Skip to main content

2013 | OriginalPaper | Buchkapitel

Nanostructured Polymeric Ionic Liquids

verfasst von : Benjamin Kerscher, Fabian Schüler, Anna-Katharina Appel, Kristina Schadt, Rolf Mülhaupt

Erschienen in: Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanophase separation, self-assembly, and molecular nanostructure design of liquid polyelectrolytes afford new families of ionic liquids containing nanometer-scaled compartments. Key intermediates of nanostructured polymeric ionic liquids (nanoPILs) are PILs with micelle-like topologies, block copolymers and polymer electrolytes dissolved in ionic liquids (ILs), and nanoparticle dispersions. In contrast to micellar ILs, micelle-like nanoPILs consist of a nonionic hyperbranched polyether core with low glass transition temperature and covalently attached alkyl-substituted IL moieties in its periphery. Such hyperbranched nanoPILs are thermally stable dispersants, nanoreactors, and transporters that are useful in nanoparticle synthesis and polymer melt compounding. As new molecular carbon/polyelectrolyte composite materials, tree-like nanoPILs are grafted onto functionalized graphene. Here, we highlight recent progress made in nanoPIL science and engineering, illustrated by selected examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084CrossRef Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084CrossRef
2.
Zurück zum Zitat Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576CrossRef Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576CrossRef
3.
Zurück zum Zitat Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692CrossRef Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3692CrossRef
4.
Zurück zum Zitat Pârvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665CrossRef Pârvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665CrossRef
5.
Zurück zum Zitat Wasserscheid P, Keim W (2000) Ionic liquids – new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRef Wasserscheid P, Keim W (2000) Ionic liquids – new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRef
6.
Zurück zum Zitat Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56CrossRef Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56CrossRef
7.
Zurück zum Zitat Wasserscheid P, Welton T (2007) Ionic liquids in synthesis, vol 2. Wiley-VCH, WeinheimCrossRef Wasserscheid P, Welton T (2007) Ionic liquids in synthesis, vol 2. Wiley-VCH, WeinheimCrossRef
8.
Zurück zum Zitat Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim
9.
Zurück zum Zitat Brazel CS, Rogers RD (2005) Ionic liquids in polymer systems solvents additives and novel applications. American Chemical Society, Washington, DCCrossRef Brazel CS, Rogers RD (2005) Ionic liquids in polymer systems solvents additives and novel applications. American Chemical Society, Washington, DCCrossRef
10.
Zurück zum Zitat Canongia Lopes JNA, Pádua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335CrossRef Canongia Lopes JNA, Pádua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335CrossRef
11.
Zurück zum Zitat Friberg SE, Yin Q, Pavel F, Mackay RA, Holbrey JD, Seddon KR, Aikens PA (2000) Solubilization of an ionic liquid, l-Butyl-3-methylimidazolium hexafluorophosphate, in a surfactant-water system. J Dispersion Sci Technol 21:185–197CrossRef Friberg SE, Yin Q, Pavel F, Mackay RA, Holbrey JD, Seddon KR, Aikens PA (2000) Solubilization of an ionic liquid, l-Butyl-3-methylimidazolium hexafluorophosphate, in a surfactant-water system. J Dispersion Sci Technol 21:185–197CrossRef
12.
Zurück zum Zitat Hoffmann MM, Heitz MP, Carr JB, Tubbs JD (2003) Surfactants in green solvent systems – current and future research directions. J Dispersion Sci Technol 24:155–171CrossRef Hoffmann MM, Heitz MP, Carr JB, Tubbs JD (2003) Surfactants in green solvent systems – current and future research directions. J Dispersion Sci Technol 24:155–171CrossRef
13.
Zurück zum Zitat Anderson JL, Pino V, Hagberg EC, Sheares VV, Armstrong DW (2003) Surfactant solvation effects and micelle formation in ionic liquids. Chem Commun 2003(19):2444–2445CrossRef Anderson JL, Pino V, Hagberg EC, Sheares VV, Armstrong DW (2003) Surfactant solvation effects and micelle formation in ionic liquids. Chem Commun 2003(19):2444–2445CrossRef
14.
Zurück zum Zitat Green O, Grubjesic S, Lee S, Firestone MA (2009) The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev 49:339–360CrossRef Green O, Grubjesic S, Lee S, Firestone MA (2009) The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev 49:339–360CrossRef
15.
Zurück zum Zitat Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448CrossRef Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448CrossRef
16.
Zurück zum Zitat Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52:1469–1482CrossRef Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52:1469–1482CrossRef
17.
Zurück zum Zitat Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648CrossRef Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648CrossRef
18.
