Skip to main content

2018 | OriginalPaper | Buchkapitel

Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium(II) tris-Heteroleptic Compounds or Natural Dyes

verfasst von : Juliana dos Santos de Souza, Leilane Oliveira Martins de Andrade, Andressa Vidal Müller, André Sarto Polo

Erschienen in: Nanoenergy

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The worldwide energy demand is growing and the development of sustainable power generation is a critical issue. Among several possibilities, dye-sensitized solar cells, DSSCs, have emerged as a promising device to meet the energy needs as an environmentally friendly alternative and investigation for academic and technological improvement of DSSCs are being carried out. One of the most important components of this device is the dye-sensitizer, since it is responsible for the sunlight harvesting and electron injection, the first steps of energy conversion. Herein, we review the developments on tris-heteroleptic ruthenium dye-sensitizers, which have been gaining much attention on the last years due to the possibility of modulating their photochemical and photophysical properties by using different ligands. Besides synthetic compounds, natural dyes have also been employed as semiconductor sensitizers for these devices and are also reviewed. These dyes can lower the device production costs since they can be promptly obtained from fruits or flowers in a very simple way. Among numerous classes of natural dyes, anthocyanins have been the most investigated ones and gained special attention in this work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cook TR et al (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502CrossRef Cook TR et al (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502CrossRef
2.
Zurück zum Zitat Nocera DG (2009) Chemistry of personalized solar energy. Inorg Chem 48(21):10001–10017CrossRef Nocera DG (2009) Chemistry of personalized solar energy. Inorg Chem 48(21):10001–10017CrossRef
3.
Zurück zum Zitat Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. Chem Phys Chem 1(4):162–193CrossRef Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. Chem Phys Chem 1(4):162–193CrossRef
4.
Zurück zum Zitat Cameron D, Holliday R, Thompson D (2003) Gold’s future role in fuel cell systems. J Power Sources 118(1–2):298–303CrossRef Cameron D, Holliday R, Thompson D (2003) Gold’s future role in fuel cell systems. J Power Sources 118(1–2):298–303CrossRef
5.
Zurück zum Zitat Lemos SG et al (2007) Electrocatalysis of methanol, ethanol and formic acid using a Ru/Pt metallic bilayer. J Power Sour 163(2):695–701CrossRef Lemos SG et al (2007) Electrocatalysis of methanol, ethanol and formic acid using a Ru/Pt metallic bilayer. J Power Sour 163(2):695–701CrossRef
6.
Zurück zum Zitat Freitas RG et al (2007) Methanol oxidation reaction on Ti/RuO2(x)Pt(1-x) electrodes prepared by the polymeric precursor method. J Power Sour 171(2):373–380CrossRef Freitas RG et al (2007) Methanol oxidation reaction on Ti/RuO2(x)Pt(1-x) electrodes prepared by the polymeric precursor method. J Power Sour 171(2):373–380CrossRef
7.
Zurück zum Zitat Polo AS et al (2011) Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation. J Power Sour 196(2):872–876CrossRef Polo AS et al (2011) Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation. J Power Sour 196(2):872–876CrossRef
8.
Zurück zum Zitat Gu C, Shannon C (2007) Investigation of the photocatalytic activity of TiO2-polyoxometalate systems for the oxidation of methanol. J Mol Catal A: Chem 262(1–2):185–189CrossRef Gu C, Shannon C (2007) Investigation of the photocatalytic activity of TiO2-polyoxometalate systems for the oxidation of methanol. J Mol Catal A: Chem 262(1–2):185–189CrossRef
9.
Zurück zum Zitat Drew K et al (2005) Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J Phys Chem B 109(24):11851–11857 Drew K et al (2005) Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J Phys Chem B 109(24):11851–11857
10.
Zurück zum Zitat Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860CrossRef Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860CrossRef
11.
Zurück zum Zitat Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed Engl 46(1–2):52–66 Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed Engl 46(1–2):52–66
12.
Zurück zum Zitat Meyer TJ (1989) Chemical approaches to artificial photosynthesis. Acc Chem Res 22(5):163–170CrossRef Meyer TJ (1989) Chemical approaches to artificial photosynthesis. Acc Chem Res 22(5):163–170CrossRef
13.
Zurück zum Zitat Dubois MR, Dubois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc Chem Res 42(12):1974–1982CrossRef Dubois MR, Dubois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc Chem Res 42(12):1974–1982CrossRef
14.
Zurück zum Zitat Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42(12):1983–1994CrossRef Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42(12):1983–1994CrossRef
15.
Zurück zum Zitat Concepcion JJ et al (2009) Making oxygen with ruthenium complexes. Acc Chem Res 42(12):1954–1965CrossRef Concepcion JJ et al (2009) Making oxygen with ruthenium complexes. Acc Chem Res 42(12):1954–1965CrossRef
16.
Zurück zum Zitat Walter MG et al (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473CrossRef Walter MG et al (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473CrossRef
17.
Zurück zum Zitat Caramori S et al (2010) Photoelectrochemical behavior of sensitized TiO2 photoanodes in an aqueous environment: application to hydrogen production. Inorg Chem 49(7):3320–3328CrossRef Caramori S et al (2010) Photoelectrochemical behavior of sensitized TiO2 photoanodes in an aqueous environment: application to hydrogen production. Inorg Chem 49(7):3320–3328CrossRef
18.
Zurück zum Zitat Koike K et al (2009) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: III: effects of length of alkyl chain connecting photosensitizer to catalyst. J Photochem Photobiol, A 207(1):109–114CrossRef Koike K et al (2009) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: III: effects of length of alkyl chain connecting photosensitizer to catalyst. J Photochem Photobiol, A 207(1):109–114CrossRef
19.
Zurück zum Zitat Takeda H et al (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130(6):2023–2031CrossRef Takeda H et al (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130(6):2023–2031CrossRef
20.
Zurück zum Zitat Kroon JM et al (2007) Nanocrystalline dye-sensitized solar cells having maximum performance. Prog Photovoltaics Res Appl 15(1):1–18CrossRef Kroon JM et al (2007) Nanocrystalline dye-sensitized solar cells having maximum performance. Prog Photovoltaics Res Appl 15(1):1–18CrossRef
21.
