Skip to main content

2020 | OriginalPaper | Buchkapitel

Nanoporous Polymeric Membranes for Hydrogen Separation

verfasst von : Rajesh Kumar, Kamakshi, Manoj Kumar, Kamlendra Awasthi

Erschienen in: Nanotechnology for Energy and Environmental Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In today’s world, it becomes a necessity to develop an eco-friendly and renewable energy source to overcome the pollution and energy requirement problem. Among all renewable energy sources, hydrogen has been found a more attractive energy carrier due to its high efficiency and cost-effective sustainable energy source. For practical use of H2 as an energy source, it should be separated from a mixture of gases by using hydrogen-selective membranes. In the present chapter, we have reviewed the membrane-based gas separation process. Furthermore, we have summarized the H2 gas separation data based on the different membranes and approaches to prepare hydrogen-selective membranes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121CrossRef Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121CrossRef
6.
Zurück zum Zitat Basyooni MA, Shaban M, El Sayed AM (2017) Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci Rep 7:41716CrossRef Basyooni MA, Shaban M, El Sayed AM (2017) Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci Rep 7:41716CrossRef
7.
Zurück zum Zitat Beard MC, Luther JM, Nozik AJ (2014) The promise and challenge of nanostructured solar cells. Nat Nanotechnol 9:951CrossRef Beard MC, Luther JM, Nozik AJ (2014) The promise and challenge of nanostructured solar cells. Nat Nanotechnol 9:951CrossRef
9.
Zurück zum Zitat Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers. J Polym Sci Part B Polym Phys 38:2051–2062CrossRef Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers. J Polym Sci Part B Polym Phys 38:2051–2062CrossRef
10.
Zurück zum Zitat Carreon M, Dahe G, Feng J, Venna SR (2016) Mixed matrix membranes for gas separation applications. In: Membranes for gas separations. World Scientific, pp 1–57 Carreon M, Dahe G, Feng J, Venna SR (2016) Mixed matrix membranes for gas separation applications. In: Membranes for gas separations. World Scientific, pp 1–57
18.
Zurück zum Zitat De Falco M, Salladini A, Palo E, Iaquaniello G (2011) Reformer and membrane modules (RMM) for methane conversion powered by a nuclear reactor. In: Nuclear power-deployment, operation and sustainability. InTech De Falco M, Salladini A, Palo E, Iaquaniello G (2011) Reformer and membrane modules (RMM) for methane conversion powered by a nuclear reactor. In: Nuclear power-deployment, operation and sustainability. InTech
19.
Zurück zum Zitat de Lannoy C-F, Soyer E, Wiesner MR (2013) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Memb Sci 447:395–402CrossRef de Lannoy C-F, Soyer E, Wiesner MR (2013) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Memb Sci 447:395–402CrossRef
24.
Zurück zum Zitat Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5:7306–7322CrossRef Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5:7306–7322CrossRef
27.
Zurück zum Zitat Gallucci F, Fernandez E, Corengia P, van Sint AM (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66CrossRef Gallucci F, Fernandez E, Corengia P, van Sint AM (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66CrossRef
28.
Zurück zum Zitat Gao H, Lin YS, Li Y, Zhang B (2004) Chemical stability and its improvement of palladium-based metallic membranes. Ind Eng Chem Res 43:6920–6930CrossRef Gao H, Lin YS, Li Y, Zhang B (2004) Chemical stability and its improvement of palladium-based metallic membranes. Ind Eng Chem Res 43:6920–6930CrossRef
29.
Zurück zum Zitat Ghasemzadeh K, Sadati Tilebon SM, Basile A (2017) Chapter 10—Silica membranes application for hydrogen separation. In: Basile A, Ghasemzadeh K (eds) Current trends and future developments on (bio-) membranes. Elsevier, pp 243–264 Ghasemzadeh K, Sadati Tilebon SM, Basile A (2017) Chapter 10—Silica membranes application for hydrogen separation. In: Basile A, Ghasemzadeh K (eds) Current trends and future developments on (bio-) membranes. Elsevier, pp 243–264
34.
Zurück zum Zitat Hatlevik Ø, Gade SK, Keeling MK et al (2010) Palladium and palladium alloy membranes for hydrogen separation and production: history, fabrication strategies, and current performance. Sep Purif Technol 73:59–64CrossRef Hatlevik Ø, Gade SK, Keeling MK et al (2010) Palladium and palladium alloy membranes for hydrogen separation and production: history, fabrication strategies, and current performance. Sep Purif Technol 73:59–64CrossRef
35.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56CrossRef
36.
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603CrossRef
42.
Zurück zum Zitat Jose AJ, Kappen J, Alagar M (2018) 2—Polymeric membranes: classification, preparation, structure physiochemical, and transport mechanisms. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: polymers. Woodhead Publishing Series in Biomaterials. Woodhead Publishing, pp 21–35 Jose AJ, Kappen J, Alagar M (2018) 2—Polymeric membranes: classification, preparation, structure physiochemical, and transport mechanisms. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: polymers. Woodhead Publishing Series in Biomaterials. Woodhead Publishing, pp 21–35
46.
