Skip to main content

2018 | OriginalPaper | Buchkapitel

Nanoporous Gold Nanoparticles and Arrays for Label-Free Nanoplasmonic Biosensing

verfasst von : Camille G. Artur, Wei-Chuan Shih

Erschienen in: Miniature Fluidic Devices for Rapid Biological Detection

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface plasmons (SP) are depicted in the classical picture as a fundamental electromagnetic mode of an interface between a metal (or a semi-conductor) and a dielectric medium and involving surface collective electronic oscilSurface plasmonslations Dror and William (Modern introduction to surface plasmons. Cambridge University Press, Cambridge, UK, [1]).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dror S, William C (2010) Modern introduction to surface plasmons. Cambridge University Press, Cambridge, UK Dror S, William C (2010) Modern introduction to surface plasmons. Cambridge University Press, Cambridge, UK
2.
Zurück zum Zitat Zia R, Schuller SA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9(7–8):20–27CrossRef Zia R, Schuller SA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9(7–8):20–27CrossRef
3.
Zurück zum Zitat Polman A, Atwater HA (2005) Plasmonics: optics at the nanoscale. Mater Today 8:56CrossRef Polman A, Atwater HA (2005) Plasmonics: optics at the nanoscale. Mater Today 8:56CrossRef
4.
Zurück zum Zitat Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 11(11):641–648CrossRef Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 11(11):641–648CrossRef
5.
Zurück zum Zitat Tokel O, Inci F, Demirci U (2014) Advances in plasmonic technologies for point of care applications. Chem Rev 114(11):5728–5752CrossRef Tokel O, Inci F, Demirci U (2014) Advances in plasmonic technologies for point of care applications. Chem Rev 114(11):5728–5752CrossRef
6.
Zurück zum Zitat Vo-Dinh T, Fales AM, Griffin GD, Khoury CG, Liu Y, Ngo H, Norton SJ, Register JK, Wang H-N, Yuan H (2013) Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy. Nanoscale 5:10127–10140CrossRef Vo-Dinh T, Fales AM, Griffin GD, Khoury CG, Liu Y, Ngo H, Norton SJ, Register JK, Wang H-N, Yuan H (2013) Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy. Nanoscale 5:10127–10140CrossRef
7.
Zurück zum Zitat Sotiriou GA (2013) Biomedical applications of multifunctional plasmonic nanoparticles. WIREs Nanomedicine Nanobiotechnoly 5:19–30CrossRef Sotiriou GA (2013) Biomedical applications of multifunctional plasmonic nanoparticles. WIREs Nanomedicine Nanobiotechnoly 5:19–30CrossRef
8.
Zurück zum Zitat Shih W-C, Santos GM, Zhao F, Zenasni O, Arnob MMP (2016) Simultaneous chemical and refractive index sensing in the 1−2.5 μm near-infrared wavelength range on nanoporous gold disks. Nano Lett 16:4641–4647CrossRef Shih W-C, Santos GM, Zhao F, Zenasni O, Arnob MMP (2016) Simultaneous chemical and refractive index sensing in the 1−2.5 μm near-infrared wavelength range on nanoporous gold disks. Nano Lett 16:4641–4647CrossRef
9.
Zurück zum Zitat Le Ru E, Etchegoin P (2008) Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects. Elsevier Le Ru E, Etchegoin P (2008) Principles of Surface-Enhanced Raman Spectroscopy and related plasmonic effects. Elsevier
10.
Zurück zum Zitat Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709–713CrossRef Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709–713CrossRef
11.
Zurück zum Zitat Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032CrossRef Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032CrossRef
12.
Zurück zum Zitat Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82(2):412–417CrossRef Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82(2):412–417CrossRef
13.
Zurück zum Zitat Hirsch LR, Stafford JR, Bankson JA, Sershen SR, Rivera B, Price R, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100(23):13549–13554CrossRef Hirsch LR, Stafford JR, Bankson JA, Sershen SR, Rivera B, Price R, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100(23):13549–13554CrossRef
14.
