Skip to main content

2022 | Buch

Nano-biotechnology for Waste Water Treatment

Theory and Practices

herausgegeben von: Jai Prakash Narain Rai, Assist. Prof. Shweta Saraswat

Verlag: Springer International Publishing

Buchreihe : Water Science and Technology Library

insite
SUCHEN

Über dieses Buch

This book embodies the potentials of nanobiotechnology-based water treatment techniques to provide a solid understanding of the subjects. Starting with a refresher of the basic conventional technologies which are now been integrated with nanomaterials for an efficient, viable, and eco-friendly treatment of contaminated water. The book covers various physical, chemical, and hybrid methods of nanobiomaterial synthesis and their fabrication for characterizing existing techniques. The book gives special attention to those nanotechnology-based approaches that promise easier, faster, and cheaper processes in contaminants monitoring and their treatment. Several case studies explain in an easy to understand format how employing nanobiomaterials as an indicator and analytical tool will enable students to learn about cleaning up the environment.

Inhaltsverzeichnis

Frontmatter
Chapter 1. Principles and Potentials of Nanobiotechnology
Abstract
Due to rapid industrialization and uncontrolled urbanization worldwide, the wastewater pollution is overwhelming. The development of advanced eco-friendly technologies is therefore required for the treatment of wastewater and its reuse. In this context, application of nano-based technologies offers an excellent and multifunctional process for wastewater treatment and its purification. Nanobiotechnology (NBT) has great potential in waste treatment by eliminating the contaminants and pathogens either through being as stand-alone treating agents or by embedding into biological membranes and combined with the traditional treatment techniques. Owing to have unique optical, electrical, and magnetic characteristics, the nanoparticles (NPs) in conjunction with biomolecules of living cells can be used for the polluted water treatment. Its principles and characteristics could be utilized in biological processes to develop innovative products and techniques such as nanomembranes, nanofilters, nanobiosensors, nanofluids, and nanoproteomics. NBT has been touted as having the capacity to address issues such as water purification, food quality, bioremediation of contaminated sites, nano-fertilizer application, degradation, and scavenging of inorganic/organic/biological contaminants, antimicrobial agents, and other biodiversity-related problems. NBT offers additional advantages in the field of biomedical sciences, personal and healthcare products, food quality sensors and packaging, textiles products such as medical, anti-satin, and UV blocking textiles, besides energy production through photocatalysis and fuel additive catalysts. Various types of nanoparticles are also being utilized in biomedicines, solar cells, dyes, membranes, and automobile parts. Owing to have a vast sphere of applications, the current chapter presents a summary of the principles and vast potentials of nanobiotechnology in detail.
Jai Prakash Narain Rai, Shweta Saraswat
Chapter 2. Application of Nano-biotechnology in Wastewater Treatment: An Overview
Abstract
Rapid industrial growth, urbanization and increased population are exaggerating the problem of polluted wastewater generation. Due to constant rise in wastewater pollution, the associated health risks to human beings, flora and fauna are also growing simultaneously. Applications of nanobiotechnology-based methods have great potential in remediating polluted water systems and improving their treatment efficiency as well. The selection of cost-effective and appropriate nanobiomaterials having unique characteristics increases the efficiency of their applications in vivid fields. In the present chapter, novel, fast and efficient plant- and microbes-mediated nanobio-based technologies have been discussed for effective and nature-friendly treatment of wastewater containing heavy metals, dyes, pesticides, pathogens and so on. The prospects and challenges ahead for large-scale industrial processes have also been emphasized in this chapter.
Shweta Saraswat
Chapter 3. Emerging Nano-Bio Material for Pollutant Removal from Wastewater
Abstract
Industrial and domestic processes are generating huge quantity of organic and inorganic pollutants into the environment through releasing wastewater into the environment. The unimpeded dumping of these pollutants not only risks the human and animal health but also deteriorates land and water quality. This generates demand to remove/utilize these pollutants in sustainable manner before releasing wastewater into the environment. Several physical–chemical and biological technologies are available to remove the organic and inorganic pollutants from wastewater. However, some of these technologies are not so efficient in removing the pollutants from wastewater, whereas other technologies either not economically viable or not too suitable to the environment. Development of nanotechnology has provided new paradigm to the several fields including wastewater treatment technologies due to its unique and exceptional characteristics such a superhydrophilicity, high surface area, surface functionalities. Nanomaterials showed a great potential to address all the flaws in removal of pollutants from wastewater. The present chapter enlightens the applicability of bionanomaterials for removal of organic pollutants from wastewater and its sustainability.