Zurück zum Zitat Marcilla R, Blazquez JA, Fernandez R, Grande H, Pomposo JA, Mecerreyes D (2005) Synthesis of novel polycations using the chemistry of ionic liquids. Macromol Chem Phys 206:299–304CrossRef Marcilla R, Blazquez JA, Fernandez R, Grande H, Pomposo JA, Mecerreyes D (2005) Synthesis of novel polycations using the chemistry of ionic liquids. Macromol Chem Phys 206:299–304CrossRef
19.
Zurück zum Zitat Weber RL, Ye Y, Banik SM, Elabd YA, Hickner MA, Mahanthappa MK (2011) Thermal and ion transport properties of hydrophilic and hydrophobic polymerized styrenic imidazolium ionic liquids. J Polym Sci B Polym Phys 49:1287–1296CrossRef Weber RL, Ye Y, Banik SM, Elabd YA, Hickner MA, Mahanthappa MK (2011) Thermal and ion transport properties of hydrophilic and hydrophobic polymerized styrenic imidazolium ionic liquids. J Polym Sci B Polym Phys 49:1287–1296CrossRef
20.
Zurück zum Zitat Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036CrossRef Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036CrossRef
21.
Zurück zum Zitat Yoshizawa M, Hirao M, Ito-Akita K, Ohno H (2001) Ion conduction in zwitterionic-type molten salts and their polymers. J Mater Chem 11:1057–1062CrossRef Yoshizawa M, Hirao M, Ito-Akita K, Ohno H (2001) Ion conduction in zwitterionic-type molten salts and their polymers. J Mater Chem 11:1057–1062CrossRef
22.
Zurück zum Zitat Gu Y, Lodge TP (2011) Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block. Macromolecules 44:1732–1736CrossRef Gu Y, Lodge TP (2011) Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block. Macromolecules 44:1732–1736CrossRef
23.
Zurück zum Zitat Ye Y, Choi J-H, Winey KI, Elabd YA (2012) Polymerized ionic liquid block and random copolymers: effect of weak microphase separation on ion transport. Macromolecules 45:7027–7035CrossRef Ye Y, Choi J-H, Winey KI, Elabd YA (2012) Polymerized ionic liquid block and random copolymers: effect of weak microphase separation on ion transport. Macromolecules 45:7027–7035CrossRef
24.
Zurück zum Zitat Wang Z, Lai H, Wu P (2012) Influence of PIL segment on solution properties of poly(N-isopropylacrylamide)-b-poly(ionic liquid) copolymer: micelles, thermal phase behavior and microdynamics. Soft Matter 8:11644–11653CrossRef Wang Z, Lai H, Wu P (2012) Influence of PIL segment on solution properties of poly(N-isopropylacrylamide)-b-poly(ionic liquid) copolymer: micelles, thermal phase behavior and microdynamics. Soft Matter 8:11644–11653CrossRef
25.
Zurück zum Zitat Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 27:751–752CrossRef Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 27:751–752CrossRef
26.
Zurück zum Zitat Ohno H (2001) Molten salt type polymer electrolytes. Electrochim Acta 46:1407–1411CrossRef Ohno H (2001) Molten salt type polymer electrolytes. Electrochim Acta 46:1407–1411CrossRef
27.
Zurück zum Zitat Ohno H, Yoshizawa M, Ogihara W (2004) Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta 50:255–261CrossRef Ohno H, Yoshizawa M, Ogihara W (2004) Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta 50:255–261CrossRef
28.
Zurück zum Zitat Ohno H (2007) Design of ion conductive polymers based on ionic liquids. Macromol Symp 249–250:551–556CrossRef Ohno H (2007) Design of ion conductive polymers based on ionic liquids. Macromol Symp 249–250:551–556CrossRef
29.
Zurück zum Zitat Hoshino K, Yoshio M, Mukai T, Kishimoto K, Ohno H, Kato T (2003) Nanostructured ion-conductive films: layered assembly of a side-chain liquid-crystalline polymer with an imidazolium ionic moiety. J Polym Sci A Polym Chem 41:3486–3492CrossRef Hoshino K, Yoshio M, Mukai T, Kishimoto K, Ohno H, Kato T (2003) Nanostructured ion-conductive films: layered assembly of a side-chain liquid-crystalline polymer with an imidazolium ionic moiety. J Polym Sci A Polym Chem 41:3486–3492CrossRef
30.