Zurück zum Zitat Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRef Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRef
15.
Zurück zum Zitat Biener J, Nyce GW, Hodge AM, Biener MM, Hamza AV, Maier SA (2008) Nanoporous plasmonic metamaterials. Adv Mater 20(6):1211–1217CrossRef Biener J, Nyce GW, Hodge AM, Biener MM, Hamza AV, Maier SA (2008) Nanoporous plasmonic metamaterials. Adv Mater 20(6):1211–1217CrossRef
16.
Zurück zum Zitat Lang X, Qian L, Guan P, Zi J, Chen M (2011) Localized surface plasmon resonances of nanoporous gold. Appl Phys Lett 98(9):093701CrossRef Lang X, Qian L, Guan P, Zi J, Chen M (2011) Localized surface plasmon resonances of nanoporous gold. Appl Phys Lett 98(9):093701CrossRef
17.
Zurück zum Zitat Liu H, Zhang L, Lang X, Yamaguchi Y, Iwasaki H, Inouye Y, Xue Q, Chen M (2011) Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci Rep 1:112CrossRef Liu H, Zhang L, Lang X, Yamaguchi Y, Iwasaki H, Inouye Y, Xue Q, Chen M (2011) Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci Rep 1:112CrossRef
18.
Zurück zum Zitat Qi J, Motwani P, Gheewala M, Brennan C, Wolfe JC, Shih W-C (2013) Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates. Nanoscale 5(10):4105–4109CrossRef Qi J, Motwani P, Gheewala M, Brennan C, Wolfe JC, Shih W-C (2013) Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates. Nanoscale 5(10):4105–4109CrossRef
19.
Zurück zum Zitat Ruan W-D, Lu Z-C, Ji N, Wang C-X, Bing Z, Zhang J-H (2007) Facile fabrication of large area polystyrene colloidal crystal monolayer via surfactant-free Langmuir-Blodgett technique. Chem Res Chin Univ 23(6):712–714CrossRef Ruan W-D, Lu Z-C, Ji N, Wang C-X, Bing Z, Zhang J-H (2007) Facile fabrication of large area polystyrene colloidal crystal monolayer via surfactant-free Langmuir-Blodgett technique. Chem Res Chin Univ 23(6):712–714CrossRef
20.
Zurück zum Zitat Parida S, Kramer D, Volkert CA, Rosner H, Erlebacher J, Weissmuller J (2006) Volume change during the formation of nanoporous gold by dealloying. Phys Rev Lett 97(3):035504CrossRef Parida S, Kramer D, Volkert CA, Rosner H, Erlebacher J, Weissmuller J (2006) Volume change during the formation of nanoporous gold by dealloying. Phys Rev Lett 97(3):035504CrossRef
21.
Zurück zum Zitat Crowson DA, Farkas D, Corcoran SG (2007) Geometric relaxation of nanoporous metals: the role of surface relaxation. Scr mater 56(11):919–922 Crowson DA, Farkas D, Corcoran SG (2007) Geometric relaxation of nanoporous metals: the role of surface relaxation. Scr mater 56(11):919–922
22.
Zurück zum Zitat Read JS (1988) Introduction to the principle of ceramic processing. Wiley Read JS (1988) Introduction to the principle of ceramic processing. Wiley
23.
Zurück zum Zitat Seker E, Berdichevsky Y, Begley MR, Reed ML, Staley KJ, Yarmush ML (2010) The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neuralelectrophysiology studies. Nanotechnology 21(12):125504CrossRef Seker E, Berdichevsky Y, Begley MR, Reed ML, Staley KJ, Yarmush ML (2010) The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neuralelectrophysiology studies. Nanotechnology 21(12):125504CrossRef
24.
Zurück zum Zitat Zhao F, Zeng J, Santos GM, Shih W-C (2015) In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying. Mater Sci Eng B 194:34–40 Zhao F, Zeng J, Santos GM, Shih W-C (2015) In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying. Mater Sci Eng B 194:34–40
25.
