Skip to main content

2007 | OriginalPaper | Buchkapitel

50. Nanotribology and Materials Characterization of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices

verfasst von : Bharat Bhushan, Prof.

Erschienen in: Springer Handbook of Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Micro/nanoelectromechanical systems (MEMS/NEMS) need to be designed to perform their expected functions with short duration, typically in millisecond to picosecond timescales. Expected life of the devices for high-speed contacts can vary from a few hundred thousand to many billions of cycles, e.g., over a hundred billion cycles for digital micromirror devices (DMDs), which puts serious requirements on materials. For BioMEMS/BioNEMS, adhesion between biological molecular layers and the substrate, and friction and wear of biological layers may be important. There is a need for the development of a fundamental understanding of adhesion, friction/stiction, wear, and the role of surface contamination, and environment. Most mechanical properties are known to be scale-dependent. Therefore, the properties of nanoscale structures need to be measured. MEMS/NEMS materials need to exhibit good mechanical and tribological properties on the micro/nanoscale. There is a need to develop lubricants and identify lubrication methods that are suitable for MEMS/NEMS. Methods need to be developed to enhance adhesion between biomolecules and the device substrate. Component-level studies are required to provide a better understanding of tribological phenomena occurring in MEMS/NEMS. The emergence of micro/nanotribology and techniques based on atomic force microscopy has provided researchers with a viable approach to address these problems. This chapter presents a review of micro/nanoscale adhesion, friction, and wear studies of materials and lubrication studies for MEMS/NEMS and BioMEMS/BioNEMS, and component-level studies of stiction phenomena in MEMS/NEMS devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
50.1.
Zurück zum Zitat Anonymous: Microelectromechanical Systems: Advanced Materials and Fabrication Methods, NMAB-483 (National Academy, Washington, D.C. 1997) Anonymous: Microelectromechanical Systems: Advanced Materials and Fabrication Methods, NMAB-483 (National Academy, Washington, D.C. 1997)
50.2.
Zurück zum Zitat M. Roukes: Nanoelectromechanical systems face the future, Physics World, 25–31 (Feb 2001) M. Roukes: Nanoelectromechanical systems face the future, Physics World, 25–31 (Feb 2001)
50.3.
Zurück zum Zitat Anonymous: Small Tech 101 – An Introduction to Micro and Nanotechnology (Small Times, 2003) Anonymous: Small Tech 101 – An Introduction to Micro and Nanotechnology (Small Times, 2003)
50.4.
Zurück zum Zitat M. Schulenburg: Nanotechnology – Innovation for Tomorrow's World (European Commission, Research DG, Brussels 2004) M. Schulenburg: Nanotechnology – Innovation for Tomorrow's World (European Commission, Research DG, Brussels 2004)
50.5.
Zurück zum Zitat J. C. Eloy: Status of the MEMS Industry 2005, Report of Yole Developpement, France (SPIE Photonic West, San Jose 2005) presented at J. C. Eloy: Status of the MEMS Industry 2005, Report of Yole Developpement, France (SPIE Photonic West, San Jose 2005) presented at
50.6.
Zurück zum Zitat S. Lawrence: Nanotech grows up, Technol. Rev. 108(6), 31 (2005) S. Lawrence: Nanotech grows up, Technol. Rev. 108(6), 31 (2005)
50.7.
Zurück zum Zitat A. P. Graham, G. S. Duesberg, R. Seidel, M. Liebau, E. Unger, F. Kreupl, W. Hoenlein: Towards the integration of carbon nanotubes in microelectronics, Diam. Relat. Mater. 13, 1296–1300 (2004)CrossRef A. P. Graham, G. S. Duesberg, R. Seidel, M. Liebau, E. Unger, F. Kreupl, W. Hoenlein: Towards the integration of carbon nanotubes in microelectronics, Diam. Relat. Mater. 13, 1296–1300 (2004)CrossRef
50.8.
Zurück zum Zitat D. Srivastava: Computational Nanotechnology of Carbon Nanotubes. In: Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan (CRC, Boca Raton 2004) pp. 25–63CrossRef D. Srivastava: Computational Nanotechnology of Carbon Nanotubes. In: Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan (CRC, Boca Raton 2004) pp. 25–63CrossRef
50.9.