Zurück zum Zitat Tributsch H (1972) Reaction of excited chlorophyll molecules at electrodes and in photosynthesis. Photochem Photobiol 16(4):261–269CrossRef Tributsch H (1972) Reaction of excited chlorophyll molecules at electrodes and in photosynthesis. Photochem Photobiol 16(4):261–269CrossRef
22.
Zurück zum Zitat O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRef O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRef
23.
Zurück zum Zitat Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344CrossRef Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344CrossRef
24.
Zurück zum Zitat Katoh R et al (2004) Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord Chem Rev 248(13–14):1195–1213CrossRef Katoh R et al (2004) Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord Chem Rev 248(13–14):1195–1213CrossRef
25.
Zurück zum Zitat Gregg BA (2004) Interfacial processes in the dye-sensitized solar cell. Coord Chem Rev 248(13–14):1215–1224CrossRef Gregg BA (2004) Interfacial processes in the dye-sensitized solar cell. Coord Chem Rev 248(13–14):1215–1224CrossRef
26.
Zurück zum Zitat Galoppini E (2004) Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord Chem Rev 248(13–14):1283–1297CrossRef Galoppini E (2004) Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord Chem Rev 248(13–14):1283–1297CrossRef
27.
Zurück zum Zitat Anderson NA, Lian T (2004) Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coord Chem Rev 248(13–14):1231–1246CrossRef Anderson NA, Lian T (2004) Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coord Chem Rev 248(13–14):1231–1246CrossRef
28.
Zurück zum Zitat Asbury JB et al (2003) Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film. J Phys Chem B 107(30):7376–7386CrossRef Asbury JB et al (2003) Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film. J Phys Chem B 107(30):7376–7386CrossRef
29.
Zurück zum Zitat Anderson NA, Ai X, Lian T (2003) Electron injection dynamics from ru polypyridyl complexes to ZnO nanocrystalline thin films. J Phys Chem B 107(51):14414–14421CrossRef Anderson NA, Ai X, Lian T (2003) Electron injection dynamics from ru polypyridyl complexes to ZnO nanocrystalline thin films. J Phys Chem B 107(51):14414–14421CrossRef
30.
Zurück zum Zitat Garcia CG et al (2002) Electron injection versus charge recombination in photoelectrochemical solar cells using cis-[(dcbH2)2Ru(CNpy)(H2O)]Cl2 as a nanocrystalline TiO2 sensitizer. J Photochem Photobiol, A 151(1–3):165–170CrossRef Garcia CG et al (2002) Electron injection versus charge recombination in photoelectrochemical solar cells using cis-[(dcbH2)2Ru(CNpy)(H2O)]Cl2 as a nanocrystalline TiO2 sensitizer. J Photochem Photobiol, A 151(1–3):165–170CrossRef
31.
Zurück zum Zitat Garcia CG et al (2002) Time-resolved experiments in dye-sensitized solar cells using [(dcbH2)2Ru(ppy)2](ClO4)2 as a nanocrystalline TiO2 sensitizer. J Photochem Photobiol, A 147(2):143–148CrossRef Garcia CG et al (2002) Time-resolved experiments in dye-sensitized solar cells using [(dcbH2)2Ru(ppy)2](ClO4)2 as a nanocrystalline TiO2 sensitizer. J Photochem Photobiol, A 147(2):143–148CrossRef
32.
Zurück zum Zitat Kuang DB et al (2006) High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J Am Chem Soc 128(12):4146–4154CrossRef Kuang DB et al (2006) High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J Am Chem Soc 128(12):4146–4154CrossRef
33.
Zurück zum Zitat Wang P et al (2004) Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv Mater 16(20):1806 Wang P et al (2004) Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv Mater 16(20):1806
34.
Zurück zum Zitat Wang P et al (2004) Amphiphilic polypyridyl ruthenium complexes with substituted 2,2′-dipyridylamine ligands for nanocrystalline dye-sensitized solar cells. Chem Mater 16(17):3246–3251CrossRef Wang P et al (2004) Amphiphilic polypyridyl ruthenium complexes with substituted 2,2′-dipyridylamine ligands for nanocrystalline dye-sensitized solar cells. Chem Mater 16(17):3246–3251CrossRef
35.
Zurück zum Zitat Pelet S, Moser J-E, Gratzel M (2000) Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2. J Phys Chem B 104(8):1791–1795CrossRef Pelet S, Moser J-E, Gratzel M (2000) Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2. J Phys Chem B 104(8):1791–1795CrossRef
36.
Zurück zum Zitat Patrocinio AOT, Paterno LG, Iha NYM (2010) Role of polyelectrolyte for layer-by-layer compact TiO2 films in efficiency enhanced dye-sensitized solar cells. J Phys Chem C 114(41):17954–17959CrossRef Patrocinio AOT, Paterno LG, Iha NYM (2010) Role of polyelectrolyte for layer-by-layer compact TiO2 films in efficiency enhanced dye-sensitized solar cells. J Phys Chem C 114(41):17954–17959CrossRef
37.
Zurück zum Zitat Murakami Iha NY, Arcia CG, Bignozzi CA (2003) Dye-sensitized photoelectrochemical solar cells. In: Nalwa HS (ed) Handbook of photochemistry and photobiology. American Scientific Publishers, Stevenson Ranch, California, USA, pp 49–82 Murakami Iha NY, Arcia CG, Bignozzi CA (2003) Dye-sensitized photoelectrochemical solar cells. In: Nalwa HS (ed) Handbook of photochemistry and photobiology. American Scientific Publishers, Stevenson Ranch, California, USA, pp 49–82
38.
Zurück zum Zitat Nazeeruddin MK et al (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115(14):6382–6390CrossRef Nazeeruddin MK et al (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115(14):6382–6390CrossRef
39.
Zurück zum Zitat Nazeeruddin MK, Gratzel M (2001) Separation of linkage isomers of trithiocyanato (4,4′,4″-tricarboxy-2,2′,6,2″-terpyridine)ruthenium(II) by pH-titration method and their application in nanocrystalline TiO2-based solar cells. J Photochem Photobiol A-Chem 145(1–2):79–86CrossRef Nazeeruddin MK, Gratzel M (2001) Separation of linkage isomers of trithiocyanato (4,4′,4″-tricarboxy-2,2′,6,2″-terpyridine)ruthenium(II) by pH-titration method and their application in nanocrystalline TiO2-based solar cells. J Photochem Photobiol A-Chem 145(1–2):79–86CrossRef
40.