Zurück zum Zitat Li J, Zhao F, Shih W-C (2016) Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying. Opt Express 24(20):23610–23617CrossRef Li J, Zhao F, Shih W-C (2016) Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying. Opt Express 24(20):23610–23617CrossRef
26.
Zurück zum Zitat Qian L, Chen M (2007) Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl Phys Lett 91(8):083105CrossRef Qian L, Chen M (2007) Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl Phys Lett 91(8):083105CrossRef
27.
Zurück zum Zitat Strehle KR, Cialla D, Rosch P, Henkel T, Kohler M, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547CrossRef Strehle KR, Cialla D, Rosch P, Henkel T, Kohler M, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547CrossRef
28.
Zurück zum Zitat Quang LX, Lim C, Seong GH, Choo J, Do KJ, Yoo S-K (2008) A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab Chip 8(12):2214–2219CrossRef Quang LX, Lim C, Seong GH, Choo J, Do KJ, Yoo S-K (2008) A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab Chip 8(12):2214–2219CrossRef
29.
Zurück zum Zitat Sun J, Xianyu Y, Jiang X (2014) Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev 43(17):6239–6253CrossRef Sun J, Xianyu Y, Jiang X (2014) Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev 43(17):6239–6253CrossRef
30.
Zurück zum Zitat Dee KC, Puleo DA, Bizios R (2003) An introduction to tissue-biomaterial interactions. Wiley Dee KC, Puleo DA, Bizios R (2003) An introduction to tissue-biomaterial interactions. Wiley
31.
Zurück zum Zitat Santos GM, Zhao F, Zeng J, Shih W-C (2014) Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release. Nanoscale 6(11):5718–5724CrossRef Santos GM, Zhao F, Zeng J, Shih W-C (2014) Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release. Nanoscale 6(11):5718–5724CrossRef
32.
Zurück zum Zitat Qi J, Zeng J, Zhao F, Lin SH, Raja B, Strych U, Willson RC, Shih W-C (2014) Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale 6(15):8521–8526CrossRef Qi J, Zeng J, Zhao F, Lin SH, Raja B, Strych U, Willson RC, Shih W-C (2014) Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale 6(15):8521–8526CrossRef
33.
Zurück zum Zitat Li M, Zhao F, Zeng J, Qi J, Lu J, Shih W-C (2014) Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection. J Biomed Opt 19(11):111611CrossRef Li M, Zhao F, Zeng J, Qi J, Lu J, Shih W-C (2014) Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection. J Biomed Opt 19(11):111611CrossRef
34.
Zurück zum Zitat Li M, Li S, Cao W, Li W, Wen W, Alici G (2012) Continuous particle focusing in a waved microchannel using negative DC dielectrophoresis. J Micromech Microeng 22(9):095001CrossRef Li M, Li S, Cao W, Li W, Wen W, Alici G (2012) Continuous particle focusing in a waved microchannel using negative DC dielectrophoresis. J Micromech Microeng 22(9):095001CrossRef
35.
Zurück zum Zitat Ding Y, Chen M (2009) Nanoporous metals for catalytic and optical applications. MRS Bull 34(08):569–576CrossRef Ding Y, Chen M (2009) Nanoporous metals for catalytic and optical applications. MRS Bull 34(08):569–576CrossRef
36.
Zurück zum Zitat Yu F, Ahl S, Caminade A-M, Majoral J-P, Knoll W, Erlebacher J (2006) SPP and LSPR in NPG membranes. Anal Chem 78(20):7346–7350CrossRef Yu F, Ahl S, Caminade A-M, Majoral J-P, Knoll W, Erlebacher J (2006) SPP and LSPR in NPG membranes. Anal Chem 78(20):7346–7350CrossRef
37.
Zurück zum Zitat Wittstock A, Biener J, Erlebacher J (2012) Nanoporous gold: from an ancient technology to a high-tech material. R Soc Chem Wittstock A, Biener J, Erlebacher J (2012) Nanoporous gold: from an ancient technology to a high-tech material. R Soc Chem
38.
