Skip to main content

2010 | OriginalPaper | Buchkapitel

Nano-Scale and Atomistic-Scale Modeling of Advanced Materials

verfasst von : Ruo Li Dai, Wei-Hsin Liao, Chun-Te Lin, Kuo-Ning Chiang, Shi-Wei Ricky Lee

Erschienen in: Nano-Bio- Electronic, Photonic and MEMS Packaging

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The studies on advanced materials at sub-micron scales have become a popular subject in engineering sciences and technology development in the past decade. In general, experimental investigations at this scale are very difficult and may be unreliable. Therefore, analytical and computational modeling appears to be rather critical and important in such studies. The objective of this chapter is to review two state-of-the-arts approaches for modeling advanced materials at the nano- and the atomistic scales, respectively.
The first part of this chapter introduces a unit cell model for the analysis of composites with carbon nanotubes (CNTs) and epoxy resin using finite element method (FEM). Varying CNT orientation is considered in order to describe the behaviors of the randomly oriented CNTs inside the epoxy matrix. Composite loss factors are calculated based on the average ratio of the unit cell energy loss to the unit cell energy input. Calculated loss factors under different strain levels are compared to experimental data. With the validated model, parametric study is thereafter performed. Parameters such as CNT dimension and CNT alignment orientation are studied. Those factors lead to higher composite damping capacity are identified.
The second part of this chapter proposes a novel atomistic–continuum mechanics which is a hybrid method for coupling continuum mechanics and interatomic potential function to predict the mechanical behavior of nano-scale single crystal silicon under uniaxial tensile loading. The atomistic–continuum mechanics is based on the transformation of chemical bonds between atoms in molecular mechanics into appropriate elements in finite element method and continuum mechanics. There are many methods used in nano-structure analysis such as molecular dynamics (MD) and ab initio calculation; the molecular dynamics simulation is one of the most promising methods for investigating the mechanical properties of structure and material at nano-scale. However, it requires extensive computing time and cost. Furthermore, in traditional continuum mechanics, the finite element method (FEM) is widely used to model and simulate the mechanical behaviors of solid/discrete body; it is a mature technology after decades of development. Compared with MD simulation, the continuum mechanics can be very efficient as it can provide results quickly in an accurate range. In the hybrid approach, the total energy of the nano-structure is formed by each individual potential energy of bi-atom, once the total potential is assembled the FEM could take the minimization of the total energy, which includes the potential energy and external works, and to solve the structure by conventional way. Therefore, this study employs FEM to explore the mechanical properties of nano-scale single crystal silicon. This research also utilizes an interatomic potential function to describe the interaction of each atom. A general form of Stillinger–Weber potential function was used for interaction between the silicon atoms in the simulations. Based on atomistic–continuum simulation results, the Young’s modulus of single crystal silicon in various crystallographic planes could be estimated. The results obtained from the present modeling approach are in reasonable agreement with the experiment and simulation results reported in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56–58.CrossRef Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56–58.CrossRef
2.
Zurück zum Zitat Yu M.F., O. Lourie, M.J. Dyer. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000;287:637–640.CrossRef Yu M.F., O. Lourie, M.J. Dyer. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000;287:637–640.CrossRef
3.
Zurück zum Zitat Thostenson E.T., Z.F. Ren, T.W. Chou. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science & Technology 2001;61:1899–1912.CrossRef Thostenson E.T., Z.F. Ren, T.W. Chou. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science & Technology 2001;61:1899–1912.CrossRef
4.
Zurück zum Zitat Ajayan P.M., O. Stephan, C. Colliex, D. Trauth. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 1994;256:1212–1214.CrossRef Ajayan P.M., O. Stephan, C. Colliex, D. Trauth. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 1994;256:1212–1214.CrossRef
5.
Zurück zum Zitat Qian D., E. Dickey, C.R. Andrews, T. Rantell. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters 2000;76:2868–2870.CrossRef Qian D., E. Dickey, C.R. Andrews, T. Rantell. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters 2000;76:2868–2870.CrossRef
6.
Zurück zum Zitat Ruan S.L., P. Gao, X.G. Yang, T.X. Yu. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 2003;44:5643–5654.CrossRef Ruan S.L., P. Gao, X.G. Yang, T.X. Yu. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 2003;44:5643–5654.CrossRef
7.
