebes M, Smith NP (2012) A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J Biomech 45(5):850–855PubMedCrossRef Cookson AN, Lee J, Michler C, Chabiniok R, Hyde E, Nordsletten DA, Sinclair M, Siebes M, Smith NP (2012) A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J Biomech 45(5):850–855PubMedCrossRef
15.
Zurück zum Zitat Doucette JW, Goto M, Flynn AE, Husseini WK Jr, Hoffman JI (1993) Effects of cardiac contraction and cavity pressure on myocardial blood flow. Am I Physiol 265:H1342–H1352 Doucette JW, Goto M, Flynn AE, Husseini WK Jr, Hoffman JI (1993) Effects of cardiac contraction and cavity pressure on myocardial blood flow. Am I Physiol 265:H1342–H1352
16.
Zurück zum Zitat Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36:753–760PubMedCrossRef Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36:753–760PubMedCrossRef
17.
Zurück zum Zitat Fibich G, Lanir Y, Liron N (1993) Mathematical model of blood flow in a coronary capillary. J Am Physiol 265:H1829–H1840 Fibich G, Lanir Y, Liron N (1993) Mathematical model of blood flow in a coronary capillary. J Am Physiol 265:H1829–H1840
18.
Zurück zum Zitat Fokkema DS, VanTeeffelen JW, Dekker S, Vergroesen I, Reitsma JB, Spaan JA (2005) Diastolic time fraction as a determinant of subendocardial perfusion. Am J Physiol Heart Circ Physiol 288(5):H2450–H2456PubMedCrossRef Fokkema DS, VanTeeffelen JW, Dekker S, Vergroesen I, Reitsma JB, Spaan JA (2005) Diastolic time fraction as a determinant of subendocardial perfusion. Am J Physiol Heart Circ Physiol 288(5):H2450–H2456PubMedCrossRef
19.
Zurück zum Zitat Fox KM, Ferrari R (2011) Heart rate: a forgotten link in coronary artery disease? Nat Rev Cardiol 8(7):369–379PubMedCrossRef Fox KM, Ferrari R (2011) Heart rate: a forgotten link in coronary artery disease? Nat Rev Cardiol 8(7):369–379PubMedCrossRef
20.
Zurück zum Zitat Giezeman MJ, VanBavel E, Grimbergen CA, Spaan JA (1994) Compliance of isolated porcine coronary small arteries and coronary pressure-flow relations. Am J Physiol 267(3 Pt 2): H1190–1198PubMed Giezeman MJ, VanBavel E, Grimbergen CA, Spaan JA (1994) Compliance of isolated porcine coronary small arteries and coronary pressure-flow relations. Am J Physiol 267(3 Pt 2): H1190–1198PubMed
21.
Zurück zum Zitat Gregg DE, Green HD (1940) Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method. Am J Physiol 130:114–125 Gregg DE, Green HD (1940) Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method. Am J Physiol 130:114–125
22.
Zurück zum Zitat Guccione JM, Kassab GS, Ratcliffe MB (eds), (2010) Computational cardiovascular mechanics: Modeling and applications in heart failure. XVI, 436 p. 186 illus., 8 in color, Hardcover ISBN: 978-1-4419-0729-5. Springer, New York Guccione JM, Kassab GS, Ratcliffe MB (eds), (2010) Computational cardiovascular mechanics: Modeling and applications in heart failure. XVI, 436 p. 186 illus., 8 in color, Hardcover ISBN: 978-1-4419-0729-5. Springer, New York
23.
Zurück zum Zitat Hamza L, Dang Q, Lu X, Mian A, Molloi S, Kassab GS (2003) The effect of passive myocardium on the compliance of the coronary arteries. Am J Physiol 285(2):H653–H660 Hamza L, Dang Q, Lu X, Mian A, Molloi S, Kassab GS (2003) The effect of passive myocardium on the compliance of the coronary arteries. Am J Physiol 285(2):H653–H660
24.
Zurück zum Zitat Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249(6 Pt 2):H1216–H1223PubMed Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249(6 Pt 2):H1216–H1223PubMed
25.