Zurück zum Zitat Lu X, Xiao S, Chen X, Lu Q (2011) A photosensitive fluorinated ionic complex with tunable surface wetting properties: mesostructure and photosensitivity. Polym Chem 2:2528–2535CrossRef Lu X, Xiao S, Chen X, Lu Q (2011) A photosensitive fluorinated ionic complex with tunable surface wetting properties: mesostructure and photosensitivity. Polym Chem 2:2528–2535CrossRef
31.
32.
Zurück zum Zitat Haramoto Y, Kusakabe Y, Nanasawa M, Ujiie S, Mang S, Schwarzwalder C, Holmes AB (2000) Side chain type ionic liquid crystalline polymers having high preliminary communication molecular weight. Liq Cryst 27:1393–1397CrossRef Haramoto Y, Kusakabe Y, Nanasawa M, Ujiie S, Mang S, Schwarzwalder C, Holmes AB (2000) Side chain type ionic liquid crystalline polymers having high preliminary communication molecular weight. Liq Cryst 27:1393–1397CrossRef
33.
Zurück zum Zitat Vuillaume PY, Galin J-C, Bazuin CG (2001) Ionomer and mesomorphic behavior in a tail-end, ionic mesogen-containing, comblike copolymer series. Macromolecules 34:859–867CrossRef Vuillaume PY, Galin J-C, Bazuin CG (2001) Ionomer and mesomorphic behavior in a tail-end, ionic mesogen-containing, comblike copolymer series. Macromolecules 34:859–867CrossRef
34.
Zurück zum Zitat Batra D, Hay DNT, Firestone MA (2007) Formation of a biomimetic, liquid-crystalline hydrogel by self-assembly and polymerization of an ionic liquid. Chem Mater 19:4423–4431CrossRef Batra D, Hay DNT, Firestone MA (2007) Formation of a biomimetic, liquid-crystalline hydrogel by self-assembly and polymerization of an ionic liquid. Chem Mater 19:4423–4431CrossRef
35.
Zurück zum Zitat Batra D, Seifert S, Varela LM, Liu ACY, Firestone MA (2007) Solvent-mediated plasmon tuning in a gold-nanoparticle–poly(ionic liquid) composite. Adv Funct Mater 17:1279–1287CrossRef Batra D, Seifert S, Varela LM, Liu ACY, Firestone MA (2007) Solvent-mediated plasmon tuning in a gold-nanoparticle–poly(ionic liquid) composite. Adv Funct Mater 17:1279–1287CrossRef
36.
Zurück zum Zitat Lee S, Becht GA, Lee B, Burns CT, Firestone MA (2010) Electropolymerization of a bifunctional ionic liquid monomer yields an electroactive liquid-crystalline polymer. Adv Funct Mater 20:2063–2070CrossRef Lee S, Becht GA, Lee B, Burns CT, Firestone MA (2010) Electropolymerization of a bifunctional ionic liquid monomer yields an electroactive liquid-crystalline polymer. Adv Funct Mater 20:2063–2070CrossRef
37.
Zurück zum Zitat Li X, Ni X, Liang Z, Shen Z (2012) Preparation of main-chain imidazolium-functionalized amphiphilic block copolymers through combination of condensation polymerization and nitroxide-mediated free radical polymerization and their micelle study. J Polym Sci A Polym Chem 50:2037–2044CrossRef Li X, Ni X, Liang Z, Shen Z (2012) Preparation of main-chain imidazolium-functionalized amphiphilic block copolymers through combination of condensation polymerization and nitroxide-mediated free radical polymerization and their micelle study. J Polym Sci A Polym Chem 50:2037–2044CrossRef
38.
Zurück zum Zitat Zare P, Stojanovic A, Herbst F, Akbarzadeh J, Peterlik H, Binder WH (2012) Hierarchically nanostructured polyisobutylene-based ionic liquids. Macromolecules 45:2074–2084CrossRef Zare P, Stojanovic A, Herbst F, Akbarzadeh J, Peterlik H, Binder WH (2012) Hierarchically nanostructured polyisobutylene-based ionic liquids. Macromolecules 45:2074–2084CrossRef
39.
Zurück zum Zitat Park MJ, Choi I, Hong J, Kim O (2013) Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J Appl Polym Sci 129:2363–2376CrossRef Park MJ, Choi I, Hong J, Kim O (2013) Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J Appl Polym Sci 129:2363–2376CrossRef
40.
Zurück zum Zitat Choi I, Ahn H, Park MJ (2011) Enhanced performance in lithium-polymer batteries using surface-functionalized Si nanoparticle anodes and self-assembled block copolymer electrolytes. Macromolecules 44:7327–7334CrossRef Choi I, Ahn H, Park MJ (2011) Enhanced performance in lithium-polymer batteries using surface-functionalized Si nanoparticle anodes and self-assembled block copolymer electrolytes. Macromolecules 44:7327–7334CrossRef
41.
