Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

Nanopore Membranes for Separation and Sensing

A “Prosporous” Future

verfasst von : Gustav Emilsson, Andreas B. Dahlin

Erschienen in: Miniature Fluidic Devices for Rapid Biological Detection

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the last 20 years, the use of nanopore membranes to separate molecules depending on their size, charge or other characteristics, have increased in interest. These more ordered and defined nanopores have several advantages compared to traditional ultrafiltration membranes and provide possibilities to combine with, e.g., both electrical and optical sensing schemes. In this chapter, we discuss some of the more common nanopore membranes and how they can be used both for separation and sensing of analytes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu S, Lee SB, Kang M, Martin CR (2001) Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nano Lett 1(9):495–498CrossRef Yu S, Lee SB, Kang M, Martin CR (2001) Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nano Lett 1(9):495–498CrossRef
2.
Zurück zum Zitat Lee SB, Mitchell DT, Trofin L, Nevanen TK, Söderlund H, Martin CR (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296(5576):2198–2200CrossRef Lee SB, Mitchell DT, Trofin L, Nevanen TK, Söderlund H, Martin CR (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296(5576):2198–2200CrossRef
3.
Zurück zum Zitat Jirage KB, Hulteen JC, Martin CR (1997) Nanotubule-based molecular-filtration membranes. Science 278(5338):655–658CrossRef Jirage KB, Hulteen JC, Martin CR (1997) Nanotubule-based molecular-filtration membranes. Science 278(5338):655–658CrossRef
4.
Zurück zum Zitat Wirtz M, Parker M, Kobayashi Y, Martin CR (2002) Molecular sieving and sensing with gold nanotube membranes. Chem Record 2(4):259–267CrossRef Wirtz M, Parker M, Kobayashi Y, Martin CR (2002) Molecular sieving and sensing with gold nanotube membranes. Chem Record 2(4):259–267CrossRef
5.
Zurück zum Zitat de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139CrossRef de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139CrossRef
6.
Zurück zum Zitat Han J, Fu J, Schoch RB (2008) Molecular sieving using nanofilters: past, present and future. Lab Chip 8(1):23–33CrossRef Han J, Fu J, Schoch RB (2008) Molecular sieving using nanofilters: past, present and future. Lab Chip 8(1):23–33CrossRef
7.
Zurück zum Zitat Huang M, Galarreta BC, Cetin AE, Altug H (2013) Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. Lab Chip 13(24):4841–4847CrossRef Huang M, Galarreta BC, Cetin AE, Altug H (2013) Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. Lab Chip 13(24):4841–4847CrossRef
8.
Zurück zum Zitat Deen WM (1987) Hindered transport of large molecules in liquid-filled pores. AIChE J 33(9):1409–1425CrossRef Deen WM (1987) Hindered transport of large molecules in liquid-filled pores. AIChE J 33(9):1409–1425CrossRef
9.
Zurück zum Zitat Paine PL, Scherr P (1975) Drag coefficients for the movement of rigid spheres through liquid-filled cylindrical pores. Biophys J 15(10):1087–1091CrossRef Paine PL, Scherr P (1975) Drag coefficients for the movement of rigid spheres through liquid-filled cylindrical pores. Biophys J 15(10):1087–1091CrossRef
10.
Zurück zum Zitat Bungay PM, Brenner H (1973) The motion of a closely-fitting sphere in a fluid-filled tube. Int J Multiph Flow 1(1):25–56CrossRef Bungay PM, Brenner H (1973) The motion of a closely-fitting sphere in a fluid-filled tube. Int J Multiph Flow 1(1):25–56CrossRef
11.
Zurück zum Zitat Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38(2):225–243 Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38(2):225–243
12.
Zurück zum Zitat Brenner H, Gaydos LJ (1977) The constrained brownian movement of spherical particles in cylindrical pores of comparable radius. J Colloid Interface Sci 58(2):312–356CrossRef Brenner H, Gaydos LJ (1977) The constrained brownian movement of spherical particles in cylindrical pores of comparable radius. J Colloid Interface Sci 58(2):312–356CrossRef
13.