Zurück zum Zitat Hiramatsu O, Goto M, Yada T, Kimura A, Tachibana H, Ogasawara Y, Tsujioka K, Kajiya F (1994) Diameters of subendocardial arterioles and venules during prolonged diastole in canine left ventricles. Circ Res 75(2):393–397PubMedCrossRef Hiramatsu O, Goto M, Yada T, Kimura A, Tachibana H, Ogasawara Y, Tsujioka K, Kajiya F (1994) Diameters of subendocardial arterioles and venules during prolonged diastole in canine left ventricles. Circ Res 75(2):393–397PubMedCrossRef
26.
Zurück zum Zitat Hiramatsu O, Goto M, Yada T, Kimura A, Chiba Y, Tachibana H, Ogasawara Y, Tsujioka K, Kajiya F (1998) In vivo observations of the intramural arterioles and venules in beating canine hearts. J Physiol 509(Pt 2):619–628PubMedCrossRef Hiramatsu O, Goto M, Yada T, Kimura A, Chiba Y, Tachibana H, Ogasawara Y, Tsujioka K, Kajiya F (1998) In vivo observations of the intramural arterioles and venules in beating canine hearts. J Physiol 509(Pt 2):619–628PubMedCrossRef
27.
Zurück zum Zitat Hoffman JI, Spaan JA (1990) Pressure-flow relations in coronary circulation. Physiol Rev 70(2):331–390PubMed Hoffman JI, Spaan JA (1990) Pressure-flow relations in coronary circulation. Physiol Rev 70(2):331–390PubMed
28.
Zurück zum Zitat Hoffman JIE, Baer RW, Hanley FL, Messina LM (1985) Regulation of transmural myocardial blood flow. Trans ASME 107:2–9 Hoffman JIE, Baer RW, Hanley FL, Messina LM (1985) Regulation of transmural myocardial blood flow. Trans ASME 107:2–9
29.
Zurück zum Zitat Hunter PJ, Smaill BH (1988) The analysis of cardiac function: a continuum approach. Prog Biophys molec Biol 52:101–164CrossRef Hunter PJ, Smaill BH (1988) The analysis of cardiac function: a continuum approach. Prog Biophys molec Biol 52:101–164CrossRef
30.
Zurück zum Zitat Hurst JW, Logue RB (1970) The heart, arteries, and veins. McGraw-Hill, New York, p 77 Hurst JW, Logue RB (1970) The heart, arteries, and veins. McGraw-Hill, New York, p 77
31.
Zurück zum Zitat Huygh JM, Oomens CW, Van Campen DH, Heethaar RM (1989) Low Reynolds number steady state flow through a branching network of rigid vessels: I. A mixture theory. Biorheology 26:55–71 Huygh JM, Oomens CW, Van Campen DH, Heethaar RM (1989) Low Reynolds number steady state flow through a branching network of rigid vessels: I. A mixture theory. Biorheology 26:55–71
32.
Zurück zum Zitat Huygh JM, Oomens CW, Van Campen DH (1989) Low Reynolds number steady state flow through a branching network of rigid vessels: II. Finite element mixture model. Biorheology 26:73–84 Huygh JM, Oomens CW, Van Campen DH (1989) Low Reynolds number steady state flow through a branching network of rigid vessels: II. Finite element mixture model. Biorheology 26:73–84
33.
Zurück zum Zitat Huygh JM, Arts T, van Campen DH, Reneman RS (1992) Porous medium finite element model of the beating left ventricle. Am J Physiol 262(4 Pt 2):H1256–H1267 Huygh JM, Arts T, van Campen DH, Reneman RS (1992) Porous medium finite element model of the beating left ventricle. Am J Physiol 262(4 Pt 2):H1256–H1267
34.
Zurück zum Zitat Jacobs J, Algranati D, Lanir Y (2008) Lumped flow modeling in dynamically loaded coronary vessels. J Biomech Eng 130:054504PubMedCrossRef Jacobs J, Algranati D, Lanir Y (2008) Lumped flow modeling in dynamically loaded coronary vessels. J Biomech Eng 130:054504PubMedCrossRef
35.
Zurück zum Zitat Judd RM, Redberg DA, Mates RE (1991) Diastolic coronary resistance and capacitance are independent of duration of diastole. Am J Physiol 260:H943–H952PubMed Judd RM, Redberg DA, Mates RE (1991) Diastolic coronary resistance and capacitance are independent of duration of diastole. Am J Physiol 260:H943–H952PubMed
36.