Zurück zum Zitat He Y, Li Z, Simone P, Lodge TP (2006) Self-assembly of block copolymer micelles in an ionic liquid. J Am Chem Soc 128:2745–2750CrossRef He Y, Li Z, Simone P, Lodge TP (2006) Self-assembly of block copolymer micelles in an ionic liquid. J Am Chem Soc 128:2745–2750CrossRef
42.
Zurück zum Zitat Bai Z, Lodge TP (2010) Pluronic micelle shuttle between water and an ionic liquid. Langmuir 26:8887–8892CrossRef Bai Z, Lodge TP (2010) Pluronic micelle shuttle between water and an ionic liquid. Langmuir 26:8887–8892CrossRef
43.
Zurück zum Zitat Tokuda M, Minami H, Mizuta Y, Yamagami T (2012) Preparation of micron-sized monodisperse poly(ionic liquid) particles. Macromol Rapid Commun 33:1130–1134CrossRef Tokuda M, Minami H, Mizuta Y, Yamagami T (2012) Preparation of micron-sized monodisperse poly(ionic liquid) particles. Macromol Rapid Commun 33:1130–1134CrossRef
44.
Zurück zum Zitat Yuan J, Antonietti M (2011) Poly(ionic liquid) latexes prepared by dispersion polymerization of ionic liquid monomers. Macromolecules 44:744–750CrossRef Yuan J, Antonietti M (2011) Poly(ionic liquid) latexes prepared by dispersion polymerization of ionic liquid monomers. Macromolecules 44:744–750CrossRef
45.
Zurück zum Zitat Yan F, Texter J (2006) Surfactant ionic liquid-based microemulsions for polymerization. Chem Commun 2006(25):2696–2698CrossRef Yan F, Texter J (2006) Surfactant ionic liquid-based microemulsions for polymerization. Chem Commun 2006(25):2696–2698CrossRef
46.
Zurück zum Zitat Zhao J, Yan F, Chen Z, Diao H, Chu F, Yu S, Lu J (2009) Microemulsion polymerization of cationic pyrroles bearing an imidazolum-ionic liquid moiety. J Polym Sci A Polym Chem 47:746–753CrossRef Zhao J, Yan F, Chen Z, Diao H, Chu F, Yu S, Lu J (2009) Microemulsion polymerization of cationic pyrroles bearing an imidazolum-ionic liquid moiety. J Polym Sci A Polym Chem 47:746–753CrossRef
47.
Zurück zum Zitat Muldoon MJ, Gordon CM (2004) Synthesis of gel-type polymer beads from ionic liquid monomers. J Polym Sci A Polym Chem 42:3865–3869CrossRef Muldoon MJ, Gordon CM (2004) Synthesis of gel-type polymer beads from ionic liquid monomers. J Polym Sci A Polym Chem 42:3865–3869CrossRef
48.
Zurück zum Zitat Marcilla R, Sanchez-Paniagua M, Lopez-Ruiz B, Lopez-Cabarcos E, Ochoteco E, Grande H, Mecerreyes D (2006) Synthesis and characterization of new polymeric ionic liquid microgels. J Polym Sci A Polym Chem 44:3958–3965CrossRef Marcilla R, Sanchez-Paniagua M, Lopez-Ruiz B, Lopez-Cabarcos E, Ochoteco E, Grande H, Mecerreyes D (2006) Synthesis and characterization of new polymeric ionic liquid microgels. J Polym Sci A Polym Chem 44:3958–3965CrossRef
49.
Zurück zum Zitat Yan F, Texter J (2007) Solvent-reversible poration in ionic liquid copolymers. Angew Chem Int Ed 46:2440–2443CrossRef Yan F, Texter J (2007) Solvent-reversible poration in ionic liquid copolymers. Angew Chem Int Ed 46:2440–2443CrossRef
50.
Zurück zum Zitat Yuan J, Soll S, Drechsler M, Müller AHE, Antonietti M (2011) Self-assembly of poly(ionic liquid)s: polymerization, mesostructure formation, and directional alignment in one step. J Am Chem Soc 133:17556–17559CrossRef Yuan J, Soll S, Drechsler M, Müller AHE, Antonietti M (2011) Self-assembly of poly(ionic liquid)s: polymerization, mesostructure formation, and directional alignment in one step. J Am Chem Soc 133:17556–17559CrossRef
51.