Zurück zum Zitat Dechadilok P, Deen WM (2006) Hindrance factors for diffusion and convection in pores. Ind Eng Chem Res 45(21):6953–6959CrossRef Dechadilok P, Deen WM (2006) Hindrance factors for diffusion and convection in pores. Ind Eng Chem Res 45(21):6953–6959CrossRef
14.
Zurück zum Zitat Snyder JL, Clark A Jr, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, McGrath JL (2011) An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes. J Membr Sci 369(1–2):119–129CrossRef Snyder JL, Clark A Jr, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, McGrath JL (2011) An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes. J Membr Sci 369(1–2):119–129CrossRef
15.
Zurück zum Zitat Bean CP, Doyle MV, Entine G (1970) Etching of submicron pores in irradiated mica. J Appl Phys 41(4):1454–1459CrossRef Bean CP, Doyle MV, Entine G (1970) Etching of submicron pores in irradiated mica. J Appl Phys 41(4):1454–1459CrossRef
16.
Zurück zum Zitat Fleischer RL, Alter HW, Furman SC, Price PB, Walker RM (1972) Particle track etching. Divers Technol Range Virus Identif Uranium Explor 178(4058):255–263 Fleischer RL, Alter HW, Furman SC, Price PB, Walker RM (1972) Particle track etching. Divers Technol Range Virus Identif Uranium Explor 178(4058):255–263
17.
Zurück zum Zitat Quinn JA, Anderson JL, Ho WS, Petzny WJ (1972) Model pores of molecular dimension: the preparation and characterization of track-etched membranes. Biophys J 12(8):990–1007CrossRef Quinn JA, Anderson JL, Ho WS, Petzny WJ (1972) Model pores of molecular dimension: the preparation and characterization of track-etched membranes. Biophys J 12(8):990–1007CrossRef
18.
Zurück zum Zitat Apel P (2001) Track etching technique in membrane technology. Radiat Meas 34(1–6):559–566CrossRef Apel P (2001) Track etching technique in membrane technology. Radiat Meas 34(1–6):559–566CrossRef
19.
Zurück zum Zitat Apel PY, Korchev YE, Siwy Z, Spohr R, Yoshida M (2001) Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum Methods Phys Res Sect B 184(3):337–346CrossRef Apel PY, Korchev YE, Siwy Z, Spohr R, Yoshida M (2001) Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum Methods Phys Res Sect B 184(3):337–346CrossRef
20.
Zurück zum Zitat Stroeve P, Ileri N Biotechnical and other applications of nanoporous membranes. In: Trends in biotechnology 29(6):259–266 Stroeve P, Ileri N Biotechnical and other applications of nanoporous membranes. In: Trends in biotechnology 29(6):259–266
21.
Zurück zum Zitat Diggle JW, Downie TC, Goulding CW (1969) Anodic oxide films on aluminum. Chem Rev 69(3):365–405CrossRef Diggle JW, Downie TC, Goulding CW (1969) Anodic oxide films on aluminum. Chem Rev 69(3):365–405CrossRef
22.
Zurück zum Zitat Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100(9):411–419CrossRef Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100(9):411–419CrossRef
23.
Zurück zum Zitat Wood GC, O’Sullivan JP, Vaszko B (1968) The direct observation of barrier layers in porous anodic oxide films. J Electrochem Soc 115(6):618–620CrossRef Wood GC, O’Sullivan JP, Vaszko B (1968) The direct observation of barrier layers in porous anodic oxide films. J Electrochem Soc 115(6):618–620CrossRef
24.
Zurück zum Zitat Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468CrossRef Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468CrossRef
25.
Zurück zum Zitat Lee W, Ji R, Gosele U, Nielsch K (2006) Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater 5(9):741–747CrossRef Lee W, Ji R, Gosele U, Nielsch K (2006) Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater 5(9):741–747CrossRef
26.
Zurück zum Zitat Masuda H (2005) Highly ordered nanohole arrays in anodic porous alumina. In: Ordered porous nanostructures and applications. Springer, US, Boston, MA, pp 37–55 Masuda H (2005) Highly ordered nanohole arrays in anodic porous alumina. In: Ordered porous nanostructures and applications. Springer, US, Boston, MA, pp 37–55
27.
Zurück zum Zitat Hideki M, Masahiro S (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35(1B):L126 Hideki M, Masahiro S (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35(1B):L126
28.
Zurück zum Zitat Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71(19):2770–2772CrossRef Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71(19):2770–2772CrossRef
29.