Zurück zum Zitat Lau K.T., S.Q. Shi, L.M. Zhou, H.M. Cheng. Micro-hardness and flexural properties of randomly-oriented carbon nanotube composites. Journal of Composite Materials 2003;37:365–376.CrossRef Lau K.T., S.Q. Shi, L.M. Zhou, H.M. Cheng. Micro-hardness and flexural properties of randomly-oriented carbon nanotube composites. Journal of Composite Materials 2003;37:365–376.CrossRef
8.
Zurück zum Zitat Koratkar N., B. Wei, P.M. Ajayan. Carbon nanotube films for damping applications. Advanced Materials 2002;14:997–1000. Koratkar N., B. Wei, P.M. Ajayan. Carbon nanotube films for damping applications. Advanced Materials 2002;14:997–1000.
9.
Zurück zum Zitat Koratkar N., B. Wei, P.M. Ajayan. Multifunctional structural reinforcement featuring carbon nanotube films. Composites Science & Technology 2003;63:1525–1531.CrossRef Koratkar N., B. Wei, P.M. Ajayan. Multifunctional structural reinforcement featuring carbon nanotube films. Composites Science & Technology 2003;63:1525–1531.CrossRef
10.
Zurück zum Zitat Lass E.A., N.A. Koratkar, P.M. Ajayan, B.Q. Wei, P. Keblinski. Damping and stiffness enhancement in composite systems with carbon nanotubes films. Proceedings of Materials Research Society Symposium 2002;740:371–376. Lass E.A., N.A. Koratkar, P.M. Ajayan, B.Q. Wei, P. Keblinski. Damping and stiffness enhancement in composite systems with carbon nanotubes films. Proceedings of Materials Research Society Symposium 2002;740:371–376.
11.
Zurück zum Zitat Lass E., P. Ajayan, N. Koratkar. Engineered connectivity in carbon nanotube films for damping applications. Proceedings of SPIE 2003;5052:141–150.CrossRef Lass E., P. Ajayan, N. Koratkar. Engineered connectivity in carbon nanotube films for damping applications. Proceedings of SPIE 2003;5052:141–150.CrossRef
12.
Zurück zum Zitat Wong M., M. Paramsothy, X.J. Xu, Y. Ren, S. Li, K. Liao. Physical interactions at carbon nanotube-polymer interface. Polymer 2003;44:7757–7764.CrossRef Wong M., M. Paramsothy, X.J. Xu, Y. Ren, S. Li, K. Liao. Physical interactions at carbon nanotube-polymer interface. Polymer 2003;44:7757–7764.CrossRef
13.
Zurück zum Zitat Zhou X., E. Shin, K.W. Wang, C.E. Bakis. Interfacial damping characteristics of carbon nanotube based composites. Composites Science & Technology 2004;64:2425–2437.CrossRef Zhou X., E. Shin, K.W. Wang, C.E. Bakis. Interfacial damping characteristics of carbon nanotube based composites. Composites Science & Technology 2004;64:2425–2437.CrossRef
14.
Zurück zum Zitat Suhr J., N. Koratkar, P. Keblinski, P. Ajayan. Viscoelasticity in carbon nanotube composites. Nature Materials 2005;4:134–137.CrossRef Suhr J., N. Koratkar, P. Keblinski, P. Ajayan. Viscoelasticity in carbon nanotube composites. Nature Materials 2005;4:134–137.CrossRef
15.
Zurück zum Zitat Liu A., J.H. Huang, K.W. Wang, C.E. Bakis. Effects of interfacial friction on the damping characteristics of composites containing randomly oriented carbon nanotube ropes. Journal of Intelligent Material Systems & Structures 2006;17:217–229.CrossRef Liu A., J.H. Huang, K.W. Wang, C.E. Bakis. Effects of interfacial friction on the damping characteristics of composites containing randomly oriented carbon nanotube ropes. Journal of Intelligent Material Systems & Structures 2006;17:217–229.CrossRef
16.