Dheeraj Rathore, Anoop Singh, Shiv Prasad, Piyush Malaviya, Surajbhan Sevda
Chapter 4. Application of Plant-Based Nanoparticles in Wastewater Decontamination
Abstract
Wastewater treatment is an important challenge of this century as it safeguards the health of our environment and living being. Wastewater is always regarded as a significant source of environmental pollution due to its potential to harm both living and non-living beings. Many physical, biological, and chemical modes of treatment are implied to comply with the standards of wastewater discharge, given by competent national agencies for protecting the environment. Researchers from all over the world have recently become more interested in the synthesis of plant nanoparticles and their application for wastewater decontamination since it is an environmentally benign, cost-effective, and efficient technology. Parts and extracts of various plants are being explored for the synthesis of nanoparticles. Green synthesized nanoparticles are highly efficient for recycling and removal of toxic contaminants from wastewaters and make it reusable in different aspects. However, synthesis, regeneration, and reusability are the major obstacles that must be addressed before the technology transferred from laboratory to commercial applications. In this chapter, we focused on the different approaches of plant-based nanoparticle synthesis and their applications in wastewater treatment. Further, important challenges in the field of plant-based nanoparticles in the wastewater treatment are also discussed.
Sudhir Kumar, Jaspal Singh Chauhan
Chapter 5. Microbial Synthesis of Nanoparticles for Wastewater Remediation
Abstract
The wastewater originating from the industrial and domestic sector with potential hazardous organic and inorganic pollutants when discharged into the water bodies causes undesirable effects on the aquatic environment and human health. It is therefore desirable to treat wastewater prior to its disposal. Recently, the application of nanostructured materials for water remediation has gained attention due to their unique size-dependent properties like large surface area, stability, remarkable reusability and recyclability. Nanoparticles represent a promising new technology for wastewater remediation, not only because of their high treatment efficiency but also for their cost-effectiveness, as they have the flexibility for in-situ and ex-situ applications. Several conventional physical and chemical procedures have been reported for the synthesis of metallic and non-metallic nanoparticles. But the environmental hazards associated with the conventional methods restrict the large-scale production and application in water remediation. It is therefore desirable to synthesize nanoparticles using environmentally safer, rapid and inexpensive biogenic approaches based on microbes. Carbohydrates, proteins, polyphenols, vitamins, polymeric substances and several antioxidants obtained from bacteria, fungi and algae have proven their effectiveness as capping and stabilizing agents during greener synthesis of nanomaterials. Application of microbially synthesized nanomaterials for wastewater treatment is a relatively newer but rapidly escalating area of research. The present book chapter outlines the information on recent advances on the microbial synthesis of different types of metallic and non-metallic nanoparticles, their characterization and role in the removal of different types of organic and inorganic pollutants from wastewater.
Shailja Singh, Shiv Shankar, Shikha
Chapter 6. Recent Trends in Synthesis and Applicability of GO-Based Nanomaterials in Environmental Remediation
Abstract
Graphene oxide (GO) has been discovered as the most attractive material for multidisciplinary research. Due to unique physico-chemical properties and abundance of functional groups, graphene oxide nanomaterials have achieved high end development for pollution treatment. Go-based nanomaterials have been coupled time to time with different elements to produce highly advanced GO-based materials for environmental remediation. GO has a potential of dispersing and solubilizing in aqueous media and other solvents which are polar and organic in nature. This enables its wet processing. Despite having various defects, GO-based nanomaterials can be easily functionalized, cut into pieces, doped, and punched holes. Apart from this, GO can be assembled into macroscopic materials with a property of living building block. Sheets of GO can be considered as individual molecule/particle or soft polymer material. Hence, it is important to have an overview of GO as 2D molecular structure which will enable us to study its various intrinsic properties and will also help in the development of this subject. Hence, the chapter is framed to provide insight about synthesis, structure, and application of graphene oxide nanomaterials in environmental remediation.
Rimmy Singh, Sunil Kumar, Rachna Bhateria
Chapter 7. Nanomaterials for the Removal of Inorganic Contaminants from Industrial Wastewater
Abstract