Zurück zum Zitat Asoh H, Nishio K, Nakao M, Tamamura T, Masuda H (2001) Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J Electrochem Soc 148(4):B152–B156CrossRef Asoh H, Nishio K, Nakao M, Tamamura T, Masuda H (2001) Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J Electrochem Soc 148(4):B152–B156CrossRef
30.
Zurück zum Zitat Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gosele U (2008) Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat Nano 3(4):234–239CrossRef Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gosele U (2008) Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat Nano 3(4):234–239CrossRef
31.
Zurück zum Zitat Chen W, Wu J-S, Xia X-H (2008) Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano 2(5):959–965CrossRef Chen W, Wu J-S, Xia X-H (2008) Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano 2(5):959–965CrossRef
32.
Zurück zum Zitat Robatjazi H, Bahauddin SM, Macfarlan LH, Fu S, Thomann I (2016) Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication. Chem Mater 28(13):4546–4553CrossRef Robatjazi H, Bahauddin SM, Macfarlan LH, Fu S, Thomann I (2016) Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication. Chem Mater 28(13):4546–4553CrossRef
33.
Zurück zum Zitat Masuda H, Hasegwa F, Ono S (1997) Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J Electrochem Soc 144(5):L127–L130CrossRef Masuda H, Hasegwa F, Ono S (1997) Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J Electrochem Soc 144(5):L127–L130CrossRef
34.
Zurück zum Zitat Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268(5211):700–702CrossRef Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268(5211):700–702CrossRef
35.
Zurück zum Zitat Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67(13):1920–1928CrossRef Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67(13):1920–1928CrossRef
36.
Zurück zum Zitat Tong HD, Jansen HV, Gadgil VJ, Bostan CG, Berenschot E, van Rijn CJM, Elwenspoek M (2004) Silicon nitride nanosieve membrane. Nano Lett 4(2):283–287CrossRef Tong HD, Jansen HV, Gadgil VJ, Bostan CG, Berenschot E, van Rijn CJM, Elwenspoek M (2004) Silicon nitride nanosieve membrane. Nano Lett 4(2):283–287CrossRef
37.
Zurück zum Zitat Jonsson MP, Dahlin AB, Feuz L, Petronis S, Höök F (2010) Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem 82(5):2087–2094CrossRef Jonsson MP, Dahlin AB, Feuz L, Petronis S, Höök F (2010) Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem 82(5):2087–2094CrossRef
38.
Zurück zum Zitat Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81(11):4308–4311CrossRef Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81(11):4308–4311CrossRef
39.
Zurück zum Zitat Escobedo C, Brolo AG, Gordon R, Sinton D (2012) Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 12(3):1592–1596CrossRef Escobedo C, Brolo AG, Gordon R, Sinton D (2012) Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 12(3):1592–1596CrossRef
40.
Zurück zum Zitat Vlassiouk I, Apel PY, Dmitriev SN, Healy K, Siwy ZS (2009) Versatile ultrathin nanoporous silicon nitride membranes. Proc Natl Acad Sci 106(50):21039–21044CrossRef Vlassiouk I, Apel PY, Dmitriev SN, Healy K, Siwy ZS (2009) Versatile ultrathin nanoporous silicon nitride membranes. Proc Natl Acad Sci 106(50):21039–21044CrossRef
41.
Zurück zum Zitat Yanik AA, Huang M, Artar A, Chang TY, Altug H (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96(2) Yanik AA, Huang M, Artar A, Chang TY, Altug H (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96(2)
42.
Zurück zum Zitat Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H (2010) An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10(12):4962–4969CrossRef Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H (2010) An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10(12):4962–4969CrossRef
43.
Zurück zum Zitat Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. P Natl Acad Sci USA 108(29):11784–11789CrossRef Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. P Natl Acad Sci USA 108(29):11784–11789CrossRef
44.
Zurück zum Zitat Kumar S, Cherukulappurath S, Johnson TW, Oh S-H (2014) Millimeter-sized suspended plasmonic nanohole arrays for surface-tension-driven flow-through SERS. Chem Mater 26(22):6523–6530CrossRef Kumar S, Cherukulappurath S, Johnson TW, Oh S-H (2014) Millimeter-sized suspended plasmonic nanohole arrays for surface-tension-driven flow-through SERS. Chem Mater 26(22):6523–6530CrossRef
45.