Zurück zum Zitat W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, L. P. Kouwenhoven: Electron transport through double quantum dots, Rev. Mod. Phys. 75, 1–22 (2003)CrossRef W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, L. P. Kouwenhoven: Electron transport through double quantum dots, Rev. Mod. Phys. 75, 1–22 (2003)CrossRef
50.10.
Zurück zum Zitat R. S. Muller, R. T. Howe, S. D. Senturia, R. L. Smith, R. M. White: Microsensors (IEEE, New York 1990) R. S. Muller, R. T. Howe, S. D. Senturia, R. L. Smith, R. M. White: Microsensors (IEEE, New York 1990)
50.11.
Zurück zum Zitat I. Fujimasa: Micromachines: A New Era in Mechanical Engineering (Oxford Univ. Press, Oxford 1996) I. Fujimasa: Micromachines: A New Era in Mechanical Engineering (Oxford Univ. Press, Oxford 1996)
50.12.
Zurück zum Zitat W. S. Trimmer (ed.): Micromachines and MEMS, Classic and Seminal Papers to 1990 (IEEE, New York 1997) W. S. Trimmer (ed.): Micromachines and MEMS, Classic and Seminal Papers to 1990 (IEEE, New York 1997)
50.13.
Zurück zum Zitat B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer Academic, Dordrecht 1998) NetherlandsCrossRef B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer Academic, Dordrecht 1998) NetherlandsCrossRef
50.14.
Zurück zum Zitat G. T. A. Kovacs: Micromachined Transducers Sourcebook (WCB McGraw–Hill, Boston 1998) G. T. A. Kovacs: Micromachined Transducers Sourcebook (WCB McGraw–Hill, Boston 1998)
50.15.
Zurück zum Zitat S. D. Senturia: Microsystem Design (Kluwer Academic, Boston 2000) S. D. Senturia: Microsystem Design (Kluwer Academic, Boston 2000)
50.16.
Zurück zum Zitat M. Elwenspoek, R. Wiegerink: Mechanical Microsensors (Springer, Berlin, Heidelberg 2001) M. Elwenspoek, R. Wiegerink: Mechanical Microsensors (Springer, Berlin, Heidelberg 2001)
50.17.
Zurück zum Zitat M. Gad-el-Hak: The MEMS Handbook (CRC, Boca Raton 2002) M. Gad-el-Hak: The MEMS Handbook (CRC, Boca Raton 2002)
50.18.
Zurück zum Zitat T. R. Hsu: MEMS and Microsystems: Design and Manufacture (McGraw–Hill, Boston 2002) T. R. Hsu: MEMS and Microsystems: Design and Manufacture (McGraw–Hill, Boston 2002)
50.19.
Zurück zum Zitat M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, Boca Raton 2002) M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, Boca Raton 2002)
50.20.
Zurück zum Zitat A. Hierlemann: Integrated Chemical Microsensor Systems in CMOS Technology (Springer, Berlin, Heidelberg 2005) A. Hierlemann: Integrated Chemical Microsensor Systems in CMOS Technology (Springer, Berlin, Heidelberg 2005)
50.21.
Zurück zum Zitat T. A. Core, W. K. Tsang, S. J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol. 36, 39–47 (Oct 1993) T. A. Core, W. K. Tsang, S. J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol. 36, 39–47 (Oct 1993)
50.22.
Zurück zum Zitat J. Bryzek, K. Peterson, W. McCulley: Micromachines on the march, IEEE Spectrum, 20–31 (May 1994) J. Bryzek, K. Peterson, W. McCulley: Micromachines on the march, IEEE Spectrum, 20–31 (May 1994)
50.23.
Zurück zum Zitat J. S. Aden: The third-generation HP thermal inkjet printhead, HP J., 4–45 (Feb. 1994) J. S. Aden: The third-generation HP thermal inkjet printhead, HP J., 4–45 (Feb. 1994)
50.24.
Zurück zum Zitat H. Le: Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol. 42, 49–62 (1998) H. Le: Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol. 42, 49–62 (1998)
50.25.