Zurück zum Zitat Koebe M, Drechsler M, Weber J, Yuan J (2012) Crosslinked poly(ionic liquid) nanoparticles: inner structure, size, and morphology. Macromol Rapid Commun 33:646–651CrossRef Koebe M, Drechsler M, Weber J, Yuan J (2012) Crosslinked poly(ionic liquid) nanoparticles: inner structure, size, and morphology. Macromol Rapid Commun 33:646–651CrossRef
52.
Zurück zum Zitat López MS-P, Mecerreyes D, López-Cabarcos E, López-Ruiz B (2006) Amperometric glucose biosensor based on polymerized ionic liquid microparticles. Biosens Bioelectron 21:2320–2328CrossRef López MS-P, Mecerreyes D, López-Cabarcos E, López-Ruiz B (2006) Amperometric glucose biosensor based on polymerized ionic liquid microparticles. Biosens Bioelectron 21:2320–2328CrossRef
53.
Zurück zum Zitat Huang J, Tao C-a, An Q, Zhang W, Wu Y, Li X, Shen D, Li G (2010) 3D-ordered macroporous poly(ionic liquid) films as multifunctional materials. Chem Commun 46:967–969CrossRef Huang J, Tao C-a, An Q, Zhang W, Wu Y, Li X, Shen D, Li G (2010) 3D-ordered macroporous poly(ionic liquid) films as multifunctional materials. Chem Commun 46:967–969CrossRef
54.
Zurück zum Zitat Marcilla R, Curri ML, Cozzoli PD, Martínez MT, Loinaz I, Grande H, Pomposo JA, Mecerreyes D (2006) Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle. Small 2:507–512CrossRef Marcilla R, Curri ML, Cozzoli PD, Martínez MT, Loinaz I, Grande H, Pomposo JA, Mecerreyes D (2006) Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle. Small 2:507–512CrossRef
55.
Zurück zum Zitat Kim T, Lee H, Kim J, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612–1618CrossRef Kim T, Lee H, Kim J, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612–1618CrossRef
56.
Zurück zum Zitat X-D M, J-Q M, Li Z-C, Kou Y (2005) Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation. J Am Chem Soc 127:9694–9695CrossRef X-D M, J-Q M, Li Z-C, Kou Y (2005) Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation. J Am Chem Soc 127:9694–9695CrossRef
57.
Zurück zum Zitat Fukushima T, Kosaka A, Yamamoto Y, Aimiya T, Notazawa S, Takigawa T, Inabe T, Aida T (2006) Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. Small 2:554–560CrossRef Fukushima T, Kosaka A, Yamamoto Y, Aimiya T, Notazawa S, Takigawa T, Inabe T, Aida T (2006) Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. Small 2:554–560CrossRef
58.
Zurück zum Zitat Wu B, Hu D, Kuang Y, Liu B, Zhang X, Chen J (2009) Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew Chem Int Ed 48:4751–4754CrossRef Wu B, Hu D, Kuang Y, Liu B, Zhang X, Chen J (2009) Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew Chem Int Ed 48:4751–4754CrossRef
59.
Zurück zum Zitat Tomioka N, Takasu D, Takahashi T, Aida T (1998) Electrostatic assembly of dendrimer electrolytes: negatively and positively charged dendrimer porphyrins. Angew Chem Int Ed 37:1531–1534CrossRef Tomioka N, Takasu D, Takahashi T, Aida T (1998) Electrostatic assembly of dendrimer electrolytes: negatively and positively charged dendrimer porphyrins. Angew Chem Int Ed 37:1531–1534CrossRef
60.
Zurück zum Zitat Imam MR, Peterca M, Edlund U, Balagurusamy VSK, Percec V (2009) Dendronized supramolecular polymers self-assembled from dendritic ionic liquids. J Polym Sci A Polym Chem 47:4165–4193CrossRef Imam MR, Peterca M, Edlund U, Balagurusamy VSK, Percec V (2009) Dendronized supramolecular polymers self-assembled from dendritic ionic liquids. J Polym Sci A Polym Chem 47:4165–4193CrossRef
61.
Zurück zum Zitat Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 27:3995–4002CrossRef Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 27:3995–4002CrossRef
62.
Zurück zum Zitat Yudovin-Farber I, Beyth N, Weiss EI, Domb AJ (2010) Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles. J Nanopart Res 12:591–603CrossRef Yudovin-Farber I, Beyth N, Weiss EI, Domb AJ (2010) Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles. J Nanopart Res 12:591–603CrossRef
63.