Zurück zum Zitat Chen CY et al (2006) A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angewandte Chem Int Ed 45(35):5822–5825CrossRef Chen CY et al (2006) A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angewandte Chem Int Ed 45(35):5822–5825CrossRef
41.
Zurück zum Zitat Cao YM et al (2009) Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio)thiophene conjugated bipyridine. J Phys Chem C 113(15):6290–6297CrossRef Cao YM et al (2009) Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio)thiophene conjugated bipyridine. J Phys Chem C 113(15):6290–6297CrossRef
42.
Zurück zum Zitat Nazeeruddin MK et al (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987CrossRef Nazeeruddin MK et al (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987CrossRef
43.
Zurück zum Zitat Lv XJ, Wang FF, Li YH (2010) Studies of an extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells. ACS Appl Mater Interfaces 2(7):1980–1986CrossRef Lv XJ, Wang FF, Li YH (2010) Studies of an extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells. ACS Appl Mater Interfaces 2(7):1980–1986CrossRef
44.
Zurück zum Zitat Gao F et al (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728CrossRef Gao F et al (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728CrossRef
45.
Zurück zum Zitat Chen CY et al (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10):3103–3109CrossRef Chen CY et al (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3(10):3103–3109CrossRef
46.
Zurück zum Zitat Chen CY et al (2009) New ruthenium sensitizer with carbazole antennas for efficient and stable thin-film dye-sensitized solar cells. J Phys Chem C 113(48):20752–20757CrossRef Chen CY et al (2009) New ruthenium sensitizer with carbazole antennas for efficient and stable thin-film dye-sensitized solar cells. J Phys Chem C 113(48):20752–20757CrossRef
47.
Zurück zum Zitat Yu QJ et al (2009) An extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells: the effects of pi-conjugation extension. J Phys Chem C 113(32):14559–14566CrossRef Yu QJ et al (2009) An extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells: the effects of pi-conjugation extension. J Phys Chem C 113(32):14559–14566CrossRef
48.
Zurück zum Zitat Sun YL et al (2010) Viable alternative to N719 for dye-sensitized solar cells. ACS Appl Mater Interfaces 2(7):2039–2045CrossRef Sun YL et al (2010) Viable alternative to N719 for dye-sensitized solar cells. ACS Appl Mater Interfaces 2(7):2039–2045CrossRef
49.
Zurück zum Zitat Polo AS, Itokazu MK, Murakami Iha NY (2004) Metal complex sensitizers in dye-sensitized solar cells. Coord Chem Rev 248(13–14):1343–1361CrossRef Polo AS, Itokazu MK, Murakami Iha NY (2004) Metal complex sensitizers in dye-sensitized solar cells. Coord Chem Rev 248(13–14):1343–1361CrossRef
50.
Zurück zum Zitat Pashaei B et al (2016) Influence of ancillary ligands in dye-sensitized solar cells. Chem Rev 116(16):9485–9564CrossRef Pashaei B et al (2016) Influence of ancillary ligands in dye-sensitized solar cells. Chem Rev 116(16):9485–9564CrossRef
51.
Zurück zum Zitat Jin Zhengzhe et al (2008) Triarylamine-functionalized ruthenium dyes for efficient dye-sensitized solar cells. Chem Sus Chem 1(11):901–904CrossRef Jin Zhengzhe et al (2008) Triarylamine-functionalized ruthenium dyes for efficient dye-sensitized solar cells. Chem Sus Chem 1(11):901–904CrossRef
52.
Zurück zum Zitat Mitsopoulou CA et al (2007) Synthesis, characterization and sensitization properties of two novel mono and bis carboxyl-dipyrido-phenazine ruthenium(II) charge transfer complexes. J Photochem Photobiol A-Chem 191:6–12CrossRef Mitsopoulou CA et al (2007) Synthesis, characterization and sensitization properties of two novel mono and bis carboxyl-dipyrido-phenazine ruthenium(II) charge transfer complexes. J Photochem Photobiol A-Chem 191:6–12CrossRef
53.
Zurück zum Zitat Huang WK et al (2010) Synthesis and electron-transfer properties of benzimidazole-functionalized ruthenium complexes for highly efficient dye-sensitized solar cells. Chem Commun 46(47):8992–8994CrossRef Huang WK et al (2010) Synthesis and electron-transfer properties of benzimidazole-functionalized ruthenium complexes for highly efficient dye-sensitized solar cells. Chem Commun 46(47):8992–8994CrossRef
54.
Zurück zum Zitat Wu SJ et al (2010) An efficient light-harvesting ruthenium dye for solar cell application. Dyes Pigm 84(1):95–101CrossRef Wu SJ et al (2010) An efficient light-harvesting ruthenium dye for solar cell application. Dyes Pigm 84(1):95–101CrossRef
55.
Zurück zum Zitat Abbotto A et al (2008) Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chem Commun 42:5318–5320CrossRef Abbotto A et al (2008) Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chem Commun 42:5318–5320CrossRef
56.
Zurück zum Zitat Yum JH et al (2009) High efficient donor-acceptor ruthenium complex for dye-sensitized solar cell applications. Energy Environ Sci 2(1):100–102CrossRef Yum JH et al (2009) High efficient donor-acceptor ruthenium complex for dye-sensitized solar cell applications. Energy Environ Sci 2(1):100–102CrossRef
57.
Zurück zum Zitat Willinger K et al (2009) Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium(II) donor-antenna dyes. J Mater Chem 19(30):5364–5376CrossRef Willinger K et al (2009) Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium(II) donor-antenna dyes. J Mater Chem 19(30):5364–5376CrossRef
58.
Zurück zum Zitat Wang P et al (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte (vol 2, p 402, 2003). Nat Mater 2(7):498CrossRef Wang P et al (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte (vol 2, p 402, 2003). Nat Mater 2(7):498CrossRef
59.