Zurück zum Zitat Kaimovitz B, Lanir Y, Kassab GS (2005) Large-scale reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data. Ann Biomed Eng 33(11):1517–1535PubMedCrossRef Kaimovitz B, Lanir Y, Kassab GS (2005) Large-scale reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data. Ann Biomed Eng 33(11):1517–1535PubMedCrossRef
37.
Zurück zum Zitat Kaimovitz B, Lanir Y, Kassab GS (2010) A full 3-D reconstruction of the entire porcine coronary vasculature. Am J Physiol Heart Circ Physiol 299(4):H1064–H1076PubMedCrossRef Kaimovitz B, Lanir Y, Kassab GS (2010) A full 3-D reconstruction of the entire porcine coronary vasculature. Am J Physiol Heart Circ Physiol 299(4):H1064–H1076PubMedCrossRef
38.
Zurück zum Zitat Kajiya F, Matsuoka S, Gasawara Y, Hiramatsu O, Kanazawa S, Wada Y, Tadaoka S, Tsu-Jioka K, Fujiwara T, Zamir M (1993) Velocity profiles and phasic flow patterns in the non-stenotic human left anterior descending coronary artery during cardiac surgery. Cardiovasc Res 27:845–850PubMedCrossRef Kajiya F, Matsuoka S, Gasawara Y, Hiramatsu O, Kanazawa S, Wada Y, Tadaoka S, Tsu-Jioka K, Fujiwara T, Zamir M (1993) Velocity profiles and phasic flow patterns in the non-stenotic human left anterior descending coronary artery during cardiac surgery. Cardiovasc Res 27:845–850PubMedCrossRef
39.
Zurück zum Zitat Kajiya F, Yada T, Hiramatsu O, Ogasawara Y, Inai Y, Kajiya M (2008) Coronary microcirculation in the beating heart. Med Biol Eng Comput 46(5):411–419PubMedCrossRef Kajiya F, Yada T, Hiramatsu O, Ogasawara Y, Inai Y, Kajiya M (2008) Coronary microcirculation in the beating heart. Med Biol Eng Comput 46(5):411–419PubMedCrossRef
40.
Zurück zum Zitat Kanatsuka H, Lamping KG, Eastham CL, Marcus ML, Dellsperger KC (1991) Coronary microvascular resistance in hypertensive cats. Circ Res 68:726–733PubMedCrossRef Kanatsuka H, Lamping KG, Eastham CL, Marcus ML, Dellsperger KC (1991) Coronary microvascular resistance in hypertensive cats. Circ Res 68:726–733PubMedCrossRef
41.
Zurück zum Zitat Kassab GS (2000) The coronary vasculature and its reconstruction. Ann Biomed Eng 28:903–915PubMedCrossRef Kassab GS (2000) The coronary vasculature and its reconstruction. Ann Biomed Eng 28:903–915PubMedCrossRef
42.
Zurück zum Zitat Kassab GS, Fung YC (1994) Topology and dimensions of the pig coronary capillary network. Am J Physiol 267:H319–H325 (Heart Circ PhysioL 36)PubMed Kassab GS, Fung YC (1994) Topology and dimensions of the pig coronary capillary network. Am J Physiol 267:H319–H325 (Heart Circ PhysioL 36)PubMed
43.
Zurück zum Zitat Kassab GS, Molloi S (2001) Cross-sectional area and volume compliance of the porcine left coronary arteries. Am J Physiol 281:H623–H628 Kassab GS, Molloi S (2001) Cross-sectional area and volume compliance of the porcine left coronary arteries. Am J Physiol 281:H623–H628
44.
Zurück zum Zitat Kassab GS, Rider CA, Tang NJ, Fung YC (1993) Morphometry of pig coronary arterial trees. Am J Physiol 265:H350–H365 (Heart Circ. Physiol. 34)PubMed Kassab GS, Rider CA, Tang NJ, Fung YC (1993) Morphometry of pig coronary arterial trees. Am J Physiol 265:H350–H365 (Heart Circ. Physiol. 34)PubMed
45.