Water pollution has become a critical issue for the present world population. A variety of industrial operations release toxic organic and inorganic substances/contaminants into the water bodies. The continued accumulation of these toxic compounds in natural water resources may put living organisms at risk. Different conventional methods are well explored and have been applied to the treatment of contaminated water. Current research focuses on the development of low-cost and more efficient technologies, with the potential advantage of reusability in continuously operating wastewater treatment plants. In this context, nanotechnology as an emerging field can provide immense opportunities for removing contaminants from wastewater, thus improving water quality. Applications of nanomaterials have been successfully discovered and documented in different fields of biomedical science. Certain unique properties of nanomaterial toward the contaminants offer additional benefits for the application of these nano-biotechnological tools for the treatment of wastewater. This chapter is an attempt to explore the role of nanomaterials in the treatment of wastewater focusing primarily on the removal of inorganic contaminants. The advantages, limitations, and future perspectives of nanomaterials applications are also discussed.
Rashmi Paliwal, Jai Prakash Narain Rai
Chapter 8. Application of Nanobiotechnology for Heavy Metal Remediation
Abstract
Societies across the globe are facing a major challenge of the ill effects of heavy metals. However, there is no decline in the production of these toxic metals due to the ever increasing pace of industrialisation and other anthropogenic activities. In order to solve the problem of heavy metal contamination so as to avoid its intake, we need to search for a technology that can act as a silver bullet for its removal from the environment. Nanobiotechnology is a new field of study with the potential to solve such environmental problems by combining cutting-edge information technology and nanotechnology applications. Nanobiotechnology, which is the consequence of combining nanotechnology and biology, involves using biological organisms to create nanomaterials that can be used for heavy metal remediation. The spatial arrangements of atoms present in nanomaterials that emerge in diverse geometries increase the efficiency and specificity of nanostructures. Several types of nanostructures such as nanobiosensors, nanomembranes, nanocomposites and nanoparticles have recently proved quite effective in the removal of heavy metals. This technology expected to be a good substitute for traditional treatments, but the risks of environmental nano-toxicity are still unknown. Extensive studies in the field are required to completely understand the benefits and negative impacts of the technology.
Arjita Punetha, Amir Khan
Chapter 9. Applications of Nanoparticles for Microbial Contaminants and Pathogens Removal from Wastewater
Abstract
Because of their unique physical and chemical properties, nanomaterial’s have drawn the attention of many scientists and researchers in various fields of environmental science, especially scientists and researchers in the field of ecological purity. Bioremediation offers a good cleaning strategy for certain types of waste. For example, bioremediation may not be the right strategy because of the high concentration of chemicals that are toxic to most microorganisms. These include heavy metals and salts. In addition, advances in science and technology have improved living standards and contributed directly or indirectly to more waste and toxic substances. Therefore, pollution remediation using current technology is neither effective nor effective in disinfecting the environment. For bioremediation, although the immobilization can enhance the wastewater treatment efficiency, the applications of immobilized pathogens are still confined to laboratory research. Usually, several pollutants may coexist in wastewater that will increase the difficulty of treatment; thereby obtaining more stable support for microbes is necessary. Moreover, various modified nanoparticles can be prepared and designed for improving the bioremediation. In addition, although the presence of nanoparticles can enhance the bioremediation performance of microorganisms at certain extent, the toxicity of nanoparticles can also be experimented. Therefore, nanomaterial’s can be used in bioremediation, not only have less toxic effects on microorganisms, but also improve the microbial activity of some wastes and toxic substances and shorten the overall time. And the total costs of this chapter summarize the main types of nanomaterial’s that have been used in the bioremediation of waste and toxins so far. Stabilization can improve wastewater treatment efficiency, but the use of inactive pathogens is limited to laboratory biological remediation studies. In general, several pollutants can be present in the wastewater at the same time, which makes their treatment difficult. That is why we need more stable support for microorganisms. In addition, modified or doped nanoparticles can be manufactured and developed to improve the biological process. The presence of nanoparticles can improve the bioremediation performance of microorganisms to a certain extent, but the toxicity of nanoparticles can also be felt. Thus, nanomaterial’s can be used in natural wastewater treatment, which not only toxic microorganisms, but also enhance the microbial exertion of some wastes and poisons, and reduce consumption and time.