Zurück zum Zitat Liu A., K.W. Wang, C.E. Bakis, J.H. Huang. Analysis of damping characteristics of a viscoelastic polymer filled with randomly oriented single-wall nanotube ropes. Proceedings of SPIE International Symposium on Smart Structures and Materials 2006;6169:275–291. Liu A., K.W. Wang, C.E. Bakis, J.H. Huang. Analysis of damping characteristics of a viscoelastic polymer filled with randomly oriented single-wall nanotube ropes. Proceedings of SPIE International Symposium on Smart Structures and Materials 2006;6169:275–291.
17.
Zurück zum Zitat Zhou X., K.W. Wang, C.E. Bakis. Effects of interfacial friction on composites containing nanotube ropes. Proceedings of 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2004;AIAA–2004–1784. Zhou X., K.W. Wang, C.E. Bakis. Effects of interfacial friction on composites containing nanotube ropes. Proceedings of 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2004;AIAA–2004–1784.
18.
Zurück zum Zitat Dai R.L., W.H. Liao. Experimental studies on carbon nanotube composites for vibration damping. Proceedings of 17th International Conference on Adaptive Structures and Technologies 2006. Dai R.L., W.H. Liao. Experimental studies on carbon nanotube composites for vibration damping. Proceedings of 17th International Conference on Adaptive Structures and Technologies 2006.
19.
Zurück zum Zitat Odegard G.M., T.S. Gates, K.E. Wise, C. Park, E.J. Siochi. Constitutive modeling of nanotube-reinforced polymer composites. ICASE Report 2002;NASA/CR-2002-211760:No. 2002–2027. Odegard G.M., T.S. Gates, K.E. Wise, C. Park, E.J. Siochi. Constitutive modeling of nanotube-reinforced polymer composites. ICASE Report 2002;NASA/CR-2002-211760:No. 2002–2027.
20.
Zurück zum Zitat Liu Y.J. X.L. Chen. Continuum models of carbon nanotube-based composites using the boundary element method. Electronic Journal of Boundary Elements 2003;1:316–335. Liu Y.J. X.L. Chen. Continuum models of carbon nanotube-based composites using the boundary element method. Electronic Journal of Boundary Elements 2003;1:316–335.
21.
Zurück zum Zitat Inc ANSYS Theory Reference 2005;10.0. Inc ANSYS Theory Reference 2005;10.0.
22.
Zurück zum Zitat Andrews R., M.C. Wiesenberger. Carbon nanotube polymer composites. Current Opinion in Solid State & Materials Science 2004;8:31–37.CrossRef Andrews R., M.C. Wiesenberger. Carbon nanotube polymer composites. Current Opinion in Solid State & Materials Science 2004;8:31–37.CrossRef
23.
Zurück zum Zitat Cifuentes A.O., A. Kalbag. A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elements in Analysis & Design 1992;12:313–318.CrossRef Cifuentes A.O., A. Kalbag. A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elements in Analysis & Design 1992;12:313–318.CrossRef
24.
Zurück zum Zitat Bussler M., A. Ramesh. The eight-node hexahedral element in FEA of part designs. Foundry Management & Technology 1993;121(11):26–28. Bussler M., A. Ramesh. The eight-node hexahedral element in FEA of part designs. Foundry Management & Technology 1993;121(11):26–28.
25.
Zurück zum Zitat Sato K., T. Yoshioka, T. Ando, M. Ahilida, T. Kawabata. Tensile testing of silicon film having different crystallographic orientation carrier out on a silicon chip. Sensor & Actuator A 1998;70:148–152.CrossRef Sato K., T. Yoshioka, T. Ando, M. Ahilida, T. Kawabata. Tensile testing of silicon film having different crystallographic orientation carrier out on a silicon chip. Sensor & Actuator A 1998;70:148–152.CrossRef
26.
Zurück zum Zitat Yi T., L. Lu, C.J. Kim. Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength. Sensor & Actuator A 2000;83:172–178.CrossRef Yi T., L. Lu, C.J. Kim. Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength. Sensor & Actuator A 2000;83:172–178.CrossRef
27.
Zurück zum Zitat Sharpe W.N., B. Yuan, R.L. Edwards. A new technique for measuring the mechanical properties of thin films. Journal of Microelectromechanical System 1997;6:193.CrossRef Sharpe W.N., B. Yuan, R.L. Edwards. A new technique for measuring the mechanical properties of thin films. Journal of Microelectromechanical System 1997;6:193.CrossRef
28.