Zurück zum Zitat Kassab GS, Lin D, Fung YC (1994) Morphometry of the pig coronary venous system. Am J Physiol 267:H2100–H2113 (Heart Circ. Physiol. 36)PubMed Kassab GS, Lin D, Fung YC (1994) Morphometry of the pig coronary venous system. Am J Physiol 267:H2100–H2113 (Heart Circ. Physiol. 36)PubMed
46.
Zurück zum Zitat Kassab GS, Pallencaoe E, Fung YC (1997) The longitudinal position matrix of the pig coronary artery and its hemodynamic implications. Am J Physiol 273:H2832–H2842 (Heart Circ. Physiol. 42)PubMed Kassab GS, Pallencaoe E, Fung YC (1997) The longitudinal position matrix of the pig coronary artery and its hemodynamic implications. Am J Physiol 273:H2832–H2842 (Heart Circ. Physiol. 42)PubMed
47.
Zurück zum Zitat Kassab GS, Le KN, Fung YC (1999) A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. Am J Physiol 277:H2158–H2166 (Heart Circ. Physiol. 46)PubMed Kassab GS, Le KN, Fung YC (1999) A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. Am J Physiol 277:H2158–H2166 (Heart Circ. Physiol. 46)PubMed
48.
Zurück zum Zitat Klassen GA, Armour JA, Garner JB (1987) Coronary circulatory pressure gradients. Can J Physiol Pharmacol 65:520–531PubMedCrossRef Klassen GA, Armour JA, Garner JB (1987) Coronary circulatory pressure gradients. Can J Physiol Pharmacol 65:520–531PubMedCrossRef
49.
Zurück zum Zitat Kouwenhoven E, Vergroesen I, Han Y, Spaan J (1992) Retrograde coronary flow is limited by time-varying elastance. Am J Physiol 263:H484–H490PubMed Kouwenhoven E, Vergroesen I, Han Y, Spaan J (1992) Retrograde coronary flow is limited by time-varying elastance. Am J Physiol 263:H484–H490PubMed
50.
Zurück zum Zitat Kouwenhoven E, Vergroesen I, Han Y, Spaan JA (1992) Retrograde coronary flow is limited by time-varying elastance. Am J Physiol 263:H484–H490PubMed Kouwenhoven E, Vergroesen I, Han Y, Spaan JA (1992) Retrograde coronary flow is limited by time-varying elastance. Am J Physiol 263:H484–H490PubMed
51.
Zurück zum Zitat Krams R, Sipkema P, Zegers J, Westerhof N (1989) Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 257:H1936–H1944PubMed Krams R, Sipkema P, Zegers J, Westerhof N (1989) Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 257:H1936–H1944PubMed
52.
Zurück zum Zitat Krams R, Sipkema P, Wsterhof N (1989) Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 257:H1471–H1479PubMed Krams R, Sipkema P, Wsterhof N (1989) Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 257:H1471–H1479PubMed
53.
Zurück zum Zitat Kresh JY, Fox M, Brockman SK, Noordergraaf A (1990) Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am J Physiol 258:H262–H276PubMed Kresh JY, Fox M, Brockman SK, Noordergraaf A (1990) Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am J Physiol 258:H262–H276PubMed
54.
Zurück zum Zitat Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66(3):860–866PubMedCrossRef Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66(3):860–866PubMedCrossRef
55.
Zurück zum Zitat Lanir Y, Nevo E (1993) The Orientation of an intramyocardial vessel affects its mechanical loading by the surrounding myocardium. J Biomech Eng 115:327–328PubMedCrossRef Lanir Y, Nevo E (1993) The Orientation of an intramyocardial vessel affects its mechanical loading by the surrounding myocardium. J Biomech Eng 115:327–328PubMedCrossRef
56.
Zurück zum Zitat Lee J, Chambers DE, Akizuki S, Downey JM (1984) The role of vascular capacitance in coronary arteries. Circ Res 55:751–762PubMedCrossRef Lee J, Chambers DE, Akizuki S, Downey JM (1984) The role of vascular capacitance in coronary arteries. Circ Res 55:751–762PubMedCrossRef
57.
Zurück zum Zitat Lu X, Pandit A, Kassab GS (2004) The incremental elastic moduli of coronary artery: a two layer model. Am J Physiol 287(4):H1663–H1669 (Heart Circ Physiol) Lu X, Pandit A, Kassab GS (2004) The incremental elastic moduli of coronary artery: a two layer model. Am J Physiol 287(4):H1663–H1669 (Heart Circ Physiol)
58.
