Skip to main content
Erschienen in: Progress in Additive Manufacturing 4/2017

30.08.2017 | Full Research Article

Nanoparticle improved metal materials for additive manufacturing

verfasst von: Jan T. Sehrt, Stefan Kleszczynski, Christian Notthoff

Erschienen in: Progress in Additive Manufacturing | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A variety of laser systems and powder materials is available for additive manufacturing processes such as powder bed fusion of metallic parts (laser beam melting). The required energy density for a sufficient melting of powder materials strongly depends on the optical properties of the used powder (e.g., absorption, reflection and transmittance). During laser irradiation a moving melt pool is generated in the laser heat affected zone. Re-solidification of the molten particles results in interconnected welding lines similar to those of traditional welding processes. Here, the layer by layer approach combined with a selective laser exposure in cross-sectional areas of the parts enable the generation of 3D structures from the powder bed. The mechanical properties of such fabricated structures are usually comparable to the mechanical properties of the bulk material the powder particles are made of. In this paper, a proof of principle is demonstrated to receive improved mechanical or other properties of parts being manufactured by laser beam melting. The approach addresses laser beam melting of the commonly available powder materials tool steel (1.2709) and Hastelloy X (2.4665) which are additionally modified with nanoparticles (Al2O3) on their surfaces. Due to the shortage of these two available nanoparticle modified materials (about 100 g each) only relatively small test specimens are manufactured and, therefore, only limited typical characteristic values could be determined. However, the nanoparticle modified and laser beam molten 3D structures were systematically characterized by optical and scanning electron microscopy, energy-dispersive X-ray microanalysis, micro hardness indentation and etching analysis. It turns out that modification of the educt powder surfaces with nanoparticles prior to laser beam melting can improve e.g., mechanical properties of the generated 3D structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat VDI-Guideline 3405 (2014) Additive manufacturing processes, rapid manufacturing—basics, definitions, processes VDI-Guideline 3405 (2014) Additive manufacturing processes, rapid manufacturing—basics, definitions, processes
2.
Zurück zum Zitat ISO/ASTM 52900 (2015) Additive manufacturing, general principles, terminology ISO/ASTM 52900 (2015) Additive manufacturing, general principles, terminology
3.
Zurück zum Zitat Meiners W (1999) Direktes Selektives Laser-Sintern einkomponentiger metallischer Werkstoffe. Dissertation, RWTH Aachen University Meiners W (1999) Direktes Selektives Laser-Sintern einkomponentiger metallischer Werkstoffe. Dissertation, RWTH Aachen University
4.
Zurück zum Zitat Wagner C (2002) Untersuchungen zum Selektiven Lasersintern von Metallen, Dissertation, RWTH Aachen University Wagner C (2002) Untersuchungen zum Selektiven Lasersintern von Metallen, Dissertation, RWTH Aachen University
5.
Zurück zum Zitat Sehrt JT (2010) Möglichkeiten und Grenzen bei der generativen Herstellung metallischer Bauteile durch das Strahlschmelzverfahren. Dissertation, University of Duisburg-Essen Sehrt JT (2010) Möglichkeiten und Grenzen bei der generativen Herstellung metallischer Bauteile durch das Strahlschmelzverfahren. Dissertation, University of Duisburg-Essen
6.
Zurück zum Zitat Harrision NJ, Todd I, Mumtaz K (2015) Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach. Acta Mater 94:59–68CrossRef Harrision NJ, Todd I, Mumtaz K (2015) Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach. Acta Mater 94:59–68CrossRef
7.
Zurück zum Zitat Schmidkte K, Palm F, Hawkins A, Emmelmann C (2011) Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys Procedia 12:336–379 Schmidkte K, Palm F, Hawkins A, Emmelmann C (2011) Process and mechanical properties: applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys Procedia 12:336–379
8.
Zurück zum Zitat Gu D, Shen Y (2007) Effects of dispersion technique and component ratio on densification and microstructure of multi-component Cu-based metal powder in direct laser sintering. J Mater Process Technol 182:564–573CrossRef Gu D, Shen Y (2007) Effects of dispersion technique and component ratio on densification and microstructure of multi-component Cu-based metal powder in direct laser sintering. J Mater Process Technol 182:564–573CrossRef
9.