Zurück zum Zitat Dahlin AB, Mapar M, Xiong K, Mazzotta F, Höök F, Sannomiya T (2014) Plasmonic nanopores in metal-insulator-metal films. Adv Opt Mat n/a–n/a Dahlin AB, Mapar M, Xiong K, Mazzotta F, Höök F, Sannomiya T (2014) Plasmonic nanopores in metal-insulator-metal films. Adv Opt Mat n/a–n/a
46.
Zurück zum Zitat Stein K, van Henk W, van Cees R, Wietze N, Gijs K, Miko E (2001) Fabrication of microsieves with sub-micron pore size by laser interference lithography. J Micromech Microeng 11(1):33CrossRef Stein K, van Henk W, van Cees R, Wietze N, Gijs K, Miko E (2001) Fabrication of microsieves with sub-micron pore size by laser interference lithography. J Micromech Microeng 11(1):33CrossRef
47.
Zurück zum Zitat van Rijn CJM (2006) Laser interference as a lithographic nanopatterning tool. MOEMS 5(1), 011012–011012-6 van Rijn CJM (2006) Laser interference as a lithographic nanopatterning tool. MOEMS 5(1), 011012–011012-6
48.
Zurück zum Zitat Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445(7129):749–753CrossRef Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445(7129):749–753CrossRef
49.
Zurück zum Zitat Emilsson G, Schoch RL, Feuz L, Höök F, Lim RYH, Dahlin AB (2015) Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to. ACS Appl Mat Interfaces Emilsson G, Schoch RL, Feuz L, Höök F, Lim RYH, Dahlin AB (2015) Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to. ACS Appl Mat Interfaces
50.
Zurück zum Zitat van Reis R, Brake JM, Charkoudian J, Burns DB, Zydney AL (1999) High-performance tangential flow filtration using charged membranes. J Membr Sci 159(1–2):133–142CrossRef van Reis R, Brake JM, Charkoudian J, Burns DB, Zydney AL (1999) High-performance tangential flow filtration using charged membranes. J Membr Sci 159(1–2):133–142CrossRef
51.
Zurück zum Zitat Asatekin A, Kang S, Elimelech M, Mayes AM (2007) Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J Membr Sci 298(1–2):136–146CrossRef Asatekin A, Kang S, Elimelech M, Mayes AM (2007) Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J Membr Sci 298(1–2):136–146CrossRef
52.
Zurück zum Zitat Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301–310CrossRef Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301–310CrossRef
53.
Zurück zum Zitat Caspi Y, Zbaida D, Cohen H, Elbaum M (2008) Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett 8(11):3728–3734CrossRef Caspi Y, Zbaida D, Cohen H, Elbaum M (2008) Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett 8(11):3728–3734CrossRef
54.
Zurück zum Zitat Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113CrossRef Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113CrossRef
55.
Zurück zum Zitat Zdyrko B, Luzinov I (2011) Polymer brushes by the “grafting to” method. Macromol Rapid Commun 32(12):859–869CrossRef Zdyrko B, Luzinov I (2011) Polymer brushes by the “grafting to” method. Macromol Rapid Commun 32(12):859–869CrossRef
56.
Zurück zum Zitat Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1):14–22CrossRef Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1):14–22CrossRef
57.
Zurück zum Zitat Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527CrossRef Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527CrossRef
58.
Zurück zum Zitat Tokarev I, Minko S (2009) Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv Mater 21(2):241–247CrossRef Tokarev I, Minko S (2009) Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv Mater 21(2):241–247CrossRef
59.
Zurück zum Zitat Bruening ML, Dotzauer DM, Jain P, Ouyang L, Baker GL (2008) Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24(15):7663–7673CrossRef Bruening ML, Dotzauer DM, Jain P, Ouyang L, Baker GL (2008) Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24(15):7663–7673CrossRef
60.
Zurück zum Zitat Tokarev I, Minko S (2010) Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv Mater 22(31):3446–3462CrossRef Tokarev I, Minko S (2010) Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv Mater 22(31):3446–3462CrossRef
61.