Zurück zum Zitat Mates RE (1993) The coronary circulation. J Biomed Eng 115:558–561 Mates RE (1993) The coronary circulation. J Biomed Eng 115:558–561
59.
Zurück zum Zitat Mihailescu LS, Abel FL (1994) Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Physiol 266(3 Pt 2):H1233–H1241PubMed Mihailescu LS, Abel FL (1994) Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Physiol 266(3 Pt 2):H1233–H1241PubMed
60.
Zurück zum Zitat Mulligan LJ, Escobedo D, Freeman GL (1993) Mechanical determinants of coronary blood flow during dynamic alterations in myocardial contractility. Am J Physiol 265:H1112–H1118PubMed Mulligan LJ, Escobedo D, Freeman GL (1993) Mechanical determinants of coronary blood flow during dynamic alterations in myocardial contractility. Am J Physiol 265:H1112–H1118PubMed
61.
Zurück zum Zitat Nash MP (1998) Mechanics and Material Properties of an Anatomically Accurate Mathematical Model of the Heart. PhD thesis, University of Auckland, Auckland, New Zealand Nash MP (1998) Mechanics and Material Properties of an Anatomically Accurate Mathematical Model of the Heart. PhD thesis, University of Auckland, Auckland, New Zealand
62.
Zurück zum Zitat Nevo E, Lanir Y (1989) Dynamic, structural model of the left ventricle under finite deformation.ASME Trans. J Biomechanical Eng 111:342–349CrossRef Nevo E, Lanir Y (1989) Dynamic, structural model of the left ventricle under finite deformation.ASME Trans. J Biomechanical Eng 111:342–349CrossRef
63.
Zurück zum Zitat Nevo E, Lanir Y (1989) Parameter estimation of left ventricle performance. Computers in Cardiology Proceedings 251–254 Nevo E, Lanir Y (1989) Parameter estimation of left ventricle performance. Computers in Cardiology Proceedings 251–254
64.
Zurück zum Zitat Nielsen PMF, Le Grice IJ, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260:H1365–H1378 (Heart Circ. Physiol. 29)PubMed Nielsen PMF, Le Grice IJ, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260:H1365–H1378 (Heart Circ. Physiol. 29)PubMed
65.
Zurück zum Zitat Pandit A, Lu X, Wang C, Kassab GS (2005) Biaxial elastic material properties of porcine coronary media and adventitia. Am J Physiol Heart Circ Physiol 288:H2581–H2587PubMedCrossRef Pandit A, Lu X, Wang C, Kassab GS (2005) Biaxial elastic material properties of porcine coronary media and adventitia. Am J Physiol Heart Circ Physiol 288:H2581–H2587PubMedCrossRef
66.
Zurück zum Zitat Permutt S, Riley RL (1963) Hemodynamics of collapsible vessels with tone: the vascular waterfal. J Appl Phys 18:924–932 Permutt S, Riley RL (1963) Hemodynamics of collapsible vessels with tone: the vascular waterfal. J Appl Phys 18:924–932
67.
Zurück zum Zitat Porter WT (1898) The influence of heart beat on the flow of blood through the walls of the heart. Am J Physiol 1:145–169 Porter WT (1898) The influence of heart beat on the flow of blood through the walls of the heart. Am J Physiol 1:145–169
68.
Zurück zum Zitat Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75:904–915PubMedCrossRef Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75:904–915PubMedCrossRef
69.
Zurück zum Zitat Rabbany SY, Kresh JY, Noordergraaf A (1989) Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am J Physiol 257:H357–H364PubMed Rabbany SY, Kresh JY, Noordergraaf A (1989) Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am J Physiol 257:H357–H364PubMed
70.
Zurück zum Zitat Rabbany SY, Funai JT, Noordergraaf A (1994) Pressure generation in a contracting myocyte. Heart Vessels 9:169–174PubMedCrossRef Rabbany SY, Funai JT, Noordergraaf A (1994) Pressure generation in a contracting myocyte. Heart Vessels 9:169–174PubMedCrossRef
71.