Zurück zum Zitat Schüssele AC, Nübling F, Thomann Y, Carstensen O, Bauer G, Speck T, Mülhaupt R (2012) Self-healing rubbers based on NBR blends with hyperbranched polyethylenimines. Macromol Mater Eng 297:411–419CrossRef Schüssele AC, Nübling F, Thomann Y, Carstensen O, Bauer G, Speck T, Mülhaupt R (2012) Self-healing rubbers based on NBR blends with hyperbranched polyethylenimines. Macromol Mater Eng 297:411–419CrossRef
64.
Zurück zum Zitat Monmoton S, Lefebvre H, Costa-Torro F, Fradet A (2008) Hyperbranched poly[bis(alkylene)pyridinium]s. Macromol Chem Phys 209:2382–2389CrossRef Monmoton S, Lefebvre H, Costa-Torro F, Fradet A (2008) Hyperbranched poly[bis(alkylene)pyridinium]s. Macromol Chem Phys 209:2382–2389CrossRef
65.
Zurück zum Zitat Schwab E, Mecking S (2005) Synthesis and properties of highly branched polycations with an aliphatic polyether scaffold. J Polym Sci A Polym Chem 43:4609–4617CrossRef Schwab E, Mecking S (2005) Synthesis and properties of highly branched polycations with an aliphatic polyether scaffold. J Polym Sci A Polym Chem 43:4609–4617CrossRef
66.
Zurück zum Zitat Schwab E, Mecking S (2005) Recoverable catalysts noncovalently bound to a hyperbranched polyelectrolyte. Organometallics 24:3758–3763CrossRef Schwab E, Mecking S (2005) Recoverable catalysts noncovalently bound to a hyperbranched polyelectrolyte. Organometallics 24:3758–3763CrossRef
67.
Zurück zum Zitat Tamaki M, Taguchi T, Kitajyo Y, Takahashi K, Sakai R, Kakuchi T, Satoh T (2009) LCST-type liquid–liquid and liquid–solid phase transition behaviors of hyperbranched polyglycerol bearing imidazolium salt. J Polym Sci A Polym Chem 47:7032–7042CrossRef Tamaki M, Taguchi T, Kitajyo Y, Takahashi K, Sakai R, Kakuchi T, Satoh T (2009) LCST-type liquid–liquid and liquid–solid phase transition behaviors of hyperbranched polyglycerol bearing imidazolium salt. J Polym Sci A Polym Chem 47:7032–7042CrossRef
68.
Zurück zum Zitat Schüler F, Kerscher B, Beckert F, Thomann R, Mülhaupt R (2013) Hyperbranched polymeric ionic liquids with onion-like topology as transporters and compartmentalized systems. Angew Chem Int Ed 52:455–458CrossRef Schüler F, Kerscher B, Beckert F, Thomann R, Mülhaupt R (2013) Hyperbranched polymeric ionic liquids with onion-like topology as transporters and compartmentalized systems. Angew Chem Int Ed 52:455–458CrossRef
69.
Zurück zum Zitat Schadt K, Kerscher B, Thomann R, Mülhaupt R (2013) Structured semifluorinated polymer ionic liquids for metal nanoparticle preparation and dispersion in fluorous compartments. Macromolecules 46:4799–4804CrossRef Schadt K, Kerscher B, Thomann R, Mülhaupt R (2013) Structured semifluorinated polymer ionic liquids for metal nanoparticle preparation and dispersion in fluorous compartments. Macromolecules 46:4799–4804CrossRef
70.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
71.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
72.
Zurück zum Zitat Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRef Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRef
73.
Zurück zum Zitat Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRef Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRef
74.
Zurück zum Zitat Tung TT, Kim TY, Shim JP, Yang WS, Kim H, Suh KS (2011) Poly(ionic liquid)-stabilized graphene sheets and their hybrid with poly(3,4-ethylenedioxythiophene). Org Electron 12:2215–2224CrossRef Tung TT, Kim TY, Shim JP, Yang WS, Kim H, Suh KS (2011) Poly(ionic liquid)-stabilized graphene sheets and their hybrid with poly(3,4-ethylenedioxythiophene). Org Electron 12:2215–2224CrossRef
75.
Zurück zum Zitat Zhou X, Wu T, Ding K, Hu B, Hou M, Han B (2010) Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. Chem Commun 46:386–388CrossRef Zhou X, Wu T, Ding K, Hu B, Hou M, Han B (2010) Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. Chem Commun 46:386–388CrossRef
76.