Zurück zum Zitat Ryckman JD, Jiao Y, Weiss SM (2013) Three-dimensional patterning and morphological control of porous nanomaterials by gray-scale direct imprinting. Sci Rep 3 Ryckman JD, Jiao Y, Weiss SM (2013) Three-dimensional patterning and morphological control of porous nanomaterials by gray-scale direct imprinting. Sci Rep 3
39.
Zurück zum Zitat Halas NJ, Lal S, Link S, Chang W-S, Natelson D, Hafner JH, Nordlander P (2012) A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv Mater 24(36):4842–4877CrossRef Halas NJ, Lal S, Link S, Chang W-S, Natelson D, Hafner JH, Nordlander P (2012) A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv Mater 24(36):4842–4877CrossRef
40.
Zurück zum Zitat Zeng J, Zhao F, Qi J, Li Y, Li C-H, Yao Y, Lee RT, Shih W-C (2014) Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles. RSC Adv 4(69):3688–36682 Zeng J, Zhao F, Qi J, Li Y, Li C-H, Yao Y, Lee RT, Shih W-C (2014) Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles. RSC Adv 4(69):3688–36682
41.
Zurück zum Zitat Zhao F, Zeng J, Arnob MMP, Sun P, Qi J, Motwani P, Gheewala M, Li C-H, Paterson A, Strych U, Raja B, Willson RC, Wolfe JC, Lee TR, Shih W-C (2014) Monolithic NPG nanoparticles with large surface area, tunable plasmonics and high-density internal hot spots. Nanoscale 6(14):8199–8207CrossRef Zhao F, Zeng J, Arnob MMP, Sun P, Qi J, Motwani P, Gheewala M, Li C-H, Paterson A, Strych U, Raja B, Willson RC, Wolfe JC, Lee TR, Shih W-C (2014) Monolithic NPG nanoparticles with large surface area, tunable plasmonics and high-density internal hot spots. Nanoscale 6(14):8199–8207CrossRef
42.
Zurück zum Zitat Camden JP, Dieringer JA, Zhao J, Van Duyne RP (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41(12):1653–1661CrossRef Camden JP, Dieringer JA, Zhao J, Van Duyne RP (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41(12):1653–1661CrossRef
43.
Zurück zum Zitat Kucheyev SO, Hayes JR, Biener J, Huser T, Talley CE, Hamza AV (2006) Surface-enhanced Raman scattering on nanoporous Au. Appl Phys Lett 89(5):053102CrossRef Kucheyev SO, Hayes JR, Biener J, Huser T, Talley CE, Hamza AV (2006) Surface-enhanced Raman scattering on nanoporous Au. Appl Phys Lett 89(5):053102CrossRef
44.
Zurück zum Zitat Gloria D, Gooding JJ, Moran G, Hibbert BD (2011) Electrochemically fabricated three dimensional nano-porous gold films optimised for surface enhanced Raman scattering. J Electroanal Chem 656(1):114–119CrossRef Gloria D, Gooding JJ, Moran G, Hibbert BD (2011) Electrochemically fabricated three dimensional nano-porous gold films optimised for surface enhanced Raman scattering. J Electroanal Chem 656(1):114–119CrossRef
45.
Zurück zum Zitat Li Z, Yang Y, Xia Y, Huang W, Zheng J, Li Z (2012) Fabrication of nano-network gold films via anodization of gold electrode and their application in SERS. J Solid State Electrochem 16(4):1733–1739CrossRef Li Z, Yang Y, Xia Y, Huang W, Zheng J, Li Z (2012) Fabrication of nano-network gold films via anodization of gold electrode and their application in SERS. J Solid State Electrochem 16(4):1733–1739CrossRef
46.