Zurück zum Zitat Rajagopalan S, Dube S, Canty JM (1995) Regulation of coronary diameter by myogenic mechanisms in arterial microvessels greater than 100 microns in diameter. Am J Physiol 268:H788–H793PubMed Rajagopalan S, Dube S, Canty JM (1995) Regulation of coronary diameter by myogenic mechanisms in arterial microvessels greater than 100 microns in diameter. Am J Physiol 268:H788–H793PubMed
72.
Zurück zum Zitat Ratcliffe M, Guccione J, Kassab GS (2010) “Introduction to Computational Cardiovascular Mechanics”. In: Guccione JM, Kassab GS, Ratcliffe MB (eds) Computational cardiovascular mechanics: modeling and applications in heart failure. Springer, New York, pp xi–xxv Ratcliffe M, Guccione J, Kassab GS (2010) “Introduction to Computational Cardiovascular Mechanics”. In: Guccione JM, Kassab GS, Ratcliffe MB (eds) Computational cardiovascular mechanics: modeling and applications in heart failure. Springer, New York, pp xi–xxv
73.
Zurück zum Zitat Rodriguez EK, Hunter WC, Royce MJ, Leppo MK, Douglas AS, Weisman HF (1992) A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts. Am J Physiol 263:H293–H306PubMed Rodriguez EK, Hunter WC, Royce MJ, Leppo MK, Douglas AS, Weisman HF (1992) A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts. Am J Physiol 263:H293–H306PubMed
74.
Zurück zum Zitat Sabiston DC, Gregg DE (1957) Effect of cardiac contraction on coronary blood flow. Circulation 15:14–20PubMedCrossRef Sabiston DC, Gregg DE (1957) Effect of cardiac contraction on coronary blood flow. Circulation 15:14–20PubMedCrossRef
75.
Zurück zum Zitat Smith NP, Kassab GS (2001) Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models. Phil Trans R Soc Lond A 359:1251–1263CrossRef Smith NP, Kassab GS (2001) Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models. Phil Trans R Soc Lond A 359:1251–1263CrossRef
76.
Zurück zum Zitat Smith NP, Pullan AI, Hunter PI (2000) The generation of an anatomically accurate geometric coronary model. Ann Biomed Eng 28((I)):14–25PubMedCrossRef Smith NP, Pullan AI, Hunter PI (2000) The generation of an anatomically accurate geometric coronary model. Ann Biomed Eng 28((I)):14–25PubMedCrossRef
77.
Zurück zum Zitat Smith N, de Vecchi A, McCormick M, Nordsletten D, Camara O, Frangi AF, Delingette H, Sermesant M, Relan J, Ayache N, Krueger MW, Schulze WH, Hose R, Valverde I, Beerbaum P, Staicu C, Siebes M, Spaan J, Hunter P, Weese J, Lehmann H, Chapelle D, Rezavi R (2011) euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3):349–364PubMedCrossRef Smith N, de Vecchi A, McCormick M, Nordsletten D, Camara O, Frangi AF, Delingette H, Sermesant M, Relan J, Ayache N, Krueger MW, Schulze WH, Hose R, Valverde I, Beerbaum P, Staicu C, Siebes M, Spaan J, Hunter P, Weese J, Lehmann H, Chapelle D, Rezavi R (2011) euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3):349–364PubMedCrossRef
78.
Zurück zum Zitat Spaan JAE (1991) Coronary blood flow: mechanics, distribution, and control. Kluwer Academic, BostonCrossRef Spaan JAE (1991) Coronary blood flow: mechanics, distribution, and control. Kluwer Academic, BostonCrossRef
79.
Zurück zum Zitat Spaan JAE (1995) Mechanical determinants of myocardial perfusion. Basic Res Cardiol 90:89–102PubMedCrossRef Spaan JAE (1995) Mechanical determinants of myocardial perfusion. Basic Res Cardiol 90:89–102PubMedCrossRef
80.
Zurück zum Zitat Spaan JAE, Breuls NPW, Laird JD (1981) Diastolic—systolic coronary flow differences are caused by intramyocardial pump action in the anesthetised dog. Circ Res 49:584–593PubMedCrossRef Spaan JAE, Breuls NPW, Laird JD (1981) Diastolic—systolic coronary flow differences are caused by intramyocardial pump action in the anesthetised dog. Circ Res 49:584–593PubMedCrossRef
81.