Zurück zum Zitat Ye Y-S, Tseng C-Y, Shen W-C, Wang J-S, Chen K-J, Cheng M-Y, Rick J, Huang Y-J, Chang F-C, Hwang B-J (2011) A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes. J Mater Chem 21:10448–10453CrossRef Ye Y-S, Tseng C-Y, Shen W-C, Wang J-S, Chen K-J, Cheng M-Y, Rick J, Huang Y-J, Chang F-C, Hwang B-J (2011) A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes. J Mater Chem 21:10448–10453CrossRef
77.
Zurück zum Zitat Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2011) High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 5:436–442CrossRef Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2011) High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 5:436–442CrossRef
78.
Zurück zum Zitat Ji Q, Honma I, Paek S-M, Akada M, Hill JP, Vinu A, Ariga K (2010) Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew Chem Int Ed 49:9737–9739CrossRef Ji Q, Honma I, Paek S-M, Akada M, Hill JP, Vinu A, Ariga K (2010) Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew Chem Int Ed 49:9737–9739CrossRef
79.
Zurück zum Zitat Lu J, Yang J-X, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375CrossRef Lu J, Yang J-X, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375CrossRef
80.
Zurück zum Zitat Khare V, Pham M-Q, Kumari N, Yoon H-S, Kim C-S, Park J-IL, Ahn S-H (2013) Graphene-ionic liquid based hybrid nanomaterials as novel lubricant for low friction and wear. ACS Appl Mater Interfaces 5:4063–4075 Khare V, Pham M-Q, Kumari N, Yoon H-S, Kim C-S, Park J-IL, Ahn S-H (2013) Graphene-ionic liquid based hybrid nanomaterials as novel lubricant for low friction and wear. ACS Appl Mater Interfaces 5:4063–4075
81.
Zurück zum Zitat Yang H, Shan C, Li F, Han D, Zhang Q, Niu L (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 2009(26):3880–3882CrossRef Yang H, Shan C, Li F, Han D, Zhang Q, Niu L (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 2009(26):3880–3882CrossRef
82.
Zurück zum Zitat Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2010) Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon 48:854–860CrossRef Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2010) Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon 48:854–860CrossRef
83.
Zurück zum Zitat Quintana M, Spyrou K, Grzelczak M, Browne WR, Rudolf P, Prato M (2010) Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 4:3527–3533CrossRef Quintana M, Spyrou K, Grzelczak M, Browne WR, Rudolf P, Prato M (2010) Functionalization of graphene via 1,3-dipolar cycloaddition. ACS Nano 4:3527–3533CrossRef
84.
Zurück zum Zitat Quintana M, Montellano A, del Rio Castillo AE, Tendeloo GV, Bittencourt C, Prato M (2011) Selective organic functionalization of graphene bulk or graphene edges. Chem Commun 47:9330–9332CrossRef Quintana M, Montellano A, del Rio Castillo AE, Tendeloo GV, Bittencourt C, Prato M (2011) Selective organic functionalization of graphene bulk or graphene edges. Chem Commun 47:9330–9332CrossRef
85.
Zurück zum Zitat Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525CrossRef Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525CrossRef
86.
Zurück zum Zitat Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32:1771–1789CrossRef Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32:1771–1789CrossRef
87.
Zurück zum Zitat Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105CrossRef Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105CrossRef
88.
Zurück zum Zitat Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Polymer brushes via controlled, surface-initiated Atom Transfer Radical Polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRef Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Polymer brushes via controlled, surface-initiated Atom Transfer Radical Polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRef
89.
Zurück zum Zitat Etmimi HM, Tonge MP, Sanderson RD (2011) Synthesis and characterization of polystyrene-graphite nanocomposites via surface RAFT-mediated miniemulsion polymerization. J Polym Sci A Polym Chem 49:1621–1632CrossRef Etmimi HM, Tonge MP, Sanderson RD (2011) Synthesis and characterization of polystyrene-graphite nanocomposites via surface RAFT-mediated miniemulsion polymerization. J Polym Sci A Polym Chem 49:1621–1632CrossRef
90.
Zurück zum Zitat Zhang B, Chen Y, Xu L, Zeng L, He Y, Kang E-T, Zhang J (2011) Growing poly(N-vinylcarbazole) from the surface of graphene oxide via RAFT polymerization. J Polym Sci A Polym Chem 49:2043–2050CrossRef Zhang B, Chen Y, Xu L, Zeng L, He Y, Kang E-T, Zhang J (2011) Growing poly(N-vinylcarbazole) from the surface of graphene oxide via RAFT polymerization. J Polym Sci A Polym Chem 49:2043–2050CrossRef
91.