Zurück zum Zitat Zhang H, Hou X, Zeng L, Yang F, Li L, Yan D, Tian Y, Jiang L (2013) Bioinspired artificial single ion pump. J Am Chem Soc 135(43):16102–16110CrossRef Zhang H, Hou X, Zeng L, Yang F, Li L, Yan D, Tian Y, Jiang L (2013) Bioinspired artificial single ion pump. J Am Chem Soc 135(43):16102–16110CrossRef
62.
Zurück zum Zitat Zhang Z, Kong X-Y, Xiao K, Liu Q, Xie G, Li P, Ma J, Tian Y, Wen L, Jiang L (2015) Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device. J Am Chem Soc 137(46):14765–14772CrossRef Zhang Z, Kong X-Y, Xiao K, Liu Q, Xie G, Li P, Ma J, Tian Y, Wen L, Jiang L (2015) Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device. J Am Chem Soc 137(46):14765–14772CrossRef
63.
Zurück zum Zitat Liu Q, Xiao K, Wen L, Lu H, Liu Y, Kong X-Y, Xie G, Zhang Z, Bo Z, Jiang L (2015) Engineered ionic gates for ion conduction based on sodium and potassium activated nanochannels. J Am Chem Soc 137(37):11976–11983CrossRef Liu Q, Xiao K, Wen L, Lu H, Liu Y, Kong X-Y, Xie G, Zhang Z, Bo Z, Jiang L (2015) Engineered ionic gates for ion conduction based on sodium and potassium activated nanochannels. J Am Chem Soc 137(37):11976–11983CrossRef
64.
Zurück zum Zitat Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9(7):2788–2793CrossRef Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9(7):2788–2793CrossRef
65.
Zurück zum Zitat Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chem Commun 46(11):1908–1910CrossRef Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chem Commun 46(11):1908–1910CrossRef
66.
Zurück zum Zitat Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5(11):1287–1291CrossRef Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5(11):1287–1291CrossRef
67.
Zurück zum Zitat Elbert J, Krohm F, Rüttiger C, Kienle S, Didzoleit H, Balzer BN, Hugel T, Stühn B, Gallei M, Brunsen A (2014) Polymer-modified mesoporous silica thin films for redox-mediated selective membrane gating. Adv Func Mater 24(11):1591–1601CrossRef Elbert J, Krohm F, Rüttiger C, Kienle S, Didzoleit H, Balzer BN, Hugel T, Stühn B, Gallei M, Brunsen A (2014) Polymer-modified mesoporous silica thin films for redox-mediated selective membrane gating. Adv Func Mater 24(11):1591–1601CrossRef
68.
Zurück zum Zitat Buchsbaum S, Nguyen G, Howorka S, Siwy ZS (2014) DNA-modified polymer pores allow ph- and voltage-gated control of channel flux. J Am Chem Soc Buchsbaum S, Nguyen G, Howorka S, Siwy ZS (2014) DNA-modified polymer pores allow ph- and voltage-gated control of channel flux. J Am Chem Soc
69.
Zurück zum Zitat de Groot GW, Santonicola MG, Sugihara K, Zambelli T, Reimhult E, Vörös J, Vancso GJ (2013) Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. ACS Appl Mater Interfaces 5(4):1400–1407CrossRef de Groot GW, Santonicola MG, Sugihara K, Zambelli T, Reimhult E, Vörös J, Vancso GJ (2013) Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. ACS Appl Mater Interfaces 5(4):1400–1407CrossRef
70.
Zurück zum Zitat Ito Y, Ochiai Y, Park YS, Imanishi Y (1997) pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J Am Chem Soc 119(7):1619–1623CrossRef Ito Y, Ochiai Y, Park YS, Imanishi Y (1997) pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J Am Chem Soc 119(7):1619–1623CrossRef
71.
Zurück zum Zitat Ito Y, Park YS, Imanishi Y (1997) Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes. J Am Chem Soc 119(11):2739–2740CrossRef Ito Y, Park YS, Imanishi Y (1997) Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes. J Am Chem Soc 119(11):2739–2740CrossRef
72.
Zurück zum Zitat Park YS, Ito Y, Imanishi Y (1998) Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir 14(4):910–914CrossRef Park YS, Ito Y, Imanishi Y (1998) Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir 14(4):910–914CrossRef
73.