Zurück zum Zitat Spaan JA, Cornelissen AJ, Chan C, Dankelman J, Yin FC (2000) Dynamics of flow, resistance, and intramural vascular volume in canine coronary circulation. Am J Physiol Heart Circ Physiol 278(2):H383–H403PubMed Spaan JA, Cornelissen AJ, Chan C, Dankelman J, Yin FC (2000) Dynamics of flow, resistance, and intramural vascular volume in canine coronary circulation. Am J Physiol Heart Circ Physiol 278(2):H383–H403PubMed
82.
Zurück zum Zitat Spaan JA, ter Wee R, van Teeffelen JW, Streekstra G, Siebes M, Kolyva C, Vink H, Fokkema DS, VanBavel E (2005) Visualisation of intramural coronary vasculature by an imaging cryomicrotome suggests compartmentalisation of myocardial perfusion areas. Med Biol Eng Comput 43:431–435PubMedCrossRef Spaan JA, ter Wee R, van Teeffelen JW, Streekstra G, Siebes M, Kolyva C, Vink H, Fokkema DS, VanBavel E (2005) Visualisation of intramural coronary vasculature by an imaging cryomicrotome suggests compartmentalisation of myocardial perfusion areas. Med Biol Eng Comput 43:431–435PubMedCrossRef
83.
Zurück zum Zitat Spaan JA, Piek JJ, Hoffman JI, Siebes M (2006) Physiological basis of clinically used coronary hemodynamic indices. Circulation 113(3):446–455PubMedCrossRef Spaan JA, Piek JJ, Hoffman JI, Siebes M (2006) Physiological basis of clinically used coronary hemodynamic indices. Circulation 113(3):446–455PubMedCrossRef
84.
Zurück zum Zitat Suga H, Sagawa K, Shoukas A (1973) Load independance of the instantaneous pressure-volume ratio of the canine left ventricle and the effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322PubMedCrossRef Suga H, Sagawa K, Shoukas A (1973) Load independance of the instantaneous pressure-volume ratio of the canine left ventricle and the effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322PubMedCrossRef
85.
Zurück zum Zitat Tillmanns H, Steinhausen M, Leinberger H, Thederan H, Kubler W (1981) Pressure measurements in the terminal vascular bed of the epimyocardium of rats and cats. Circ Res 49:1202–1211PubMedCrossRef Tillmanns H, Steinhausen M, Leinberger H, Thederan H, Kubler W (1981) Pressure measurements in the terminal vascular bed of the epimyocardium of rats and cats. Circ Res 49:1202–1211PubMedCrossRef
86.
Zurück zum Zitat Toyota E, Ogasawar Y, Hiramatsu O, Tachibana H, Kajiya F, Yamamori S, Chilian WM (2005) Dynamics of flow velocities in endocardial and epicardial coronary arterioles. Am J Physiol Heart Circ Physiol 288:H1598–H1603PubMedCrossRef Toyota E, Ogasawar Y, Hiramatsu O, Tachibana H, Kajiya F, Yamamori S, Chilian WM (2005) Dynamics of flow velocities in endocardial and epicardial coronary arterioles. Am J Physiol Heart Circ Physiol 288:H1598–H1603PubMedCrossRef
87.
Zurück zum Zitat van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard JP, Spaan JA, Siebes M (2012) Coronary pressure-flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol 52(4):786–793PubMedCrossRef van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard JP, Spaan JA, Siebes M (2012) Coronary pressure-flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol 52(4):786–793PubMedCrossRef
88.
Zurück zum Zitat VanBavel E, Spaan JA (1992) Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ Res 71(5):1200–1212PubMedCrossRef VanBavel E, Spaan JA (1992) Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ Res 71(5):1200–1212PubMedCrossRef
89.
Zurück zum Zitat Vankan WJ, Huygh JM, Slaaf DW, Van Donkelaar CC, Drost MR, Janssen JD, Huson A (1997) Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction. Am J Physiol 273(3 Pt 2):H1587–H1594PubMed Vankan WJ, Huygh JM, Slaaf DW, Van Donkelaar CC, Drost MR, Janssen JD, Huson A (1997) Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction. Am J Physiol 273(3 Pt 2):H1587–H1594PubMed
90.