Zurück zum Zitat Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly (amide-6-b-ethylene oxide) copolymer. J Memb Sci 190:179–193CrossRef Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly (amide-6-b-ethylene oxide) copolymer. J Memb Sci 190:179–193CrossRef
51.
Zurück zum Zitat Kuwahara Y, Morita M, Nagami T, et al (2009) Functionalization of a polymer using nanoparticles immobilized in supercritical carbon dioxide. Jpn J Appl Phys 48:06FF13 Kuwahara Y, Morita M, Nagami T, et al (2009) Functionalization of a polymer using nanoparticles immobilized in supercritical carbon dioxide. Jpn J Appl Phys 48:06FF13
55.
Zurück zum Zitat Lindemann P, Tsotsalas M, Shishatskiy S et al (2014) Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation. Chem Mater 26:7189–7193CrossRef Lindemann P, Tsotsalas M, Shishatskiy S et al (2014) Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation. Chem Mater 26:7189–7193CrossRef
62.
Zurück zum Zitat McCool BA, DeSisto WJ (2005) Amino-functionalized silica membranes for enhanced carbon dioxide permeation. Adv Funct Mater 15:1635–1640CrossRef McCool BA, DeSisto WJ (2005) Amino-functionalized silica membranes for enhanced carbon dioxide permeation. Adv Funct Mater 15:1635–1640CrossRef
70.
Zurück zum Zitat Phillip WA, O’Neill B, Rodwogin M et al (2010) Self-assembled block copolymer thin films as water filtration membranes. ACS Appl Mater Interfaces 2:847–853CrossRef Phillip WA, O’Neill B, Rodwogin M et al (2010) Self-assembled block copolymer thin films as water filtration membranes. ACS Appl Mater Interfaces 2:847–853CrossRef
71.
Zurück zum Zitat Álvarez-Fernández R, Beltrán Cilleruelo F, IVM (2016) A new approach to battery powered electric vehicles: a hydrogen fuel-cell range extender system. Int J Hydrog Energy 41:4808–4819 Álvarez-Fernández R, Beltrán Cilleruelo F, IVM (2016) A new approach to battery powered electric vehicles: a hydrogen fuel-cell range extender system. Int J Hydrog Energy 41:4808–4819
82.
Zurück zum Zitat Shi Z, Wu S, Szpunar JA, Roshd M (2006) An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. J Memb Sci 280:705–711CrossRef Shi Z, Wu S, Szpunar JA, Roshd M (2006) An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. J Memb Sci 280:705–711CrossRef
84.
Zurück zum Zitat Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242CrossRef Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242CrossRef
86.
Zurück zum Zitat Sridhar S, Bee S, Bhargava SK (2014) Membrane-based gas separation : principle, applications and future potential. 1–25 Sridhar S, Bee S, Bhargava SK (2014) Membrane-based gas separation : principle, applications and future potential. 1–25
94.
Zurück zum Zitat Urch H, Geismann C, Ulbricht M, Epple M (2006) Deposition of functionalized calcium phosphate nanoparticles on functionalized polymer surfaces. Mater und Werkstofftechnik Entwicklung, Fert Prüfung, Eig und Anwendungen Tech Werkstoffe 37:422–425 Urch H, Geismann C, Ulbricht M, Epple M (2006) Deposition of functionalized calcium phosphate nanoparticles on functionalized polymer surfaces. Mater und Werkstofftechnik Entwicklung, Fert Prüfung, Eig und Anwendungen Tech Werkstoffe 37:422–425
95.
Zurück zum Zitat van Zoelen W, ten Brinke G (2009) Thin films of complexed block copolymers. Soft Matter 5:1568–1582CrossRef van Zoelen W, ten Brinke G (2009) Thin films of complexed block copolymers. Soft Matter 5:1568–1582CrossRef
96.
Zurück zum Zitat Verweij H (2003) Ceramic membranes: morphology and transport. J Mater Sci 38:4677–4695CrossRef Verweij H (2003) Ceramic membranes: morphology and transport. J Mater Sci 38:4677–4695CrossRef
99.
Zurück zum Zitat Ward TL, Dao T (1999) Model of hydrogen permeation behavior in palladium membranes. J Memb Sci 153:211–231CrossRef Ward TL, Dao T (1999) Model of hydrogen permeation behavior in palladium membranes. J Memb Sci 153:211–231CrossRef
102.
Zurück zum Zitat Weng T-H, Tseng H-H, Wey M-Y (2009) Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int J Hydrog Energy 34:8707–8715CrossRef Weng T-H, Tseng H-H, Wey M-Y (2009) Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int J Hydrog Energy 34:8707–8715CrossRef
104.
Zurück zum Zitat Wijmans JGH, Baker RW (2006) The solution-diffusion model: a unified approach to membrane permeation. Materials science of membranes for gas and vapor separation. Wiley, Chichester, UK, pp 159–189CrossRef Wijmans JGH, Baker RW (2006) The solution-diffusion model: a unified approach to membrane permeation. Materials science of membranes for gas and vapor separation. Wiley, Chichester, UK, pp 159–189CrossRef
109.
Zurück zum Zitat Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831CrossRef Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831CrossRef
112.
Zurück zum Zitat Zito PF, Caravella A, Brunetti A et al (2017) Knudsen and surface diffusion competing for gas permeation inside silicalite membranes. J Memb Sci 523:456–469CrossRef Zito PF, Caravella A, Brunetti A et al (2017) Knudsen and surface diffusion competing for gas permeation inside silicalite membranes. J Memb Sci 523:456–469CrossRef
Metadaten
Titel
Nanoporous Polymeric Membranes for Hydrogen Separation
verfasst von
Rajesh Kumar
Kamakshi
Manoj Kumar
Kamlendra Awasthi
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-33774-2_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.