Zurück zum Zitat Beckert F, Friedrich C, Thomann R, Mülhaupt R (2012) Sulfur-functionalized graphenes as macro-chain-transfer and RAFT agents for producing graphene polymer brushes and polystyrene nanocomposites. Macromolecules 45:7083–7090CrossRef Beckert F, Friedrich C, Thomann R, Mülhaupt R (2012) Sulfur-functionalized graphenes as macro-chain-transfer and RAFT agents for producing graphene polymer brushes and polystyrene nanocomposites. Macromolecules 45:7083–7090CrossRef
92.
Zurück zum Zitat Li Y, Li X, Dong C, Qi J, Han X (2010) A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon 48:3427–3433CrossRef Li Y, Li X, Dong C, Qi J, Han X (2010) A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon 48:3427–3433CrossRef
93.
Zurück zum Zitat Beckert F, Rostas AM, Thomann R, Weber S, Schleicher E, Friedrich C, Mülhaupt R (2013) Self-initiated free radical grafting of styrene homo- and copolymers onto functionalized graphene. Macromolecules 46:5488–5496CrossRef Beckert F, Rostas AM, Thomann R, Weber S, Schleicher E, Friedrich C, Mülhaupt R (2013) Self-initiated free radical grafting of styrene homo- and copolymers onto functionalized graphene. Macromolecules 46:5488–5496CrossRef
94.
Zurück zum Zitat Katsigiannopoulos D, Grana E, Avgeropoulos A, Carrasco PM, Garcia I, Odriozola I, Diamanti E, Gournis D (2012) Nanohybrids based on polymeric ionic liquid prepared from functionalized MWCNTs by modification of anionically synthesized poly(4-vinylpyridine). J Polym Sci A Polym Chem 50:1181–1186CrossRef Katsigiannopoulos D, Grana E, Avgeropoulos A, Carrasco PM, Garcia I, Odriozola I, Diamanti E, Gournis D (2012) Nanohybrids based on polymeric ionic liquid prepared from functionalized MWCNTs by modification of anionically synthesized poly(4-vinylpyridine). J Polym Sci A Polym Chem 50:1181–1186CrossRef
95.
Zurück zum Zitat Pei X, Xia Y, Liu W, Yu B, Hao J (2008) Polyelectrolyte-grafted carbon nanotubes: synthesis, reversible phase-transition behavior, and tribological properties as lubricant additives. J Polym Sci A Polym Chem 46:7225–7237CrossRef Pei X, Xia Y, Liu W, Yu B, Hao J (2008) Polyelectrolyte-grafted carbon nanotubes: synthesis, reversible phase-transition behavior, and tribological properties as lubricant additives. J Polym Sci A Polym Chem 46:7225–7237CrossRef
96.
Zurück zum Zitat Yang J, Yan X, Chen F, Fan P, Zhong M (2013) Graphite oxide platelets functionalized by poly(ionic liquid) brushes and their chemical reduction. J Nanopart Res 15:1383CrossRef Yang J, Yan X, Chen F, Fan P, Zhong M (2013) Graphite oxide platelets functionalized by poly(ionic liquid) brushes and their chemical reduction. J Nanopart Res 15:1383CrossRef
97.
Zurück zum Zitat Xu Y, Gao C, Kong H, Yan D, Jin YZ, Watts PCP (2004) Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37:8846–8853CrossRef Xu Y, Gao C, Kong H, Yan D, Jin YZ, Watts PCP (2004) Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37:8846–8853CrossRef
98.
Zurück zum Zitat Kerscher B, Appel A-K, Thomann R, Mülhaupt R (2013) Treelike polymeric ionic liquids grafted onto graphene nanosheets. Macromolecules 46:4395–4402CrossRef Kerscher B, Appel A-K, Thomann R, Mülhaupt R (2013) Treelike polymeric ionic liquids grafted onto graphene nanosheets. Macromolecules 46:4395–4402CrossRef
99.
Zurück zum Zitat Appel A-K, Thomann R, Mülhaupt R (2013) Hydroxyalkylation and polyether polyol grafting of graphene tailored for graphene/polyurethane nanocomposites. Macromol Rapid Commun. doi:10.1002/marc.201300363 Appel A-K, Thomann R, Mülhaupt R (2013) Hydroxyalkylation and polyether polyol grafting of graphene tailored for graphene/polyurethane nanocomposites. Macromol Rapid Commun. doi:10.​1002/​marc.​201300363
Metadaten
Titel
Nanostructured Polymeric Ionic Liquids
verfasst von
Benjamin Kerscher
Fabian Schüler
Anna-Katharina Appel
Kristina Schadt
Rolf Mülhaupt
Copyright-Jahr
2013
DOI
https://doi.org/10.1007/12_2013_256

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.