Nandkishor More, Anjali Verma, Deepthi Wickramasinghe, Rajnish Gautam, Dimuth Navaratna, A. V. P. R. Jonnada, Ram Naresh Bharagava
Chapter 10. Nano-Engineered Gold Particles for Pesticide Mineralization in Contaminated Water
Abstract
The remediation of pesticides from water is a very challenging problem to render sustainable agriculture and ecosystem. Extensive work has been reported on the usage of biocompatible engineered nanoparticles (NPs) for the mineralization/degradation of pesticides in polluted water. This chapter highlights the present status and future of the biocompatible nano-engineered Gold particles (Au NPs) for pesticides mineralization in contaminated water. Synthesis of Au NPs by various physical and chemical routes, characterization of Au NPs by different analytical techniques and degradation/mineralization mechanism in terms of the photocatalytic activity of Au NPs at ambient conditions have also been described. As a case study, degradation pathway of organochlorine pesticide endosulfan (ES) using Au NPs is discussed. The adsorption of ES on Au NPs brings visible change in colloidal solution coloration from deep purplish pink to blue owing to the Au NPs aggregates formation. The conformation of the included guest molecule, the nature of the host–guest and guest–guest interactions (e.g., hydrogen bonding/hydrophobic groups) and the role of reorganization of Au NPs are observed through FTIR spectroscopic analysis and a mechanism of the mineralization of ES molecules into non-toxic reaction products is also proposed.
Puja Goel, Manju Arora
Chapter 11. Nanomaterials for Remediation of Pharmaceutical Containing Aqueous Medium and Wastewaters
Abstract
Disposal of untreated pharmaceutical waste into water bodies is a growing threat to the aquatic ecosystem and humans as well. Among various physicochemical, advanced oxidation, and bioremediation processes adopted, bioremediation emerges as the most environmentally friendly and economically viable alternative to manage this serious environmental concern. The main focus of the chapter is on nanobiotechnology that utilizes nanoscale materials for removing toxic compounds from wastewater. The nanomaterials have a size even smaller than one billionth of a meter and possess unique properties including high absorption potential, huge surface area, eco-friendly fabrication, and strong affinity toward organic and inorganic compounds. The use of novel nanomaterials for the sustainable treatment of pharmaceutical wastewater is a favorite option for environmental engineers these days. Different nanomaterials used for the treatment of pharmaceutical containing aqueous medium and wastewaters like electrospun lignin nanofibers, polyaniline/ZrO2 nanocomposite, Cu-TiO2 single-walled carbon nanotubes, curcumin-loaded nanostructured lipid carrier, Fe3O4/Au nanocomposite, Fe3O4-chitosan nano-adsorbent, TiO2/ONLH nanocomposites, ZnO nanoparticles, ZnO/sepiolite heterostructured nanomaterials, Ni-Al layered double hydroxide nanoparticles, tungsten/carbon nanotube heterojunction nanocomposite, organic-inorganic hybrid TiO2 doped with molybdenum, MnOx/ nano-graphite/2-ethylanthraquinone/activated carbon cathode, graphene-based nanomaterials, and multi-wall carbon nanotubes/titanium oxide (MWCNT/TiO2) nanocomposite have been discussed in the literature. Classification of the nanomaterials has been also highlighted. The chapter attempts to provide all the useful information on novel nanotechnology employed for pharmaceutical wastewater management.
Rozi Sharma, Pradeep Kumar Sharma, Anoop Singh, Dheeraj Rathore, Piyush Malaviya
Chapter 12. Photocatalytic Decolourization of Dyes Using Nanoparticles-Assisted Composite Catalysts
Abstract
Over the years, demand of dyes is tremendously increased due to the continuous growth of textile, paper and leather market size. Effluents from these industries are challenging sources of residual dye pollutants into the environmental water. Coloured water deteriorate the water quality, decline dissolved oxygen levels, damage photosynthesis, enter the food chain and may lead to severe health hazards. Treatment and recycling of dyes-polluted water can help in conservation of water and preventing water pollution footprint in environment. There exist a remarkable method known as photocatalysts which may be utilized for achieving various goals such as antifogging, antifouling, production of hydrogen, antibacterial activity, degradation of different kinds of pollutants in wastewater, sterilization, self-cleaning, deodorization, conservation and storage of energy and purification of air. This process is gaining more focus towards wastewater treatment for complete mineralization of the pollutants under mild temperature and pressure requirements. A photocatalyst must have good light UV–Vis light absorption capability for better photocatalytic performance. Recently, a process of dye decolourization with the help of nanocomposites has been turning into a prominent technology in the direction of environmental remediation. Due to the ability to stabilize the excited electron in the conducting band via reduction in rate of hole/electron recombination and decreasing the semiconductor’s band energy, the nanocomposites have gained significant high photocatalytic efficiency over the nanoparticles. Enhanced photocatalytic efficiency can be achieved by synthesizing specific nanocomposites through conducting polymers with metal/metal oxides nanoparticles.