Zurück zum Zitat Li X., T. Kasai, S. Nakao, T. Ando, M. Shikida, K. Sato, H. Tanaka. Anisotropy in fracture of single crystal silicon film characterized under uniaxial tensile condition. Sensor & Actuator A 2005;117:143–150.CrossRef Li X., T. Kasai, S. Nakao, T. Ando, M. Shikida, K. Sato, H. Tanaka. Anisotropy in fracture of single crystal silicon film characterized under uniaxial tensile condition. Sensor & Actuator A 2005;117:143–150.CrossRef
29.
Zurück zum Zitat Tsuchiya T., O. Tabata, J. Sakata, Y. Taga. Specimen size effect ontensile strength of surface-micromachined polycrystalline silicon thin film. Journal of Microelectromechanical System 1998;7:106.CrossRef Tsuchiya T., O. Tabata, J. Sakata, Y. Taga. Specimen size effect ontensile strength of surface-micromachined polycrystalline silicon thin film. Journal of Microelectromechanical System 1998;7:106.CrossRef
30.
Zurück zum Zitat Wilson C.J., P.A. Beck. Fracture testing of bulk silicon microcantilever beams subjected to a side load. Journal of Microelectromechanical System 1996;5:142–150.CrossRef Wilson C.J., P.A. Beck. Fracture testing of bulk silicon microcantilever beams subjected to a side load. Journal of Microelectromechanical System 1996;5:142–150.CrossRef
31.
Zurück zum Zitat Wilson C.J., A. Oremggi, M. Narbutovskih. Fracture testing of silicon microcantilever beams. Journal of Applied Physics 1996;79:2386.CrossRef Wilson C.J., A. Oremggi, M. Narbutovskih. Fracture testing of silicon microcantilever beams. Journal of Applied Physics 1996;79:2386.CrossRef
32.
Zurück zum Zitat Namazu T., Y. Isono, T. Tanaka. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. Journal of Microelectromechanical System 2000;9:450–459.CrossRef Namazu T., Y. Isono, T. Tanaka. Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. Journal of Microelectromechanical System 2000;9:450–459.CrossRef
33.
Zurück zum Zitat Komanduri R., N. Chandrasekaran, L.M. Raff. Molecular dynamics simulation of uniaxial tension at nanoscale of semiconductor materials for micro-electro-mechanical systems (MEMS) application. Materials Science and Engineering A 2003;34:58–67.CrossRef Komanduri R., N. Chandrasekaran, L.M. Raff. Molecular dynamics simulation of uniaxial tension at nanoscale of semiconductor materials for micro-electro-mechanical systems (MEMS) application. Materials Science and Engineering A 2003;34:58–67.CrossRef
34.
Zurück zum Zitat Komanduri R., L.M. Raff. A review on the molecular dynamics simulation of machining at the atomic scale. Proceedings of Institution Mechanical Engineers Part B 2001;215:1639–1672.CrossRef Komanduri R., L.M. Raff. A review on the molecular dynamics simulation of machining at the atomic scale. Proceedings of Institution Mechanical Engineers Part B 2001;215:1639–1672.CrossRef
35.
Zurück zum Zitat Girifalca L.A., V.G. Weizer. Application of morse potential function to cubic metals. Physical Review 1959;114:687–690.CrossRef Girifalca L.A., V.G. Weizer. Application of morse potential function to cubic metals. Physical Review 1959;114:687–690.CrossRef
36.
Zurück zum Zitat Stillinger F.H., T.A. Weber. Computer simulation of local order in condensed phases of silicon. Physical Review B 1985;31:5262–5271.CrossRef Stillinger F.H., T.A. Weber. Computer simulation of local order in condensed phases of silicon. Physical Review B 1985;31:5262–5271.CrossRef
37.
Zurück zum Zitat Zhang P., Y. Huang, P.H. Geubelle, P.A. Klvin, K.C. Hwang. The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. International Journal of Solid and Structures 2002;39:3893–3906.CrossRef Zhang P., Y. Huang, P.H. Geubelle, P.A. Klvin, K.C. Hwang. The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. International Journal of Solid and Structures 2002;39:3893–3906.CrossRef
38.