Zurück zum Zitat Gu D, Meiners W (2010) Microstructure characteristics and formation mechanism of in situ WC cemented carbide based hardmetals prepared by selective laser melting. Mater Sci Eng, A 527:7585–7592CrossRef Gu D, Meiners W (2010) Microstructure characteristics and formation mechanism of in situ WC cemented carbide based hardmetals prepared by selective laser melting. Mater Sci Eng, A 527:7585–7592CrossRef
10.
Zurück zum Zitat Yugang D, Yuan Z, Yiping T, Dichen L (2011) Nano-TiO2-modified photosensitive resin for RP. Rapid Prototyp J 17(4):247–252CrossRef Yugang D, Yuan Z, Yiping T, Dichen L (2011) Nano-TiO2-modified photosensitive resin for RP. Rapid Prototyp J 17(4):247–252CrossRef
11.
Zurück zum Zitat Chiu S-H, Wicaksono ST, Chen K-T, Chen C-Y (2015) Mechanical and thermal properties of photopolymer/CB (carbon black) nanocomposite for rapid prototyping. Rapid Prototyp J 21(3):262–269CrossRef Chiu S-H, Wicaksono ST, Chen K-T, Chen C-Y (2015) Mechanical and thermal properties of photopolymer/CB (carbon black) nanocomposite for rapid prototyping. Rapid Prototyp J 21(3):262–269CrossRef
12.
Zurück zum Zitat Gu D, Hagedorn Y-C, Meiners W, Wissenbach K, Poprawe R (2014) Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior. Compos Sci Technol 71:1612–1620CrossRef Gu D, Hagedorn Y-C, Meiners W, Wissenbach K, Poprawe R (2014) Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior. Compos Sci Technol 71:1612–1620CrossRef
13.
Zurück zum Zitat Gu D, Wang H, Zhang G (2014) Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder. Metall Mater Trans A 45A:464–476CrossRef Gu D, Wang H, Zhang G (2014) Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder. Metall Mater Trans A 45A:464–476CrossRef
14.
Zurück zum Zitat Gu D, Meng G, Li C, Meiners W, Poprawe R (2012) Selective laser melting of TiC/Ti bulk nanocomposites: influence of nanoscale reinforcement. Scr Mater 67:185–188CrossRef Gu D, Meng G, Li C, Meiners W, Poprawe R (2012) Selective laser melting of TiC/Ti bulk nanocomposites: influence of nanoscale reinforcement. Scr Mater 67:185–188CrossRef
15.
Zurück zum Zitat Gu D, Wang H, Chang F, Dai D, Yuan P, Hagedorn Y-C, Meiners W (2014) Selective laser melting additive manufacturing of TiC/AlSi10 Mg bulk-form nanocomposites with tailored microstructures and properties. Phys Procedia 56:108–116CrossRef Gu D, Wang H, Chang F, Dai D, Yuan P, Hagedorn Y-C, Meiners W (2014) Selective laser melting additive manufacturing of TiC/AlSi10 Mg bulk-form nanocomposites with tailored microstructures and properties. Phys Procedia 56:108–116CrossRef
16.
Zurück zum Zitat Gu D, Wang H, Dai D, Yuan P, Meiners W, Poprawe R (2015) Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scr Mater 96:25–28CrossRef Gu D, Wang H, Dai D, Yuan P, Meiners W, Poprawe R (2015) Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scr Mater 96:25–28CrossRef
17.
Zurück zum Zitat Gu D, Wang Z, Shen Y, Li Q, Li Y (2009) In-situ TiC particle reinforced Ti-Al matrix composites: powder preparation by mechanical alloying and selective laser melting behavior. Appl Surf Sci 255:9230–9240CrossRef Gu D, Wang Z, Shen Y, Li Q, Li Y (2009) In-situ TiC particle reinforced Ti-Al matrix composites: powder preparation by mechanical alloying and selective laser melting behavior. Appl Surf Sci 255:9230–9240CrossRef
18.
Zurück zum Zitat Chang F, Gu D, Dai D, Yuan P (2015) Selective laser melting of in situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: influence of starting SiC particle size. Surf Coat Technol 272:15–24CrossRef Chang F, Gu D, Dai D, Yuan P (2015) Selective laser melting of in situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: influence of starting SiC particle size. Surf Coat Technol 272:15–24CrossRef
19.