Zurück zum Zitat R. Baydo, A. Groscup: Getting to the heart of ink jet: Printheads, Beyond Recharger, 10–12 (2001)May 10, also visit R. Baydo, A. Groscup: Getting to the heart of ink jet: Printheads, Beyond Recharger, 10–12 (2001)May 10, also visit
50.26.
Zurück zum Zitat E. R. Lee: Microdrop Generation (CRC, Boca Raton 2003) E. R. Lee: Microdrop Generation (CRC, Boca Raton 2003)
50.27.
Zurück zum Zitat L. J. Hornbeck, W. E. Nelson: Bistable Deformable Mirror Device, Technical Digest Series: Spatial Light Modulators and Applications, Vol. 8 (OSA, Washington 1988) pp. 107–110 L. J. Hornbeck, W. E. Nelson: Bistable Deformable Mirror Device, Technical Digest Series: Spatial Light Modulators and Applications, Vol. 8 (OSA, Washington 1988) pp. 107–110
50.28.
Zurück zum Zitat L. J. Hornbeck: A digital light processing TM update – Status and future applications, Proc. Soc. Photo-Opt. Eng. 3634(Projection Displays V), 158–170 (1999) L. J. Hornbeck: A digital light processing TM update – Status and future applications, Proc. Soc. Photo-Opt. Eng. 3634(Projection Displays V), 158–170 (1999)
50.29.
Zurück zum Zitat L. J. Hornbeck: The DMD TM projection display chip: A MEMS-based technology, MRS Bull. 26, 325–328 (2001)CrossRef L. J. Hornbeck: The DMD TM projection display chip: A MEMS-based technology, MRS Bull. 26, 325–328 (2001)CrossRef
50.30.
Zurück zum Zitat K. Suzuki: Micro electro mechanical systems (MEMS) micro-switches for use in DC, RF, and optical applications, Jpn. J. Appl. Phys. 41, 4335–4339 (2002)CrossRef K. Suzuki: Micro electro mechanical systems (MEMS) micro-switches for use in DC, RF, and optical applications, Jpn. J. Appl. Phys. 41, 4335–4339 (2002)CrossRef
50.31.
Zurück zum Zitat V. M. Lubecke, J. C. Chiao: MEMS Technologies for Enabling High Frequency Communication Cicuits, Proc. IEEE 4th Int. Conf. on Telecom. In Modern Satellite, Cable and Broadcasting Services, Nis, Yugoslavia (IEEE, New York 1999) pp. 1–8 V. M. Lubecke, J. C. Chiao: MEMS Technologies for Enabling High Frequency Communication Cicuits, Proc. IEEE 4th Int. Conf. on Telecom. In Modern Satellite, Cable and Broadcasting Services, Nis, Yugoslavia (IEEE, New York 1999) pp. 1–8
50.32.
Zurück zum Zitat C. R. Giles, D. Bishop, V. Aksyuk: MEMS for light-wave networks, MRS Bull., 328–329 (April 2001) C. R. Giles, D. Bishop, V. Aksyuk: MEMS for light-wave networks, MRS Bull., 328–329 (April 2001)
50.33.
Zurück zum Zitat A. Hierlemann, O. Brand, C. Hagleitner, H. Baltes: Microfabrication Techniques for Chemical/Biosensors. In: Proc. of the IEEE, Chemical and Biological Microsensors, Vol. Vol. 91, ed. by S. Casalnuovo, R. B. Brown (IEEE, New York 2003) pp. 839–863 A. Hierlemann, O. Brand, C. Hagleitner, H. Baltes: Microfabrication Techniques for Chemical/Biosensors. In: Proc. of the IEEE, Chemical and Biological Microsensors, Vol. Vol. 91, ed. by S. Casalnuovo, R. B. Brown (IEEE, New York 2003) pp. 839–863
50.34.
Zurück zum Zitat B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York 1996)CrossRef B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York 1996)CrossRef
50.35.
Zurück zum Zitat H. Hamilton: Contact recording on perpendicular rigid media, J. Mag. Soc. Jpn. 15((Suppl. S2)), 483–481 (1991) H. Hamilton: Contact recording on perpendicular rigid media, J. Mag. Soc. Jpn. 15((Suppl. S2)), 483–481 (1991)
50.36.