Zurück zum Zitat Sahin C et al (2008) Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC. Inorg Chim Acta 361(3):671–676CrossRef Sahin C et al (2008) Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC. Inorg Chim Acta 361(3):671–676CrossRef
60.
Zurück zum Zitat Nazeeruddin MK et al (2004) Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coord Chem Rev 248(13–14):1317–1328CrossRef Nazeeruddin MK et al (2004) Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coord Chem Rev 248(13–14):1317–1328CrossRef
61.
Zurück zum Zitat Klein C et al (2004) Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorg Chem 43(14):4216–4226CrossRef Klein C et al (2004) Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells. Inorg Chem 43(14):4216–4226CrossRef
62.
Zurück zum Zitat Gao FF et al (2008) A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chem Commun 23:2635–2637CrossRef Gao FF et al (2008) A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chem Commun 23:2635–2637CrossRef
63.
Zurück zum Zitat Hallett AJ, Jones JE (2011) Purification-free synthesis of a highly efficient ruthenium dye complex for dye-sensitised solar cells (DSSCs). Dalton Trans 40(15):3871–3876CrossRef Hallett AJ, Jones JE (2011) Purification-free synthesis of a highly efficient ruthenium dye complex for dye-sensitised solar cells (DSSCs). Dalton Trans 40(15):3871–3876CrossRef
64.
Zurück zum Zitat Lagref JJ, Nazeeruddin MK, Grätzel M (2003) Molecular engineering on semiconductor surfaces: design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO2 solar cells. Synth Met 138(1–2):333–339CrossRef Lagref JJ, Nazeeruddin MK, Grätzel M (2003) Molecular engineering on semiconductor surfaces: design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO2 solar cells. Synth Met 138(1–2):333–339CrossRef
65.
Zurück zum Zitat Sygkridou D et al (2015) Comparative studies of pyridine and bipyridine ruthenium dye complexes with different side groups as sensitizers in sol-gel quasi-solid-state dye sensitized solar cells. Electrochim Acta 160:227–234CrossRef Sygkridou D et al (2015) Comparative studies of pyridine and bipyridine ruthenium dye complexes with different side groups as sensitizers in sol-gel quasi-solid-state dye sensitized solar cells. Electrochim Acta 160:227–234CrossRef
66.
Zurück zum Zitat Kong F-T, Dai S-Y, Wang K-J (2007) New amphiphilic polypyridyl ruthenium(II) sensitizer and its application in dye-sensitized solar cells. Chin J Chem 25(2):168–171CrossRef Kong F-T, Dai S-Y, Wang K-J (2007) New amphiphilic polypyridyl ruthenium(II) sensitizer and its application in dye-sensitized solar cells. Chin J Chem 25(2):168–171CrossRef
67.
Zurück zum Zitat Liu K-Y et al (2010) Synthesis and characterization of cross-linkable ruthenium complex dye and its application on dye-sensitized solar cells. J Polym Sci, Part A: Polym Chem 48(2):366–372CrossRef Liu K-Y et al (2010) Synthesis and characterization of cross-linkable ruthenium complex dye and its application on dye-sensitized solar cells. J Polym Sci, Part A: Polym Chem 48(2):366–372CrossRef
68.
Zurück zum Zitat Ni J-S et al (2012) Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties. J Colloid Interface Sci 386(1):359–365CrossRef Ni J-S et al (2012) Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties. J Colloid Interface Sci 386(1):359–365CrossRef
69.
Zurück zum Zitat Song Y-Y et al (2009) Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc 131(12):4230–4232CrossRef Song Y-Y et al (2009) Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc 131(12):4230–4232CrossRef
70.
Zurück zum Zitat Giribabu L et al (2009) High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells. Energy Environ Sci 2(7):770–773CrossRef Giribabu L et al (2009) High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells. Energy Environ Sci 2(7):770–773CrossRef
71.
Zurück zum Zitat Jiang KJ et al (2008) Efficient sensitization of nanocrystalline TiO2 films with highmolar extinction coefficient ruthenium complex. Inorg Chim Acta 361(3):783–785CrossRef Jiang KJ et al (2008) Efficient sensitization of nanocrystalline TiO2 films with highmolar extinction coefficient ruthenium complex. Inorg Chim Acta 361(3):783–785CrossRef
72.
Zurück zum Zitat Gao FF et al (2009) Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells. Inorg Chem 48(6):2664–2669CrossRef Gao FF et al (2009) Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells. Inorg Chem 48(6):2664–2669CrossRef
73.
Zurück zum Zitat Nazeeruddin MK et al (2007) A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. J Photochem Photobiol A Chem 185(2–3):331–337CrossRef Nazeeruddin MK et al (2007) A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. J Photochem Photobiol A Chem 185(2–3):331–337CrossRef
74.
Zurück zum Zitat Karthikeyan CS et al (2007) Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes. Sol Energy Mater Sol Cells 91(5):432–439CrossRef Karthikeyan CS et al (2007) Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes. Sol Energy Mater Sol Cells 91(5):432–439CrossRef
75.
Zurück zum Zitat Kuang D et al (2007) High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv Mater 19(8):1133–1137CrossRef Kuang D et al (2007) High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv Mater 19(8):1133–1137CrossRef
76.
Zurück zum Zitat Hussain M et al (2013) Structure-property relationship of extended [small pi]-conjugation of ancillary ligands with and without an electron donor of heteroleptic Ru(ii) bipyridyl complexes for high efficiency dye-sensitized solar cells. Phys Chem Chem Phys 15(21):8401–8408CrossRef Hussain M et al (2013) Structure-property relationship of extended [small pi]-conjugation of ancillary ligands with and without an electron donor of heteroleptic Ru(ii) bipyridyl complexes for high efficiency dye-sensitized solar cells. Phys Chem Chem Phys 15(21):8401–8408CrossRef
77.
Zurück zum Zitat Chen CY et al (2007) A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv Mater 19(22):3888 Chen CY et al (2007) A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv Mater 19(22):3888
78.
Zurück zum Zitat Li J-Y et al (2010) Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. J Mater Chem 20(34):7158–7164CrossRef Li J-Y et al (2010) Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. J Mater Chem 20(34):7158–7164CrossRef
79.