Zurück zum Zitat Ito Y, Nishi S, Park YS, Imanishi Y (1997) Oxidoreduction-sensitive control of water permeation through a polymer brushes-grafted porous membrane. Macromolecules 30(19):5856–5859CrossRef Ito Y, Nishi S, Park YS, Imanishi Y (1997) Oxidoreduction-sensitive control of water permeation through a polymer brushes-grafted porous membrane. Macromolecules 30(19):5856–5859CrossRef
74.
Zurück zum Zitat Park YS, Ito Y, Imanishi Y (1998) Photocontrolled gating by polymer brushes grafted on porous glass filter. Macromolecules 31(8):2606–2610CrossRef Park YS, Ito Y, Imanishi Y (1998) Photocontrolled gating by polymer brushes grafted on porous glass filter. Macromolecules 31(8):2606–2610CrossRef
75.
Zurück zum Zitat Liu Dunphy DR, Atanassov P, Bunge SD, Chen Z, López GP, Boyle TJ, Brinker CJ (2004) Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Lett 4(4), 551–554 Liu Dunphy DR, Atanassov P, Bunge SD, Chen Z, López GP, Boyle TJ, Brinker CJ (2004) Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Lett 4(4), 551–554
76.
Zurück zum Zitat Lokuge I, Wang X, Bohn PW (2006) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(n-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization†. Langmuir 23(1):305–311CrossRef Lokuge I, Wang X, Bohn PW (2006) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(n-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization†. Langmuir 23(1):305–311CrossRef
77.
Zurück zum Zitat Huber DL, Manginell RP, Samara MA, Kim B-I, Bunker BC (2003) programmed adsorption and release of proteins in a microfluidic device. Science 301(5631):352–354CrossRef Huber DL, Manginell RP, Samara MA, Kim B-I, Bunker BC (2003) programmed adsorption and release of proteins in a microfluidic device. Science 301(5631):352–354CrossRef
78.
Zurück zum Zitat Yu Q, Shivapooja P, Johnson LM, Tizazu G, Leggett GJ, Lopez GP (2013) Nanopatterned polymer brushes as switchable bioactive interfaces. Nanoscale 5(9):3632–3637CrossRef Yu Q, Shivapooja P, Johnson LM, Tizazu G, Leggett GJ, Lopez GP (2013) Nanopatterned polymer brushes as switchable bioactive interfaces. Nanoscale 5(9):3632–3637CrossRef
79.
Zurück zum Zitat Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L (2013) Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv Mater 25(6):922–927CrossRef Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L (2013) Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv Mater 25(6):922–927CrossRef
80.
Zurück zum Zitat Liu Z, Wang W, Xie R, Ju X-J, Chu L-Y (2016) Stimuli-responsive smart gating membranes. Chem Soc Rev 45(3):460–475CrossRef Liu Z, Wang W, Xie R, Ju X-J, Chu L-Y (2016) Stimuli-responsive smart gating membranes. Chem Soc Rev 45(3):460–475CrossRef
81.
Zurück zum Zitat Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305(5686):984–986CrossRef Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305(5686):984–986CrossRef
82.
Zurück zum Zitat Yu S, Lee SB, Martin CR (2003) Electrophoretic protein transport in gold nanotube membranes. Anal Chem 75(6):1239–1244CrossRef Yu S, Lee SB, Martin CR (2003) Electrophoretic protein transport in gold nanotube membranes. Anal Chem 75(6):1239–1244CrossRef
83.
Zurück zum Zitat Osmanbeyoglu HU, Hur TB, Kim HK (2009) Thin alumina nanoporous membranes for similar size biomolecule separation. J Membr Sci 343(1–2):1–6CrossRef Osmanbeyoglu HU, Hur TB, Kim HK (2009) Thin alumina nanoporous membranes for similar size biomolecule separation. J Membr Sci 343(1–2):1–6CrossRef
84.
Zurück zum Zitat Ku J-R, Stroeve P (2004) Protein diffusion in charged nanotubes: “On–Off” behavior of molecular transport. Langmuir 20(5):2030–2032CrossRef Ku J-R, Stroeve P (2004) Protein diffusion in charged nanotubes: “On–Off” behavior of molecular transport. Langmuir 20(5):2030–2032CrossRef
85.
Zurück zum Zitat Chun K-Y, Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18(12):4653–4658CrossRef Chun K-Y, Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18(12):4653–4658CrossRef
86.