Zurück zum Zitat D. A. Horsley, M. B. Cohn, A. Singh, R. Horowitz, A. P. Pisano: Design and fabrication of an angular microactuator for magnetic disk drives, J. Microelectromech. Syst. 7, 141–148 (1998)CrossRef D. A. Horsley, M. B. Cohn, A. Singh, R. Horowitz, A. P. Pisano: Design and fabrication of an angular microactuator for magnetic disk drives, J. Microelectromech. Syst. 7, 141–148 (1998)CrossRef
50.37.
Zurück zum Zitat T. Hirano, L. S. Fan, D. Kercher, S. Pattanaik, T. S. Pan: HDD Tracking Microactuator and its Integration Issues. In: Proc. ASME Int. Mech. Eng. Congress and Exp., Vol. MEMS- Vol. 2, ed. by A. P. Lee, J. Simon, F. K. Foster, R. S. Keynton (ASME, New York 2000) pp. 449–452 T. Hirano, L. S. Fan, D. Kercher, S. Pattanaik, T. S. Pan: HDD Tracking Microactuator and its Integration Issues. In: Proc. ASME Int. Mech. Eng. Congress and Exp., Vol. MEMS- Vol. 2, ed. by A. P. Lee, J. Simon, F. K. Foster, R. S. Keynton (ASME, New York 2000) pp. 449–452
50.38.
Zurück zum Zitat T. Fukuda, F. Arai, L. Dong: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations, Proc. IEEE 91, 1803–1818 (2003)CrossRef T. Fukuda, F. Arai, L. Dong: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations, Proc. IEEE 91, 1803–1818 (2003)CrossRef
50.39.
Zurück zum Zitat K. E. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York 1992) K. E. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York 1992)
50.40.
Zurück zum Zitat G. Timp (ed.): Nanotechnology (Springer, New York 1999) G. Timp (ed.): Nanotechnology (Springer, New York 1999)
50.41.
Zurück zum Zitat M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris: Carbon Nanotubes – Synthesis, Structure, Properties and Applications (Springer, Berlin, Heidelberg 2001)CrossRef M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris: Carbon Nanotubes – Synthesis, Structure, Properties and Applications (Springer, Berlin, Heidelberg 2001)CrossRef
50.42.
Zurück zum Zitat E. A. Rietman: Molecular Engineering of Nanosystems (Springer, New York 2001) E. A. Rietman: Molecular Engineering of Nanosystems (Springer, New York 2001)
50.43.
Zurück zum Zitat W. A. Goddard, D. W. Brenner, S. E. Lyshevski, G. J. Iafrate (eds): Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton 2002) W. A. Goddard, D. W. Brenner, S. E. Lyshevski, G. J. Iafrate (eds): Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton 2002)
50.44.
Zurück zum Zitat H. S. Nalwa (ed.): Nanostructured Materials and Nanotechnology (Academic, San Diego 2002) H. S. Nalwa (ed.): Nanostructured Materials and Nanotechnology (Academic, San Diego 2002)
50.45.
Zurück zum Zitat C. P. Poole, F. J. Owens: Introduction to Nanotechnology (Wiley, Hoboken 2003) C. P. Poole, F. J. Owens: Introduction to Nanotechnology (Wiley, Hoboken 2003)
50.46.
Zurück zum Zitat B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999) B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)
50.47.
Zurück zum Zitat B. Bhushan: Nanotribology and Nanomechanics – An Introduction (Springer, Berlin, Heidelberg 2005)CrossRef B. Bhushan: Nanotribology and Nanomechanics – An Introduction (Springer, Berlin, Heidelberg 2005)CrossRef
50.48.
Zurück zum Zitat J. A. Stroscio, D. M. Eigler: Atomic and molecular manipulation with a scanning tunneling microscope, Science 254, 1319 (1991)CrossRef J. A. Stroscio, D. M. Eigler: Atomic and molecular manipulation with a scanning tunneling microscope, Science 254, 1319 (1991)CrossRef
50.49.