Zurück zum Zitat Ryu TI et al (2009) Synthesis and photovoltaic properties of novel ruthenium(II) sensitizers for dye-sensitized solar cell applications. Bull Korean Chem Soc 30(10):2329–2337CrossRef Ryu TI et al (2009) Synthesis and photovoltaic properties of novel ruthenium(II) sensitizers for dye-sensitized solar cell applications. Bull Korean Chem Soc 30(10):2329–2337CrossRef
80.
Zurück zum Zitat Zhu SS, Kingsborough RP, Swager TM (1999) Conducting redox polymers: investigations of polythiophene-Ru(bpy)(3)(n+) hybrid materials. J Mater Chem 9(9):2123–2131CrossRef Zhu SS, Kingsborough RP, Swager TM (1999) Conducting redox polymers: investigations of polythiophene-Ru(bpy)(3)(n+) hybrid materials. J Mater Chem 9(9):2123–2131CrossRef
81.
Zurück zum Zitat Hara K et al (2001) Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium(II) phenanthroline complex photosensitizers. Langmuir 17(19):5992–5999CrossRef Hara K et al (2001) Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium(II) phenanthroline complex photosensitizers. Langmuir 17(19):5992–5999CrossRef
82.
Zurück zum Zitat Reynal A et al (2008) A phenanthroline heteroleptic ruthenium complex and its application to dye-sensitised solar cells. Eur J Inorg Chem 12:1955–1958CrossRef Reynal A et al (2008) A phenanthroline heteroleptic ruthenium complex and its application to dye-sensitised solar cells. Eur J Inorg Chem 12:1955–1958CrossRef
83.
Zurück zum Zitat Onozawa-Komatsuzaki N et al (2006) Molecular and electronic ground and excited structures of heteroleptic ruthenium polypyridyl dyes for nanocrystalline TiO2 solar cells. New J Chem 30(5):689–697CrossRef Onozawa-Komatsuzaki N et al (2006) Molecular and electronic ground and excited structures of heteroleptic ruthenium polypyridyl dyes for nanocrystalline TiO2 solar cells. New J Chem 30(5):689–697CrossRef
84.
Zurück zum Zitat Carvalho F et al (2014) Synthesis, characterization and photoelectrochemical performance of a Tris-heteroleptic ruthenium(II) complex having 4,7-dimethyl-1, 10-phenanthroline. Inorg Chim Acta 414:145–152CrossRef Carvalho F et al (2014) Synthesis, characterization and photoelectrochemical performance of a Tris-heteroleptic ruthenium(II) complex having 4,7-dimethyl-1, 10-phenanthroline. Inorg Chim Acta 414:145–152CrossRef
85.
Zurück zum Zitat Müller AV et al (2015) Effects of methyl-substituted phenanthrolines on the performance of ruthenium(ii) dye-sensitizers. J Braz Chem Soc 26(11):2224–2232 Müller AV et al (2015) Effects of methyl-substituted phenanthrolines on the performance of ruthenium(ii) dye-sensitizers. J Braz Chem Soc 26(11):2224–2232
86.
Zurück zum Zitat Muller AV et al (2016) A high efficiency ruthenium(ii) Tris-heteroleptic dye containing 4,7-dicarbazole-1,10-phenanthroline for nanocrystalline solar cells. Rsc Adv 6(52):46487–46494CrossRef Muller AV et al (2016) A high efficiency ruthenium(ii) Tris-heteroleptic dye containing 4,7-dicarbazole-1,10-phenanthroline for nanocrystalline solar cells. Rsc Adv 6(52):46487–46494CrossRef
87.
Zurück zum Zitat Reynal A et al (2008) Interfacial charge recombination between e–TiO2 and the I −/I 3 − ; electrolyte in ruthenium heteroleptic complexes: dye molecular structure-open circuit voltage relationship. J Am Chem Soc 130(41):13558–13567CrossRef Reynal A et al (2008) Interfacial charge recombination between e–TiO2 and the I /I 3 ; electrolyte in ruthenium heteroleptic complexes: dye molecular structure-open circuit voltage relationship. J Am Chem Soc 130(41):13558–13567CrossRef
88.
Zurück zum Zitat Oh H et al (2014) Synthesis of heteroleptic Ru(II) complexes ligated with 1,3-dihydro-1,1,3,3-tetramethyl-7,8-diazacyclopenta 1 phenanthren-2-one and application in dye-sensitized solar cells. Synth Met 198:260–266CrossRef Oh H et al (2014) Synthesis of heteroleptic Ru(II) complexes ligated with 1,3-dihydro-1,1,3,3-tetramethyl-7,8-diazacyclopenta 1 phenanthren-2-one and application in dye-sensitized solar cells. Synth Met 198:260–266CrossRef
89.
Zurück zum Zitat Chen CY et al (2007) New ruthenium complexes containing oligoalkylthiophene-substituted 1,10-phenanthroline for nanocrystalline dye-sensitized solar cells. Adv Func Mater 17(1):29–36CrossRef Chen CY et al (2007) New ruthenium complexes containing oligoalkylthiophene-substituted 1,10-phenanthroline for nanocrystalline dye-sensitized solar cells. Adv Func Mater 17(1):29–36CrossRef
90.
Zurück zum Zitat Ocakoglu K et al (2012) The photovoltaic performance of new ruthenium complexes in DSSCs based on nanorod ZnO electrode. Synth Met 162(23):2125–2133CrossRef Ocakoglu K et al (2012) The photovoltaic performance of new ruthenium complexes in DSSCs based on nanorod ZnO electrode. Synth Met 162(23):2125–2133CrossRef
91.
Zurück zum Zitat Smestad GP, Grätzel M (1998) Demonstrating electron transfer and nanotechnology: a natural dye-sensitised nanocrystalline energy converter. J Chem Edu 75(6):752–756CrossRef Smestad GP, Grätzel M (1998) Demonstrating electron transfer and nanotechnology: a natural dye-sensitised nanocrystalline energy converter. J Chem Edu 75(6):752–756CrossRef
92.
Zurück zum Zitat Smestad GP (1998) Education and solar conversion: demonstrating electron transfer. Sol Energy Mater Sol Cells 55(1–2):157–178CrossRef Smestad GP (1998) Education and solar conversion: demonstrating electron transfer. Sol Energy Mater Sol Cells 55(1–2):157–178CrossRef
93.