Zurück zum Zitat Kuiper S, van Rijn CJM, Nijdam W, Elwenspoek MC (1998) Development and applications of very high flux microfiltration membranes. J Membr Sci 150(1):1–8CrossRef Kuiper S, van Rijn CJM, Nijdam W, Elwenspoek MC (1998) Development and applications of very high flux microfiltration membranes. J Membr Sci 150(1):1–8CrossRef
87.
Zurück zum Zitat Gaborski TR, Snyder JL, Striemer CC, Fang DZ, Hoffman M, Fauchet PM, McGrath JL (2010) High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano 4(11):6973–6981CrossRef Gaborski TR, Snyder JL, Striemer CC, Fang DZ, Hoffman M, Fauchet PM, McGrath JL (2010) High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano 4(11):6973–6981CrossRef
88.
Zurück zum Zitat Martin CR, Siwy Z (2004) Molecular filters: pores within pores. Nat Mater 3(5):284–285CrossRef Martin CR, Siwy Z (2004) Molecular filters: pores within pores. Nat Mater 3(5):284–285CrossRef
89.
Zurück zum Zitat Bayley H, Martin CR (2000) Resistive-pulse sensing from microbes to molecules. Chem Rev 100(7):2575–2594CrossRef Bayley H, Martin CR (2000) Resistive-pulse sensing from microbes to molecules. Chem Rev 100(7):2575–2594CrossRef
90.
Zurück zum Zitat Kobayashi Y, Martin CR (1999) Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes. Anal Chem 71(17):3665–3672CrossRef Kobayashi Y, Martin CR (1999) Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes. Anal Chem 71(17):3665–3672CrossRef
91.
Zurück zum Zitat Gyurcsányi RE (2008) Chemically-modified nanopores for sensing. TrAC Trends Anal Chem 27(7):627–639CrossRef Gyurcsányi RE (2008) Chemically-modified nanopores for sensing. TrAC Trends Anal Chem 27(7):627–639CrossRef
92.
Zurück zum Zitat Reimhult E, Höök F (2015) Design of surface modifications for nanoscale sensor applications. Sensors 15(1):1635–1675CrossRef Reimhult E, Höök F (2015) Design of surface modifications for nanoscale sensor applications. Sensors 15(1):1635–1675CrossRef
93.
Zurück zum Zitat Wang X, Smirnov S (2009) Label-free DNA sensor based on surface charge modulated ionic conductance. ACS Nano 3(4):1004–1010CrossRef Wang X, Smirnov S (2009) Label-free DNA sensor based on surface charge modulated ionic conductance. ACS Nano 3(4):1004–1010CrossRef
94.
Zurück zum Zitat Li S-J, Li J, Wang K, Wang C, Xu J-J, Chen H-Y, Xia X-H, Huo Q (2010) A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. ACS Nano 4(11):6417–6424CrossRef Li S-J, Li J, Wang K, Wang C, Xu J-J, Chen H-Y, Xia X-H, Huo Q (2010) A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. ACS Nano 4(11):6417–6424CrossRef
95.
Zurück zum Zitat Dahlin AB (2015) Sensing applications based on plasmonic nanopores: the hole story. Analyst Dahlin AB (2015) Sensing applications based on plasmonic nanopores: the hole story. Analyst
96.
Zurück zum Zitat Junesch J, Sannomiya T (2014) Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer. ACS Appl Mater Inter Junesch J, Sannomiya T (2014) Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer. ACS Appl Mater Inter
97.
Zurück zum Zitat Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82(24):10015–10020CrossRef Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82(24):10015–10020CrossRef
98.
Zurück zum Zitat Zhao Y, Gaur G, Retterer ST, Laibinis PE, Weiss SM (2016) Flow-through porous silicon membranes for real-time label-free biosensing. Anal Chem 88(22):10940–10948CrossRef Zhao Y, Gaur G, Retterer ST, Laibinis PE, Weiss SM (2016) Flow-through porous silicon membranes for real-time label-free biosensing. Anal Chem 88(22):10940–10948CrossRef
99.
Zurück zum Zitat Xiong K, Emilsson G, Dahlin AB (2016) Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. Analyst Xiong K, Emilsson G, Dahlin AB (2016) Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. Analyst
100.