Zurück zum Zitat P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Duerig, W. Haeberle: Ultrahigh density, high data-rate NEMS based AFM data storage system, Microelec. Eng. 46, 11–27 (1999)CrossRef P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Duerig, W. Haeberle: Ultrahigh density, high data-rate NEMS based AFM data storage system, Microelec. Eng. 46, 11–27 (1999)CrossRef
50.50.
Zurück zum Zitat C. Stampfer, A. Jungen, C. Hierold: Fabrication of Discrete Carbon Nanotube Based Nanoscaled Force Sensor, Proc. IEEE Sensors 2004, Vienna (IEEE, New York 2004) pp. 1056–1059 C. Stampfer, A. Jungen, C. Hierold: Fabrication of Discrete Carbon Nanotube Based Nanoscaled Force Sensor, Proc. IEEE Sensors 2004, Vienna (IEEE, New York 2004) pp. 1056–1059
50.51.
Zurück zum Zitat B. Bhushan: Mechanics and Reliability of Flexible Magnetic Media, 2nd edn. (Springer, New York 2000)CrossRef B. Bhushan: Mechanics and Reliability of Flexible Magnetic Media, 2nd edn. (Springer, New York 2000)CrossRef
50.53.
Zurück zum Zitat A. Manz, H. Becker (eds): Microsystem Technology in Chemistry and Life Sciences, Topics in Current Chemistry 194 (Springer, Berlin, Heidelberg 1998) A. Manz, H. Becker (eds): Microsystem Technology in Chemistry and Life Sciences, Topics in Current Chemistry 194 (Springer, Berlin, Heidelberg 1998)
50.54.
Zurück zum Zitat J. Cheng, L. J. Kricka (eds): Biochip Technology (Harwood Academic, Philadelphia 2001) J. Cheng, L. J. Kricka (eds): Biochip Technology (Harwood Academic, Philadelphia 2001)
50.55.
Zurück zum Zitat M. J. Heller, A. Guttman (eds): Integrated Microfabricated Biodevices (Marcel Dekker, New York 2001) M. J. Heller, A. Guttman (eds): Integrated Microfabricated Biodevices (Marcel Dekker, New York 2001)
50.56.
Zurück zum Zitat C. Lai Poh San, E. P. H. Yap (eds.): Frontiers in Human Genetics (World Scientific, Singapore 2001) C. Lai Poh San, E. P. H. Yap (eds.): Frontiers in Human Genetics (World Scientific, Singapore 2001)
50.57.
Zurück zum Zitat C. H. Mastrangelo, H. Becker (eds): Microfluidics and BioMEMS, Proc. of SPIE Vol (SPIE, Bellingham 2001) p. 4560 C. H. Mastrangelo, H. Becker (eds): Microfluidics and BioMEMS, Proc. of SPIE Vol (SPIE, Bellingham 2001) p. 4560
50.58.
Zurück zum Zitat H. Becker, L. E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)CrossRef H. Becker, L. E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)CrossRef
50.59.
Zurück zum Zitat D. J. Beebe, G. A. Mensing, G. M. Walker: Physcis and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)CrossRef D. J. Beebe, G. A. Mensing, G. M. Walker: Physcis and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)CrossRef
50.60.
Zurück zum Zitat A. van der Berg (ed.): Lab-on-a-Chip: Chemistry in Miniaturized Synthesis and Analysis Systems (Elsevier, Amsterdam 2003) A. van der Berg (ed.): Lab-on-a-Chip: Chemistry in Miniaturized Synthesis and Analysis Systems (Elsevier, Amsterdam 2003)
50.61.
Zurück zum Zitat P. Gravesen, J. Branebjerg, O. Jensen: Microfluidics – A Review, J. Micromech. Microeng. 3, 168–182 (1993)CrossRef P. Gravesen, J. Branebjerg, O. Jensen: Microfluidics – A Review, J. Micromech. Microeng. 3, 168–182 (1993)CrossRef
50.62.
Zurück zum Zitat S. N. Bhatia, C. S. Chen: Tissue engineering at the micro-scale, Biomed. Microdevices 2, 131–144 (1999)CrossRef S. N. Bhatia, C. S. Chen: Tissue engineering at the micro-scale, Biomed. Microdevices 2, 131–144 (1999)CrossRef
50.63.