Zurück zum Zitat Lau M, Niemann R, Bartsch M, O‘Neill W, Barcikowski S (2014) Near-field-enhanced, off-resonant laser sintering of semiconductor particles for additive manufacturing of dispersed Au–ZnO-micro/nano hybrid structures. Appl Phys A 114:1023–10301CrossRef Lau M, Niemann R, Bartsch M, O‘Neill W, Barcikowski S (2014) Near-field-enhanced, off-resonant laser sintering of semiconductor particles for additive manufacturing of dispersed Au–ZnO-micro/nano hybrid structures. Appl Phys A 114:1023–10301CrossRef
20.
Zurück zum Zitat Crespo-Monteiro N, Destouches N, Saviot L, Reynuad S, Epicier T, Gamet E, Bios L, Boukenter A (2012) One-step microstructuring of TiO2 and Ag-TiO2 films by continuous wave laser processing in the UV and visible ranges. J Phys Chem C 116:26857–26864CrossRef Crespo-Monteiro N, Destouches N, Saviot L, Reynuad S, Epicier T, Gamet E, Bios L, Boukenter A (2012) One-step microstructuring of TiO2 and Ag-TiO2 films by continuous wave laser processing in the UV and visible ranges. J Phys Chem C 116:26857–26864CrossRef
21.
Zurück zum Zitat Schade L, Franzka S, Dzialkowski K, Hardt S, Wiggers H, Reichenberger S, Wagener P, Hartmann N (2015) Resonant photothermal laser processing of hybrid gold/titania nanoparticle films. Appl Surf Sci 336:48–52CrossRef Schade L, Franzka S, Dzialkowski K, Hardt S, Wiggers H, Reichenberger S, Wagener P, Hartmann N (2015) Resonant photothermal laser processing of hybrid gold/titania nanoparticle films. Appl Surf Sci 336:48–52CrossRef
22.
Zurück zum Zitat Lau M, Barcikowski S (2015) Quantification of mass-specific laser energy input converted into particle properties during picosecond pulsed laser fragmentation of zinc oxide and boron carbide in liquids. Appl Surf Sci 348:22–29CrossRef Lau M, Barcikowski S (2015) Quantification of mass-specific laser energy input converted into particle properties during picosecond pulsed laser fragmentation of zinc oxide and boron carbide in liquids. Appl Surf Sci 348:22–29CrossRef
23.
Zurück zum Zitat King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA, Rubenchik AM (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational and materials challenges. Appl Phys Rev 2:041304. doi:10.1063/1.4937809 CrossRef King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA, Rubenchik AM (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational and materials challenges. Appl Phys Rev 2:041304. doi:10.​1063/​1.​4937809 CrossRef
26.
Zurück zum Zitat Sehrt JT, Witt G (2011) Manufacturing of defined porous metal structures using the beam melting technology, In: Bártolo PJ (Hrsg.): Proceedings of the 5th international conference on advanced research in virtual and rapid prototyping, Leiria, Portugal, pp 639–644 Sehrt JT, Witt G (2011) Manufacturing of defined porous metal structures using the beam melting technology, In: Bártolo PJ (Hrsg.): Proceedings of the 5th international conference on advanced research in virtual and rapid prototyping, Leiria, Portugal, pp 639–644
27.
Zurück zum Zitat Kleszczynski S, Sehrt JT, Witt G, zur Jacobsmühlen J (2012) Error detection in laser beam melting systems by high resolution imaging, international solid freeform fabrication symposium, The University of Texas at Austin, 9 th–11th August 2012 Kleszczynski S, Sehrt JT, Witt G, zur Jacobsmühlen J (2012) Error detection in laser beam melting systems by high resolution imaging, international solid freeform fabrication symposium, The University of Texas at Austin, 9 th–11th August 2012
28.
Zurück zum Zitat Pownceby MI, Constanti-Carey KK, Fisher-White MJ (2003) Subsolidus phase relationships in the system Fe2O3–Al2O3–TiO2 between 1000 and 1300 °C. J Am Ceram Soc 86:975–980CrossRef Pownceby MI, Constanti-Carey KK, Fisher-White MJ (2003) Subsolidus phase relationships in the system Fe2O3–Al2O3–TiO2 between 1000 and 1300 °C. J Am Ceram Soc 86:975–980CrossRef
Metadaten
Titel
Nanoparticle improved metal materials for additive manufacturing
verfasst von
Jan T. Sehrt
Stefan Kleszczynski
Christian Notthoff
Publikationsdatum
30.08.2017
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing / Ausgabe 4/2017
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-017-0028-9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.