Zurück zum Zitat Sonai GG et al (2015) Solar cells sensitized with natural dyes: an introductory experiment about solar energy for undergraduate students. Quim Nova 38(10):1357–1365 Sonai GG et al (2015) Solar cells sensitized with natural dyes: an introductory experiment about solar energy for undergraduate students. Quim Nova 38(10):1357–1365
94.
Zurück zum Zitat Patrocinio AOT, Iha NYM (2010) Toward sustainability: solar cells sensitized by natural extracts. Quim Nova 33(3):574–578CrossRef Patrocinio AOT, Iha NYM (2010) Toward sustainability: solar cells sensitized by natural extracts. Quim Nova 33(3):574–578CrossRef
95.
Zurück zum Zitat Chien CY, Hsu BD (2013) Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Solar Energy Part C 98:203–211 Chien CY, Hsu BD (2013) Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Solar Energy Part C 98:203–211
96.
Zurück zum Zitat Suyitno S et al (2015) Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye. Spectrochim Acta Part A Mol Biomol Spectrosc 148:99–104CrossRef Suyitno S et al (2015) Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye. Spectrochim Acta Part A Mol Biomol Spectrosc 148:99–104CrossRef
97.
Zurück zum Zitat Chien CY, Hsu BD (2014) Performance enhancement of dye-sensitized solar cells based on anthocyanin by carbohydrates. Sol Energy 108:403–411CrossRef Chien CY, Hsu BD (2014) Performance enhancement of dye-sensitized solar cells based on anthocyanin by carbohydrates. Sol Energy 108:403–411CrossRef
98.
Zurück zum Zitat Treat NA, Knorr FJ, McHale JL (2016) Templated assembly of betanin chromophore on TiO2: aggregation-enhanced light-harvesting and efficient electron injection in a natural dye-sensitized solar cell. J Phys Chem C 120(17):9122–9131CrossRef Treat NA, Knorr FJ, McHale JL (2016) Templated assembly of betanin chromophore on TiO2: aggregation-enhanced light-harvesting and efficient electron injection in a natural dye-sensitized solar cell. J Phys Chem C 120(17):9122–9131CrossRef
99.
Zurück zum Zitat Teoli F et al (2016) Role of pH and pigment concentration for natural dye-sensitized solar cells treated with anthocyanin extracts of common fruits. J Photochem Photobiol A Chem 316:24–30CrossRef Teoli F et al (2016) Role of pH and pigment concentration for natural dye-sensitized solar cells treated with anthocyanin extracts of common fruits. J Photochem Photobiol A Chem 316:24–30CrossRef
100.
Zurück zum Zitat Akila Y et al (2016) Enhanced performance of natural dye sensitised solar cells fabricated using rutile TiO2 nanorods. Opt Mater 58:76–83CrossRef Akila Y et al (2016) Enhanced performance of natural dye sensitised solar cells fabricated using rutile TiO2 nanorods. Opt Mater 58:76–83CrossRef
101.
Zurück zum Zitat Ananth S et al (2016) Enhanced photovoltaic behavior of dye sensitized solar cells fabricated using pre dye treated titanium dioxide nanoparticles. J Mater Sci Mater Electron 27(1):146–153CrossRef Ananth S et al (2016) Enhanced photovoltaic behavior of dye sensitized solar cells fabricated using pre dye treated titanium dioxide nanoparticles. J Mater Sci Mater Electron 27(1):146–153CrossRef
102.
Zurück zum Zitat Kumara N et al (2015) Efficiency enhancement of Ixora floral dye sensitized solar cell by diminishing the pigments interactions. Sol Energy 117:36–45CrossRef Kumara N et al (2015) Efficiency enhancement of Ixora floral dye sensitized solar cell by diminishing the pigments interactions. Sol Energy 117:36–45CrossRef
103.
Zurück zum Zitat Chang H et al (2013) Characterization of natural dye extracted from wormwood and purple cabbage for dye-sensitized solar cells. Int J Photoenergy Chang H et al (2013) Characterization of natural dye extracted from wormwood and purple cabbage for dye-sensitized solar cells. Int J Photoenergy
104.
Zurück zum Zitat Koli P (2014) Photogalvanic cells: comparative study of various synthetic dyes and natural photo sensitizers present in spinach extract. Rsc Adv 4(86):46194–46202CrossRef Koli P (2014) Photogalvanic cells: comparative study of various synthetic dyes and natural photo sensitizers present in spinach extract. Rsc Adv 4(86):46194–46202CrossRef
105.
Zurück zum Zitat Lim A et al (2016) Co-dominant effect of selected natural dye sensitizers in DSSC performance. Spectrochim Acta Part A Mol Biomol Spectroscopy 167:26–31CrossRef Lim A et al (2016) Co-dominant effect of selected natural dye sensitizers in DSSC performance. Spectrochim Acta Part A Mol Biomol Spectroscopy 167:26–31CrossRef
106.
Zurück zum Zitat Chang H, Lai XR (2016) Fabrication of natural sensitizer extracted from mixture of purple cabbage, roselle, wormwood and seaweed with high conversion efficiency for DSSC. J Nanosci Nanotechnol 16(2):2072–2075CrossRef Chang H, Lai XR (2016) Fabrication of natural sensitizer extracted from mixture of purple cabbage, roselle, wormwood and seaweed with high conversion efficiency for DSSC. J Nanosci Nanotechnol 16(2):2072–2075CrossRef
107.
Zurück zum Zitat Kumara NTRN et al (2013) Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. J Alloy Compd 581:186–191CrossRef Kumara NTRN et al (2013) Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. J Alloy Compd 581:186–191CrossRef
108.
Zurück zum Zitat Bidikoudi M et al (2015) Solidification of ionic liquid redox electrolytes using agarose biopolymer for highly performing dye-sensitized solar cells. Electrochim Acta 179:228–236CrossRef Bidikoudi M et al (2015) Solidification of ionic liquid redox electrolytes using agarose biopolymer for highly performing dye-sensitized solar cells. Electrochim Acta 179:228–236CrossRef
109.