Zurück zum Zitat R. P. Lanza, R. Langer, J. Vacanti (eds): Principles of Tissue Engineering, 2nd edn. (Academic, San Diego 2000) R. P. Lanza, R. Langer, J. Vacanti (eds): Principles of Tissue Engineering, 2nd edn. (Academic, San Diego 2000)
50.64.
Zurück zum Zitat E. Leclerc, K. S. Furukawa, F. Miyata, T. Sakai, T. Ushida, T. Fujii: Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications, Biomaterials 25, 4683–4690 (2004)CrossRef E. Leclerc, K. S. Furukawa, F. Miyata, T. Sakai, T. Ushida, T. Fujii: Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications, Biomaterials 25, 4683–4690 (2004)CrossRef
50.65.
Zurück zum Zitat K. Park (ed): Controlled Drug Delivery: Challenges and Strategies (American Chemical Society, Washington, D. C. 1997) K. Park (ed): Controlled Drug Delivery: Challenges and Strategies (American Chemical Society, Washington, D. C. 1997)
50.66.
Zurück zum Zitat R. S. Shawgo, A. C. R. Grayson, Y. Li, M. J. Cima: BioMEMS for drug delivery, Curr. Opin. Solid State Mater. Sci. 6, 329–334 (2002)CrossRef R. S. Shawgo, A. C. R. Grayson, Y. Li, M. J. Cima: BioMEMS for drug delivery, Curr. Opin. Solid State Mater. Sci. 6, 329–334 (2002)CrossRef
50.67.
Zurück zum Zitat P. A. Oeberg, T. Togawa, F. A. Spelman: Sensors in Medicine and Health Care (Wiley, New York 2004)CrossRef P. A. Oeberg, T. Togawa, F. A. Spelman: Sensors in Medicine and Health Care (Wiley, New York 2004)CrossRef
50.68.
Zurück zum Zitat J. V. Zoval, M. J. Madou: Centrifuge-based fluidic platforms, Proc. IEEE 92, 140–153 (2000)CrossRef J. V. Zoval, M. J. Madou: Centrifuge-based fluidic platforms, Proc. IEEE 92, 140–153 (2000)CrossRef
50.70.
Zurück zum Zitat M. R. Taylor, P. Nguyen, J. Ching, K. E. Peterson: Simulation of microfluidic pumping in a genomic DNA blood-processing cassette, J. Micromech. Microeng. 13, 201–208 (2003)CrossRef M. R. Taylor, P. Nguyen, J. Ching, K. E. Peterson: Simulation of microfluidic pumping in a genomic DNA blood-processing cassette, J. Micromech. Microeng. 13, 201–208 (2003)CrossRef
50.71.
Zurück zum Zitat R. Raiteri, M. Grattarola, M. Butt, P. Skladal: Micromechanical cantilever-based biosensor, Sens. Actuators B: Chem. 79, 115–126 (2001)CrossRef R. Raiteri, M. Grattarola, M. Butt, P. Skladal: Micromechanical cantilever-based biosensor, Sens. Actuators B: Chem. 79, 115–126 (2001)CrossRef
50.72.
Zurück zum Zitat B. Bhushan, D. R. Tokachichu, M. T. Keener, S. C. Lee: Morphology and adhesion of biomolecules on silicon based surfaces, Acta Biomateriala 1, 327–341 (2005)CrossRef B. Bhushan, D. R. Tokachichu, M. T. Keener, S. C. Lee: Morphology and adhesion of biomolecules on silicon based surfaces, Acta Biomateriala 1, 327–341 (2005)CrossRef
50.73.
Zurück zum Zitat H. P. Lang, M. Hegner, C. Gerber: Cantilever array sensors, Mater. Today, 30–36 (April 2005) H. P. Lang, M. Hegner, C. Gerber: Cantilever array sensors, Mater. Today, 30–36 (April 2005)
50.74.
Zurück zum Zitat F. Patolsky, C. Lieber: Nanowire nanosensors, Mater. Today, 20–28 (April 2005) F. Patolsky, C. Lieber: Nanowire nanosensors, Mater. Today, 20–28 (April 2005)
50.75.