Zurück zum Zitat Yamaguchi A, Uejo F, Yoda T, Uchida T, Tanamura Y, Yamashita T, Teramae N (2004) Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nat Mater 3(5):337–341CrossRef Yamaguchi A, Uejo F, Yoda T, Uchida T, Tanamura Y, Yamashita T, Teramae N (2004) Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nat Mater 3(5):337–341CrossRef
101.
Zurück zum Zitat Breault-Turcot J, Masson J-F (2015) Microdialysis SPR: diffusion-gated sensing in blood. Chem Sci Breault-Turcot J, Masson J-F (2015) Microdialysis SPR: diffusion-gated sensing in blood. Chem Sci
102.
Zurück zum Zitat Jágerszki G, Gyurcsányi RE, Höfler L, Pretsch E (2007) Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. a new approach to quantitative label-free dna analysis. Nano Lett 7(6):1609–1612CrossRef Jágerszki G, Gyurcsányi RE, Höfler L, Pretsch E (2007) Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. a new approach to quantitative label-free dna analysis. Nano Lett 7(6):1609–1612CrossRef
103.
Zurück zum Zitat Tsang M-K, Ye W, Wang G, Li J, Yang M, Hao J (2016) Ultrasensitive detection of ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 10(1):598–605CrossRef Tsang M-K, Ye W, Wang G, Li J, Yang M, Hao J (2016) Ultrasensitive detection of ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 10(1):598–605CrossRef
104.
Zurück zum Zitat Li F, Guijt RM, Breadmore MC (2016) Nanoporous membranes for microfluidic concentration prior to electrophoretic separation of proteins in urine. Anal Chem 88(16):8257–8263CrossRef Li F, Guijt RM, Breadmore MC (2016) Nanoporous membranes for microfluidic concentration prior to electrophoretic separation of proteins in urine. Anal Chem 88(16):8257–8263CrossRef
105.
Zurück zum Zitat Hereijgers J, Desmet G, Breugelmans T, De Malsche W (2015) Strategies to integrate porous layers in microfluidic devices. Microelectron Eng 132:1–13CrossRef Hereijgers J, Desmet G, Breugelmans T, De Malsche W (2015) Strategies to integrate porous layers in microfluidic devices. Microelectron Eng 132:1–13CrossRef
106.
Zurück zum Zitat Escobedo C (2013) On-chip nanohole array based sensing: a review. Lab Chip 13(13):2445–2463CrossRef Escobedo C (2013) On-chip nanohole array based sensing: a review. Lab Chip 13(13):2445–2463CrossRef
107.
Zurück zum Zitat Chen X, Shen J (2016) Review of membranes in microfluidics. J Chem Technol Biotechnol n/a–n/a Chen X, Shen J (2016) Review of membranes in microfluidics. J Chem Technol Biotechnol n/a–n/a
108.
Zurück zum Zitat Barik A, Otto LM, Yoo D, Jose J, Johnson TW, Oh S-H (2014) Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett 14(4):2006–2012CrossRef Barik A, Otto LM, Yoo D, Jose J, Johnson TW, Oh S-H (2014) Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett 14(4):2006–2012CrossRef
109.
Zurück zum Zitat Snyder JL, Getpreecharsawas J, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, Borkholder DA, McGrath JL (2013) High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes. Proc Natl Acad Sci 110(46):18425–18430CrossRef Snyder JL, Getpreecharsawas J, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, Borkholder DA, McGrath JL (2013) High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes. Proc Natl Acad Sci 110(46):18425–18430CrossRef
110.
Zurück zum Zitat Wu X, Ramiah Rajasekaran P, Martin CR (2016) An alternating current electroosmotic pump based on conical nanopore membranes. ACS Nano 10(4):4637–4643CrossRef Wu X, Ramiah Rajasekaran P, Martin CR (2016) An alternating current electroosmotic pump based on conical nanopore membranes. ACS Nano 10(4):4637–4643CrossRef
111.
Zurück zum Zitat Tagliazucchi M, Szleifer I (2015) Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater Today 18(3):131–142CrossRef Tagliazucchi M, Szleifer I (2015) Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater Today 18(3):131–142CrossRef
Metadaten
Titel
Nanopore Membranes for Separation and Sensing
verfasst von
Gustav Emilsson
Andreas B. Dahlin
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-64747-0_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.