Zurück zum Zitat Adel R et al (2015) Effect of polymer electrolyte on the performance of natural dye sensitized solar cells. Superlattices Microstruct 86:62–67CrossRef Adel R et al (2015) Effect of polymer electrolyte on the performance of natural dye sensitized solar cells. Superlattices Microstruct 86:62–67CrossRef
110.
Zurück zum Zitat Thambidurai M et al (2011) Dye-sensitized ZnO nanorod based photoelectrochemical solar cells with natural dyes extracted from Ixora coccinea, Mulberry and Beetroot. J Mater Sci Mater Electron 22(11):1662–1666CrossRef Thambidurai M et al (2011) Dye-sensitized ZnO nanorod based photoelectrochemical solar cells with natural dyes extracted from Ixora coccinea, Mulberry and Beetroot. J Mater Sci Mater Electron 22(11):1662–1666CrossRef
111.
Zurück zum Zitat Thambidurai M et al (2014) Rosa centifolia sensitized ZnO nanorods for photoelectrochemical solar cell applications. Sol Energy 106:143–150CrossRef Thambidurai M et al (2014) Rosa centifolia sensitized ZnO nanorods for photoelectrochemical solar cell applications. Sol Energy 106:143–150CrossRef
112.
Zurück zum Zitat Thankappan A et al (2015) Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell. Thin Solid Films 583:102–107CrossRef Thankappan A et al (2015) Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell. Thin Solid Films 583:102–107CrossRef
113.
Zurück zum Zitat Furukawa S et al (2009) Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films 518(2):526–529CrossRef Furukawa S et al (2009) Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films 518(2):526–529CrossRef
114.
Zurück zum Zitat Wongcharee K, Meeyoo V, Chavadej S (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energy Mater Sol Cells 91(7):566–571CrossRef Wongcharee K, Meeyoo V, Chavadej S (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol Energy Mater Sol Cells 91(7):566–571CrossRef
115.
Zurück zum Zitat Luo PH et al (2009) From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. Spectrochim Acta Part A Mol Biomol Spectro 74(4):936–942CrossRef Luo PH et al (2009) From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. Spectrochim Acta Part A Mol Biomol Spectro 74(4):936–942CrossRef
116.
Zurück zum Zitat Fernando J, Senadeera GKR (2008) Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Curr Sci 95(5):663–666 Fernando J, Senadeera GKR (2008) Natural anthocyanins as photosensitizers for dye-sensitized solar devices. Curr Sci 95(5):663–666
117.
Zurück zum Zitat Hao SC et al (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80(2):209–214CrossRef Hao SC et al (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80(2):209–214CrossRef
118.
Zurück zum Zitat Jin EM et al (2010) Photosensitization of nanoporous TiO2 films with natural dye. Phys Scripta T139 Jin EM et al (2010) Photosensitization of nanoporous TiO2 films with natural dye. Phys Scripta T139
119.
Zurück zum Zitat Calogero G, Di Marco G (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92(11):1341–1346CrossRef Calogero G, Di Marco G (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92(11):1341–1346CrossRef
120.
Zurück zum Zitat Polo AS, Murakami Iha NY (2006) Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol Energy Mater Sol Cells 90(13):1936–1944CrossRef Polo AS, Murakami Iha NY (2006) Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol Energy Mater Sol Cells 90(13):1936–1944CrossRef
121.
Zurück zum Zitat Zhou H et al (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol, A 219(2–3):188–194CrossRef Zhou H et al (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol, A 219(2–3):188–194CrossRef
122.
Zurück zum Zitat Calogero G et al (2012) Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol Energy 86(5):1563–1575CrossRef Calogero G et al (2012) Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol Energy 86(5):1563–1575CrossRef
123.
Zurück zum Zitat Garcia CG, Polo AS, Murakami Iha NY (2003) Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. J Photochem Photobiol, A 160(1–2):87–91CrossRef Garcia CG, Polo AS, Murakami Iha NY (2003) Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. J Photochem Photobiol, A 160(1–2):87–91CrossRef
124.
Zurück zum Zitat Hao S et al (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80(2):209–214CrossRef Hao S et al (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80(2):209–214CrossRef
125.
Zurück zum Zitat Ali RAM, Nayan N (2010) Fabrication and analysis of dye-sensitized solar cell using natural dye extracted from dragon fruit. Int J Integr Eng 2:55–62 Ali RAM, Nayan N (2010) Fabrication and analysis of dye-sensitized solar cell using natural dye extracted from dragon fruit. Int J Integr Eng 2:55–62
126.
Zurück zum Zitat Boyo AO et al (2012) Bitter leaf (Vernonia amygdalin) for dye sensitized solar cell. Trends Appl Sci Res 7(7):558–564CrossRef Boyo AO et al (2012) Bitter leaf (Vernonia amygdalin) for dye sensitized solar cell. Trends Appl Sci Res 7(7):558–564CrossRef
127.
Zurück zum Zitat Dumbravǎ A et al (2008) Dye-sensitized solar cells based on nanocrystalline TiO2 and natural pigments. J Optoelectron Adv Mater 10(11):2996–3002 Dumbravǎ A et al (2008) Dye-sensitized solar cells based on nanocrystalline TiO2 and natural pigments. J Optoelectron Adv Mater 10(11):2996–3002
128.
Zurück zum Zitat Asuloju KA, Shitta MB, Justu S (2011) Effect of extracting solvents on the stability and performances of dye- sensitized solar cell prepared using extract from Lawsonia inermis. Fundam J Mod Phys 1(2):261–268 Asuloju KA, Shitta MB, Justu S (2011) Effect of extracting solvents on the stability and performances of dye- sensitized solar cell prepared using extract from Lawsonia inermis. Fundam J Mod Phys 1(2):261–268
129.
Zurück zum Zitat Shanmugam V et al (2013) Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochim Acta Part A Mol Biomol Spectrosc 104:35–40CrossRef Shanmugam V et al (2013) Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochim Acta Part A Mol Biomol Spectrosc 104:35–40CrossRef
130.
Zurück zum Zitat Hemalatha KV et al (2012) Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 96:305–309CrossRef Hemalatha KV et al (2012) Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 96:305–309CrossRef
131.
Zurück zum Zitat Senthil TS et al (2011) Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renew Energy 36(9):2484–2488CrossRef Senthil TS et al (2011) Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renew Energy 36(9):2484–2488CrossRef
132.