Zurück zum Zitat VanTeeffelen JW, Merkus D, Bos LJ, Vergroesen I, Spaan JA (1998) Impairment of contraction increases sensitivity of epicardial lymph pressure for left ventricular pressure. Am J Physiol 274:H187–H192PubMed VanTeeffelen JW, Merkus D, Bos LJ, Vergroesen I, Spaan JA (1998) Impairment of contraction increases sensitivity of epicardial lymph pressure for left ventricular pressure. Am J Physiol 274:H187–H192PubMed
91.
Zurück zum Zitat Vetter F, McCulloch A (1998) Three-dimensional analysis of regional cardiac function: a model of the rabbit ventricular anatomy. Prog Biophys Mol Biol 69:157–185PubMedCrossRef Vetter F, McCulloch A (1998) Three-dimensional analysis of regional cardiac function: a model of the rabbit ventricular anatomy. Prog Biophys Mol Biol 69:157–185PubMedCrossRef
92.
Zurück zum Zitat Wang C, Garcia M, Lu X, Lanir Y, Kassab GS (2006) A three-dimensional model of mechanical properties of coronary artery: a two layer model. Am J Physiol 291(3):H1200–H1209CrossRef Wang C, Garcia M, Lu X, Lanir Y, Kassab GS (2006) A three-dimensional model of mechanical properties of coronary artery: a two layer model. Am J Physiol 291(3):H1200–H1209CrossRef
93.
Zurück zum Zitat Waters SL, Alastruey J, Beard DA, Bovendeerd PH, Davies PF, Jayaraman G, Jensen OE, Lee J, Parker KH, Popel AS, Secomb TW, Siebes M, Sherwin SJ, Shipley RJ, Smith NP, van de Vosse FN (2011) Theoretical models for coronary vascular biomechanics: progress & challenges. Prog Biophys Mol Biol 104(1–3):49–76PubMedCrossRef Waters SL, Alastruey J, Beard DA, Bovendeerd PH, Davies PF, Jayaraman G, Jensen OE, Lee J, Parker KH, Popel AS, Secomb TW, Siebes M, Sherwin SJ, Shipley RJ, Smith NP, van de Vosse FN (2011) Theoretical models for coronary vascular biomechanics: progress & challenges. Prog Biophys Mol Biol 104(1–3):49–76PubMedCrossRef
94.
Zurück zum Zitat Wischgoll T, Meyer J, Kaimovitz B, Lanir Y, Kassab GS (2007) A novel method for visualization of entire coronary arterial tree. Ann Biomed Eng 35(5):694–710PubMedCrossRef Wischgoll T, Meyer J, Kaimovitz B, Lanir Y, Kassab GS (2007) A novel method for visualization of entire coronary arterial tree. Ann Biomed Eng 35(5):694–710PubMedCrossRef
95.
Zurück zum Zitat Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F (1993) In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 72(5):939–946PubMedCrossRef Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F (1993) In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 72(5):939–946PubMedCrossRef
96.
Zurück zum Zitat Yada T, Hirasmatsu O, Goto M, Ogasawara Y, Kimura A, Yamamoto T, Tsujioka K, Kajiya F (1994) Effects of nitroglycerin on diameter and pulsation amplitude of subendocardial arterioles in beating porcine heart. Am J Physiol 267((5 Pt. 2)):H1719–H1725PubMed Yada T, Hirasmatsu O, Goto M, Ogasawara Y, Kimura A, Yamamoto T, Tsujioka K, Kajiya F (1994) Effects of nitroglycerin on diameter and pulsation amplitude of subendocardial arterioles in beating porcine heart. Am J Physiol 267((5 Pt. 2)):H1719–H1725PubMed
Metadaten
Titel
Myocardial-vessel interaction: role of LV pressure and myocardial contractility
verfasst von
Ghassan S. Kassab
Dotan Algranati
Yoram Lanir
Publikationsdatum
01.07.2013
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 7/2013
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-013-1072-3

Weitere Artikel der Ausgabe 7/2013

Medical & Biological Engineering & Computing 7/2013 Zur Ausgabe