Zurück zum Zitat Aggarwal RL, Farrar LW, Diebold ED, Polla DL (2009) Measurement of the absolute Raman scattering cross section of the 1584-cm-1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates. J Raman Spectrosc 40(9):1331–1333CrossRef Aggarwal RL, Farrar LW, Diebold ED, Polla DL (2009) Measurement of the absolute Raman scattering cross section of the 1584-cm-1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates. J Raman Spectrosc 40(9):1331–1333CrossRef
47.
Zurück zum Zitat Gui JY, Stern DA, Frank DG, Lu F, Zapien DC, Hubbard AT (1991) Adsorption and surface structural chemistry of thiophenol, benzyl mercaptan, and alkyl mercaptans. Comparative studies at silver (111) and platinum (111) electrodes by means of Auger spectroscopy, electron energy loss spectroscopy, low energy electron dif. Langmuir 7(5):955–963CrossRef Gui JY, Stern DA, Frank DG, Lu F, Zapien DC, Hubbard AT (1991) Adsorption and surface structural chemistry of thiophenol, benzyl mercaptan, and alkyl mercaptans. Comparative studies at silver (111) and platinum (111) electrodes by means of Auger spectroscopy, electron energy loss spectroscopy, low energy electron dif. Langmuir 7(5):955–963CrossRef
48.
Zurück zum Zitat Jiao Y, Ryckman JD, Ciesielski PN, Escobar CA, Jennings KG, Weiss SM (2011) Patterned nanoporous gold as an effective SERS template. Nanotechnology 22(29):295302CrossRef Jiao Y, Ryckman JD, Ciesielski PN, Escobar CA, Jennings KG, Weiss SM (2011) Patterned nanoporous gold as an effective SERS template. Nanotechnology 22(29):295302CrossRef
49.
Zurück zum Zitat Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Analitycal Chem 74(20):5297–5305CrossRef Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Analitycal Chem 74(20):5297–5305CrossRef
50.
Zurück zum Zitat Hanarp P, Käll M, Sutherland DS (2003) Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J Phys Chem B 107(24):5768–5772 Hanarp P, Käll M, Sutherland DS (2003) Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J Phys Chem B 107(24):5768–5772
51.
Zurück zum Zitat Hu M, Chen J, Marquez M, Xia Y, Hartland GV (2007) Correlated rayleigh scattering spectroscopy and scanning electron microscopy studies of Au-Ag bimetallic nanoboxes and nanocages. J Phys Chem C 111(34):12558–12565CrossRef Hu M, Chen J, Marquez M, Xia Y, Hartland GV (2007) Correlated rayleigh scattering spectroscopy and scanning electron microscopy studies of Au-Ag bimetallic nanoboxes and nanocages. J Phys Chem C 111(34):12558–12565CrossRef
52.
Zurück zum Zitat Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586CrossRef Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586CrossRef
53.
Zurück zum Zitat Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic. Nano Lett 6(4):827–832CrossRef Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic. Nano Lett 6(4):827–832CrossRef
54.
Zurück zum Zitat Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263 Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263
55.
Zurück zum Zitat Qi J, Shih W-C (2012) Parallel Raman microspectroscopy using programmable multipoint illumination. Opt Lett 37(8):1289–1291CrossRef Qi J, Shih W-C (2012) Parallel Raman microspectroscopy using programmable multipoint illumination. Opt Lett 37(8):1289–1291CrossRef
56.
Zurück zum Zitat Park SG, Lee NS, Lee SH (2000) Vibrational analysis of dopamine neutral Bae based on density functional force field. Bull Korean Chem Soc 21(10):1035–1038 Park SG, Lee NS, Lee SH (2000) Vibrational analysis of dopamine neutral Bae based on density functional force field. Bull Korean Chem Soc 21(10):1035–1038
57.
Zurück zum Zitat Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108(1):109–139CrossRef Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108(1):109–139CrossRef
58.
Zurück zum Zitat Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124CrossRef Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124CrossRef
59.
Zurück zum Zitat Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10(4):1189–1193CrossRef Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10(4):1189–1193CrossRef
60.