Graphical Abstract
Sameena Mehtab, Shubham Sharma, Minakshi Pandey, M. G. H. Zaidi
Chapter 13. Zinc Sulphide Nanoparticles as a Bacteriostatic and Invigorated Catalytic Tool for Multiple Dye Degradation: An Approach Towards Environment Remediation
Abstract
The objective of this research is to assess a green strategy to synthesize multifunctional Zinc sulphide nanoparticles (ZnS-NPs), a material that has attracted significant attention in recent years. An aqueous extract of Girardinia diversifolia (G. diversifolia) leaves was utilized to form ZnS nanoparticles and their properties were evaluated using various analytical techniques such as UV-Vis, Tauc plot, XRD, FTIR, EDX, and TEM. The extract’s phytoconstituents serve as a reducing and capping agent, as determined by FTIR. UV spectrum exhibited a peak near 262.31 nm, which is corresponding to characteristic peak of ZnS nanoparticles. ZnS-NPs are cubic crystalline in nature as shown by XRD investigation. Moreover, morphological examinations using TEM and EDX revealed that the integrated spherical particles (11.28 nm particle size) are largely constituted of Zinc (52.38%) and Sulphur (31.23%). The as-prepared ZnS-NPs show potential antibacterial abilities against 5 bacterial strains in this investigation and the maximum zone of inhibition were determined using agar well diffusion method. ZnS-NPs acted as an efficient catalyst for the degradation of hazardous dyes (4.124 eV band gap energy). The dye degradation of Methylene blue (MB), Acridine orange (AO), and Rose bengal (RB) was examined utilizing nanoparticles. As a result, the ZnS-NPs produced in this study are appropriate for industrial wastewater treatment. Increased reaction rate as well as % degradation efficiency were attained by increasing the concentration of dye.
Aayasha Negi, Reena Gangwar, Devendra Singh Negi
Chapter 14. The Current Scenario in Chitosan Nanocomposite Application in Wastewater Treatment
Abstract
An intensified value of different pollution, in water resources associated with their various consecutive environmental concerns, has engendered researchers to seek suitable remediation strategies for wastewater treatment. The traditional technologies used in wastewater treatment encompass sorption, ion-exchange, precipitation, membrane filtration, reverse osmosis, and solvent extraction. Among these approaches, sorption has emanated as simple, robust, and efficient means for the removal of a vast range of pollutants from wastewater. Over the past decades, nanocomposites have been applied successfully as sorbents in various wastewater treatment studies. Chitosan is an ample cationic biopolymer, with unique structure, nontoxicity, biocompatibility, pluri-dimensional characteristic, with diverse applications. This chapter reviews recent developments in the application of chitosan nanocomposites in the removal of a broad range of organic and inorganic contaminants from wastewater which comprehend synthesis and modification of chitosan-based hydrogels, associated advantages, and, analytical performance. Furthermore, innovative approaches prerequisite for surface modification and selectivity improvement of chitosan nanocomposites to alleviate the pollutant removal efficiency are addressed. Finally, the challenges and prospects for escalating the performance of chitosan nanocomposite-based wastewater treatment methods are also discussed.
Shivani Uniyal, Jai Prakash Narain Rai
Chapter 15. Biochar Impregnated Nanomaterials for Environmental Cleanup
Abstract
Biochar-based nanomaterials have shown unbelievable prospective in managing various environmental contaminations and display immense enhancement in functional groups, surface active sites, pore size properties, catalytic degradation properties, etc. Their applications gaining increase interest due to the simplicity of preparation methods and their enhanced physicochemical properties. Therefore, the development of such nanomaterials has targeted in various research objectives including water/wastewater treatment, soil remediation, agriculture, and pollution. Sorption, catalysis, redox reaction and other structural and functional properties of biochar showed the alteration or removal of contaminations from the environment and are considered as incredible efficient ways in handling various challenging environmental issues. Considering the quick expansion of biochar-based nanomaterials. This chapter will serve the helpful information to summarize the various applications of this magical material in environmental cleanup, along with wastewater treatment, soil remediation, and agriculture advancement. In addition, synthesizing such efficient nanoparticles will provide a novel approach against various environmental concern and promise vast applications of nanotechnology.
Prachi Dixit, Kajal S. Rathore, Shivom Singh
Chapter 16. Application of Biomimetic Membranes for Water Purification
Abstract