Zurück zum Zitat Hamadanian M et al (2014) Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Mater Sci Semicond Process 27:733–739CrossRef Hamadanian M et al (2014) Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Mater Sci Semicond Process 27:733–739CrossRef
133.
Zurück zum Zitat Torchani A et al (2015) Sensitized solar cells based on natural dyes. Curr Appl Phys 15(3):307–312CrossRef Torchani A et al (2015) Sensitized solar cells based on natural dyes. Curr Appl Phys 15(3):307–312CrossRef
134.
Zurück zum Zitat Maurya IC, Srivastava P, Bahadur L (2016) Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer. Opt Mater 52:150–156CrossRef Maurya IC, Srivastava P, Bahadur L (2016) Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer. Opt Mater 52:150–156CrossRef
135.
Zurück zum Zitat Phinjaturus K et al (2016) Dye-sensitized solar cells based on purple corn sensitizers. Appl Surf Sci 380:101–107CrossRef Phinjaturus K et al (2016) Dye-sensitized solar cells based on purple corn sensitizers. Appl Surf Sci 380:101–107CrossRef
136.
Zurück zum Zitat Ramamoorthy R et al (2016) Betalain and anthocyanin dye-sensitized solar cells. J Appl Electrochem 46(9):929–941CrossRef Ramamoorthy R et al (2016) Betalain and anthocyanin dye-sensitized solar cells. J Appl Electrochem 46(9):929–941CrossRef
137.
Zurück zum Zitat Zhang D et al (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol A Chem 195(1):72–80CrossRef Zhang D et al (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol A Chem 195(1):72–80CrossRef
138.
Zurück zum Zitat Calogero G et al (2010) Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. Int J Mol Sci 11(1):254–267CrossRef Calogero G et al (2010) Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear fruits. Int J Mol Sci 11(1):254–267CrossRef
139.
Zurück zum Zitat Hernandez-Martinez AR et al (2011) New dye-sensitized solar cells obtained from extracted bracts of bougainvillea glabra and spectabilis betalain pigments by different purification processes. Int J Mol Sci 12(9):5565–5576CrossRef Hernandez-Martinez AR et al (2011) New dye-sensitized solar cells obtained from extracted bracts of bougainvillea glabra and spectabilis betalain pigments by different purification processes. Int J Mol Sci 12(9):5565–5576CrossRef
140.
Zurück zum Zitat Chang H, Lo YJ (2010) Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Sol Energy 84(10):1833–1837CrossRef Chang H, Lo YJ (2010) Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Sol Energy 84(10):1833–1837CrossRef
141.
Zurück zum Zitat Chang H et al (2010) Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. J Alloy Compd 495(2):606–610CrossRef Chang H et al (2010) Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. J Alloy Compd 495(2):606–610CrossRef
142.
Zurück zum Zitat Hernández-Martínez AR et al (2012) Natural pigment-based dye-sensitized solar cells. J Appl Res Technol 10(1):38–47 Hernández-Martínez AR et al (2012) Natural pigment-based dye-sensitized solar cells. J Appl Res Technol 10(1):38–47
143.
Zurück zum Zitat Kumara GRA et al (2006) Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol Energy Mater Sol Cells 90(9):1220–1226CrossRef Kumara GRA et al (2006) Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol Energy Mater Sol Cells 90(9):1220–1226CrossRef
144.
Zurück zum Zitat Lai WH et al (2008) Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J Photochem Photobiol, A 195(2–3):307–313CrossRef Lai WH et al (2008) Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J Photochem Photobiol, A 195(2–3):307–313CrossRef
145.
Zurück zum Zitat Taya SA et al (2013) Dye-sensitized solar cells using fresh and dried natural dyes. Int J Mater Sci Applications 2(2):37–42CrossRef Taya SA et al (2013) Dye-sensitized solar cells using fresh and dried natural dyes. Int J Mater Sci Applications 2(2):37–42CrossRef
146.
Zurück zum Zitat Calogero G et al (2014) Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 117:702–706CrossRef Calogero G et al (2014) Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 117:702–706CrossRef
147.
Zurück zum Zitat Gomez-Ortiz NM et al (2010) Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol Energy Mater Sol Cells 94(1):40–44CrossRef Gomez-Ortiz NM et al (2010) Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol Energy Mater Sol Cells 94(1):40–44CrossRef
148.
Zurück zum Zitat Zhang D et al (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol, A 195(1):72–80CrossRef Zhang D et al (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol, A 195(1):72–80CrossRef
149.
Zurück zum Zitat Narayan MR (2012) Review: dye sensitized solar cells based on natural photosensitizers. Renew Sustain Energy Rev 16(1):208–215 Narayan MR (2012) Review: dye sensitized solar cells based on natural photosensitizers. Renew Sustain Energy Rev 16(1):208–215
150.
Zurück zum Zitat Ludin NA et al (2014) Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renew Sustain Energy Rev 31:386–396CrossRef Ludin NA et al (2014) Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renew Sustain Energy Rev 31:386–396CrossRef
151.
Zurück zum Zitat Hug H et al (2014) Biophotovoltaics: natural pigments in dye-sensitized solar cells. Appl Energy 115:216–225CrossRef Hug H et al (2014) Biophotovoltaics: natural pigments in dye-sensitized solar cells. Appl Energy 115:216–225CrossRef
152.
Zurück zum Zitat Al-Alwani MAM et al (2016) Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renew Sustain Energy Rev 65:183–213CrossRef Al-Alwani MAM et al (2016) Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renew Sustain Energy Rev 65:183–213CrossRef
153.
Zurück zum Zitat Escobar MAM, Jaramillo F (2015) Natural dyes extraction, stability and application to dye-sensitized solar cells. J Renew Mater 3(4):281–291CrossRef Escobar MAM, Jaramillo F (2015) Natural dyes extraction, stability and application to dye-sensitized solar cells. J Renew Mater 3(4):281–291CrossRef
Metadaten
Titel
Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium(II) tris-Heteroleptic Compounds or Natural Dyes
verfasst von
Juliana dos Santos de Souza
Leilane Oliveira Martins de Andrade
Andressa Vidal Müller
André Sarto Polo
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62800-4_2