Zurück zum Zitat Wang H-N, Dhawan A, Du Y, Batchelor D, Leonard DN, Misra V, Vo-Dinh T (2013) Molecular sentinel-on-chip for SERS-based biosensing. Phys Chem Chem Phys 15(16):6008–6015CrossRef Wang H-N, Dhawan A, Du Y, Batchelor D, Leonard DN, Misra V, Vo-Dinh T (2013) Molecular sentinel-on-chip for SERS-based biosensing. Phys Chem Chem Phys 15(16):6008–6015CrossRef
61.
Zurück zum Zitat Wang H-N, Fales AM, Zaas AK, Woods CW, Burke T, Ginsburg GS, Vo-Dinh T (2013) Surface-enhanced Raman scattering molecular sentinel nanoprobes for viral infection diagnostics. Anal Chim Acta 786:153–158CrossRef Wang H-N, Fales AM, Zaas AK, Woods CW, Burke T, Ginsburg GS, Vo-Dinh T (2013) Surface-enhanced Raman scattering molecular sentinel nanoprobes for viral infection diagnostics. Anal Chim Acta 786:153–158CrossRef
62.
Zurück zum Zitat Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540CrossRef Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540CrossRef
63.
Zurück zum Zitat Shih WC (2014) Label-free in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale 6(5):8521–8526 Shih WC (2014) Label-free in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale 6(5):8521–8526
64.
Zurück zum Zitat Li M, Lu J, Qi J, Zhao F, Zeng J, Yu JC-C, Shih W-C (2014) Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging. J Biomed Opt 19(5):050501CrossRef Li M, Lu J, Qi J, Zhao F, Zeng J, Yu JC-C, Shih W-C (2014) Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging. J Biomed Opt 19(5):050501CrossRef
65.
Zurück zum Zitat Li M, Du Y, Zhao F, Zeng J, Mohan C, Shih W-C (2015) Reagent-and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomed Opt Express 6(3):849–858CrossRef Li M, Du Y, Zhao F, Zeng J, Mohan C, Shih W-C (2015) Reagent-and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomed Opt Express 6(3):849–858CrossRef
66.
Zurück zum Zitat Xie C, Sharma R, Wang H, Zhou XJ, Mohan C (2004) Strain distribution pattern of susceptibility to immune-mediated nephritis. J Immunol 172(8):5047–5055CrossRef Xie C, Sharma R, Wang H, Zhou XJ, Mohan C (2004) Strain distribution pattern of susceptibility to immune-mediated nephritis. J Immunol 172(8):5047–5055CrossRef
67.
Zurück zum Zitat Qiu S, Zhao F, Zenasni O, Li J, Shih W-C (2016) Nanoporous gold disks functionalized with stabilized G-quadruplex moieties for sensing small molecules ACS Appl Mater Interfaces 8(44):29968–29976 Qiu S, Zhao F, Zenasni O, Li J, Shih W-C (2016) Nanoporous gold disks functionalized with stabilized G-quadruplex moieties for sensing small molecules ACS Appl Mater Interfaces 8(44):29968–29976
68.
Zurück zum Zitat Bhasikuttan AC, Mohanty J (2015) Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors. Chem Commun 51(36):7581–7597CrossRef Bhasikuttan AC, Mohanty J (2015) Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors. Chem Commun 51(36):7581–7597CrossRef
69.
Zurück zum Zitat Biffi G, Di Antonio M, Tannahill D, Balasubramanian S (2014) Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 6(1):75–80CrossRef Biffi G, Di Antonio M, Tannahill D, Balasubramanian S (2014) Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 6(1):75–80CrossRef
70.
Zurück zum Zitat Olejko L, Cywinski PJ, Bald I (2015) Ion-Selective formation of a guanine quadruplex on DNA origami structures. Angew Chem Int Ed 54(2):673–677 Olejko L, Cywinski PJ, Bald I (2015) Ion-Selective formation of a guanine quadruplex on DNA origami structures. Angew Chem Int Ed 54(2):673–677
71.