The deterioration of water quality is a big global problem at present that is increasing continuously due to the rapid growth of population, uncontrolled industrialization and urbanisation which causing serious water pollution. Various membrane-based technologies like forward osmosis, reverse osmosis and Electrodialysis etc. are being used for water purification but fabrication material and techniques are still the main limitations of these technologies. Recently, the biomimetic membrane is emerged as a potential candidate for membrane-based water purification technology due to its extremely high permeability and selectivity for water molecules. Fundamentally, the biomimetic membrane is mainly composed of three components: aquaporins that are transmembrane protein and selectively works as water channels for passage of water molecules through the membrane; amphiphilic matrix, it works as a housing material for aquaporins in which these proteins are embedded, and the third component is the porous solid substrate that augments the mechanical strength of the membrane. In this chapter, each component has been discussed in detail along with previous examples of biomimetic membrane fabrication techniques. Besides this, the applications of biomimetic membrane for wastewater treatment and challenges associated with this technology have also been focused in this chapter.
Sneh Gautam, Pushpa Lohani, Poonam Maan
Chapter 17. Nanobiosensors: Diagnostic Tools for Environmental Contaminants
Abstract
Environmental pollution, a growing global concern, adversely affects human health and socio-economic development. Besides the presence of various environmental contaminants like chemical substances, heavy metals, viruses, bacteria, parasitic pathogens and their toxins, emerging environmental contaminants (also called micropollutants) have drawn scientific attention and public concerns. The growing demand for environmental pollution control necessitates the development of rapid analytical tools with greater efficacy and precision for the on-site and real-time monitoring of a broader spectrum of various pollutants without extensive sample preparation. Nanobiosensors thus appear as a powerful alternative to conventional analytical techniques that are associated with the issues such as the requirement of sophisticated and expensive instruments and expert personnel for their operation. Nanobiosensors are the fabrication products of nanoscale hybrid materials, such as complexes consisting of nanoparticles (NPs) and biological molecules which are ideal for the detection of contaminants with ultrahigh sensitivity, selectivity and rapid responses. Thus, the use of nanobiosensors will significantly improve environmental monitoring approaches in the future. This chapter emphasizes on nanobiosensor approaches for environmental pollutants monitoring, challenges and future perspectives.
Rama Pal, I. Rashmi, Jai Prakash Narain Rai
Chapter 18. Prospects and Challenges of Bio-Nanomaterials for Wastewater Treatment
Abstract
Water is a precious and limited resource on earth which play pivotal role in life, agriculture, industries and ecological processes. Toxic chemical substances released from industrial processes, agricultural activities, gray water and sewage are the major water pollutants. Due to increasing human population, industrial and agricultural operations, the magnitude of water pollution has been increased significantly. Release of untreated or partially treated effluent in the environment is the major source of water pollution. Pollution of drinking water sources and natural water bodies have negative effects on human health, living organisms and ecological systems. The existing physical and chemical methods of wastewater treatment are neither eco-friendly nor cost-effective, under such circumstances pollutants removal from contaminated water warrant alternative and eco-friendly technologies. Bioremediation is an alternative to these technologies where plants, microorganisms and organic materials are used for treatment and removal of toxic chemicals and metal ions from polluted water. With the emergence of nanoscience and its concept of thinking big and working small, nanotechnology-based treatment methods have proved to be the most effective and eco-friendly approach to combat water pollution. Development of nano-based bioremediation technologies gives rise to a novel, much rapid and efficient remediation technology termed as nanobioremediation. Nanobiremediation utilizes microorganisms and plants to synthesize bio-nanomaterials which have potential to clean wastewater generated from large-scale industrial processes. It is advantageous over other treatment methods because of pollutants removal without posing any toxic effects to the microorganisms and also enhances microbial activity in the contaminated environment. Although much research has been carried out on application of bioremediation for wastewater treatment, however, a little is known about bio-based nanomaterials in wastewater treatment. This chapter aims to comprehend the recent advances and application of bio-nanomaterials for wastewater treatment and scope of environmental pollution control.
Meenakshi Sati, Vishwanath Sharma, Anup Jyoti Goswami, Krishna Giri, Gaurav Mishra
Metadaten
Titel
Nano-biotechnology for Waste Water Treatment
herausgegeben von
Jai Prakash Narain Rai
Assist. Prof. Shweta Saraswat
Copyright-Jahr
2022
Electronic ISBN
978-3-031-00812-2
Print ISBN
978-3-031-00811-5
DOI
https://doi.org/10.1007/978-3-031-00812-2