Zurück zum Zitat Xiao S.P., T. Belytschko. A bridging domain method for coupling continua with molecular dynamics. Computational Methods for Applied Mechanical Engineering 2004;193:1645–1669.CrossRef Xiao S.P., T. Belytschko. A bridging domain method for coupling continua with molecular dynamics. Computational Methods for Applied Mechanical Engineering 2004;193:1645–1669.CrossRef
39.
Zurück zum Zitat Wagner G.J., W.K. Liu. Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics 2003;190:249–274.CrossRef Wagner G.J., W.K. Liu. Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics 2003;190:249–274.CrossRef
41.
Zurück zum Zitat Chiang K.N., C.Y. Chou, C.J. Wu, C.A. Yuan. Prediction of the bulk elastic constant of metals using atomic-level single-lattice analytical method. Applied Physics Letters 2006;88:171904.CrossRef Chiang K.N., C.Y. Chou, C.J. Wu, C.A. Yuan. Prediction of the bulk elastic constant of metals using atomic-level single-lattice analytical method. Applied Physics Letters 2006;88:171904.CrossRef
42.
Zurück zum Zitat Jeng Y.R., C.M. Tan. Computer simulation of tension experiments of a thin film using atomic model. Physics Review B 2002;65:174107.CrossRef Jeng Y.R., C.M. Tan. Computer simulation of tension experiments of a thin film using atomic model. Physics Review B 2002;65:174107.CrossRef
43.
Zurück zum Zitat Foiles S.M., M.S. Daw. Calculation of the thermal expansion of metals using the embedded-atom method. Physics Review B 1988;38:12643.CrossRef Foiles S.M., M.S. Daw. Calculation of the thermal expansion of metals using the embedded-atom method. Physics Review B 1988;38:12643.CrossRef
44.
Zurück zum Zitat Brenner D.W., O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott. A second-generation reactive empirical bond order potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter 2002;14:783–802.CrossRef Brenner D.W., O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott. A second-generation reactive empirical bond order potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter 2002;14:783–802.CrossRef
45.
Zurück zum Zitat Cornell W.D., P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman. A second generation force filed for the simulation of proteins, nucleic, acids, and organic molecules. Journal of American Chemical Society 1995;117:5179–5197.CrossRef Cornell W.D., P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman. A second generation force filed for the simulation of proteins, nucleic, acids, and organic molecules. Journal of American Chemical Society 1995;117:5179–5197.CrossRef
46.
Zurück zum Zitat Tersoff J. New empirical model for the structure properties of silicon. Physical Review Letters 1986;56:632–635.CrossRef Tersoff J. New empirical model for the structure properties of silicon. Physical Review Letters 1986;56:632–635.CrossRef
47.
Zurück zum Zitat Brantly W.A. Calculated elastic constants for stress problems associated with semiconductor devices. Journal of Applied Physics 1973;44:534–535.CrossRef Brantly W.A. Calculated elastic constants for stress problems associated with semiconductor devices. Journal of Applied Physics 1973;44:534–535.CrossRef
48.
Zurück zum Zitat Chiang K.N., C.A. Yuan, C.N. Han, C.Y. Chou, Y. Cui. Mechanical characteristic of ssDNA/dsDNA molecule under external loading. Applied Physics. Letters 2006;88:023902–023903.CrossRef Chiang K.N., C.A. Yuan, C.N. Han, C.Y. Chou, Y. Cui. Mechanical characteristic of ssDNA/dsDNA molecule under external loading. Applied Physics. Letters 2006;88:023902–023903.CrossRef
49.
Zurück zum Zitat Chiang K.N., C.H. Chang, C.T. Peng. Local-strain effects in Si/SiGe/Si islands on oxide. Applied Physics Letters 2005;87:191901–191903.CrossRef Chiang K.N., C.H. Chang, C.T. Peng. Local-strain effects in Si/SiGe/Si islands on oxide. Applied Physics Letters 2005;87:191901–191903.CrossRef
50.
Zurück zum Zitat Daw M.S., M.I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physics Review B 1984;29:6443.CrossRef Daw M.S., M.I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physics Review B 1984;29:6443.CrossRef
Metadaten
Titel
Nano-Scale and Atomistic-Scale Modeling of Advanced Materials
verfasst von
Ruo Li Dai
Wei-Hsin Liao
Chun-Te Lin
Kuo-Ning Chiang
Shi-Wei Ricky Lee
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0040-1_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.