Zurück zum Zitat Koirala D, Dhakal S, Ashbridge B, Sannohe Y, Rodriguez R, Sugiyama H, Balasubramanian S, Mao H (2011) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3(10):782–787CrossRef Koirala D, Dhakal S, Ashbridge B, Sannohe Y, Rodriguez R, Sugiyama H, Balasubramanian S, Mao H (2011) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3(10):782–787CrossRef
72.
Zurück zum Zitat Bhasikuttan AC, Mohanty J, Pal H (2007) Interaction of malachite green with guanine-rich single-stranded DNA: preferential binding to a G-Quadruplex. Angew Chem Int Ed 46(48):9305–9307CrossRef Bhasikuttan AC, Mohanty J, Pal H (2007) Interaction of malachite green with guanine-rich single-stranded DNA: preferential binding to a G-Quadruplex. Angew Chem Int Ed 46(48):9305–9307CrossRef
73.
Zurück zum Zitat Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66(3):319–329CrossRef Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66(3):319–329CrossRef
74.
Zurück zum Zitat Santos GM, Zhao F, Zeng J (2015) Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles. J Biophotonics 8(10):855–863CrossRef Santos GM, Zhao F, Zeng J (2015) Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles. J Biophotonics 8(10):855–863CrossRef
75.
Zurück zum Zitat Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2003) Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities. J Fluoresc 13(3):267–276CrossRef Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2003) Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities. J Fluoresc 13(3):267–276CrossRef
76.
Zurück zum Zitat Gartia MR, Hsiao A, Sivaguru M, Chen Y, Liu LG (2011) Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate. Nanotechnology 22(36):365203CrossRef Gartia MR, Hsiao A, Sivaguru M, Chen Y, Liu LG (2011) Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate. Nanotechnology 22(36):365203CrossRef
77.
Zurück zum Zitat Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7(3):690–696CrossRef Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7(3):690–696CrossRef
78.
Zurück zum Zitat Ranjan Gartia M, Eichorst JP, Clegg RM, Logan Liu G (2012) Lifetime imaging of radiative and non-radiative fluorescence decays on nanoplasmonic surface. Appl Phys Lett 101(2):023118 Ranjan Gartia M, Eichorst JP, Clegg RM, Logan Liu G (2012) Lifetime imaging of radiative and non-radiative fluorescence decays on nanoplasmonic surface. Appl Phys Lett 101(2):023118
79.
Zurück zum Zitat Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002CrossRef Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002CrossRef
80.
Zurück zum Zitat Campion A, Gallo AR, Harris CB, Robota HJ, Whitmore PM (1980) Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances. Chem Phys Lett 73(3):447–450CrossRef Campion A, Gallo AR, Harris CB, Robota HJ, Whitmore PM (1980) Electronic energy transfer to metal surfaces: a test of classical image dipole theory at short distances. Chem Phys Lett 73(3):447–450CrossRef
81.
Zurück zum Zitat Lang XY, Guan PF, Fujita T, Chen M (2011) Tailored nanoporous gold for ultrahigh fluorescence enhancement. Phys Chem Chem Phys 13(9):3795–3799CrossRef Lang XY, Guan PF, Fujita T, Chen M (2011) Tailored nanoporous gold for ultrahigh fluorescence enhancement. Phys Chem Chem Phys 13(9):3795–3799CrossRef
82.
Zurück zum Zitat Lang XY, Guan PF, Zhang L, Fujita T, Chen M (2010) Size dependence of molecular fluorescence enhancement of nanoporous gold. Appl Phys Lett 96(7):073701CrossRef Lang XY, Guan PF, Zhang L, Fujita T, Chen M (2010) Size dependence of molecular fluorescence enhancement of nanoporous gold. Appl Phys Lett 96(7):073701CrossRef
Metadaten
Titel
Nanoporous Gold Nanoparticles and Arrays for Label-Free Nanoplasmonic Biosensing
verfasst von
Camille G. Artur
Wei-Chuan Shih
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-64747-0_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.