Zurück zum Zitat M. Scott: MEMS and MOEMS for National Security ApplicationsReliability, Testing, and Characterization of MEMS/MOEMS II, Proc. of SPIE, Vol. Vol. 4980 (SPIE, Bellingham 2003) pp. xxxvii–xliv M. Scott: MEMS and MOEMS for National Security ApplicationsReliability, Testing, and Characterization of MEMS/MOEMS II, Proc. of SPIE, Vol. Vol. 4980 (SPIE, Bellingham 2003) pp. xxxvii–xliv
50.76.
Zurück zum Zitat T. A. Desai, D. J. Hansford, L. Kulinsky, A. H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari: Nanopore technology for biomedical applications, Biomed. Devices 2, 11–40 (1999) T. A. Desai, D. J. Hansford, L. Kulinsky, A. H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari: Nanopore technology for biomedical applications, Biomed. Devices 2, 11–40 (1999)
50.77.
Zurück zum Zitat D. Hansford, T. Desai, M. Ferrari: Nano-Scale Size-Based Biomolecular Separation Technology. In: Biochip Technology, ed. by J. Cheng, L. J. Kricka (Harwood Academic, New York 2001) pp. 341–361 D. Hansford, T. Desai, M. Ferrari: Nano-Scale Size-Based Biomolecular Separation Technology. In: Biochip Technology, ed. by J. Cheng, L. J. Kricka (Harwood Academic, New York 2001) pp. 341–361
50.78.
Zurück zum Zitat F. J. Martin, C. Grove: Microfabricated drug delivery systems: concepts to improve clinical benefits, Biomed. Microdev. 3, 97–108 (2001)CrossRef F. J. Martin, C. Grove: Microfabricated drug delivery systems: concepts to improve clinical benefits, Biomed. Microdev. 3, 97–108 (2001)CrossRef
50.79.
Zurück zum Zitat B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999) B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)
50.80.
Zurück zum Zitat B. Bhushan (ed.): Modern Tribology Handbook (CRC, Boca Raton 2001) B. Bhushan (ed.): Modern Tribology Handbook (CRC, Boca Raton 2001)
50.81.
Zurück zum Zitat B. Bhushan: Introduction to Tribology (Wiley, New York 2002) B. Bhushan: Introduction to Tribology (Wiley, New York 2002)
50.82.
Zurück zum Zitat B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction, J. Vac. Sci. Technol. B 21, 2262–2296 (2003)CrossRef B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction, J. Vac. Sci. Technol. B 21, 2262–2296 (2003)CrossRef
50.83.
Zurück zum Zitat Y. C. Tai, L. S. Fan, R. S. Muller: IC-Processed Micro-Motors: Design, Technology and Testing, Proc. IEEE Micro Electro Mechanical Systems, 1–6 (1989) Y. C. Tai, L. S. Fan, R. S. Muller: IC-Processed Micro-Motors: Design, Technology and Testing, Proc. IEEE Micro Electro Mechanical Systems, 1–6 (1989)
50.84.
Zurück zum Zitat S. M. Spearing, K. S. Chen: Micro-gas turbine engine materials and structures, Ceramic Eng. Sci. Proc. 18, 11–18 (2001)CrossRef S. M. Spearing, K. S. Chen: Micro-gas turbine engine materials and structures, Ceramic Eng. Sci. Proc. 18, 11–18 (2001)CrossRef
50.85.
Zurück zum Zitat L. G. Frechette, S. A. Jacobson, K. S. Breuer: High-speed microfabricated silicon turbomachinery and fluid film bearings, J. MEMS 14, 141–152 (2005) L. G. Frechette, S. A. Jacobson, K. S. Breuer: High-speed microfabricated silicon turbomachinery and fluid film bearings, J. MEMS 14, 141–152 (2005)
50.86.
Zurück zum Zitat L. X. Liu, Z. S. Spakovszky: Effect of Bearing Stiffness Anisotropy on Hydrostatic Micro Gas Journal Bearing Dynamic Behavior, Proc. ASME Turbo Expo 2005, Paper No. GT-2005–68199 (Reno, Nevada 2005) L. X. Liu, Z. S. Spakovszky: Effect of Bearing Stiffness Anisotropy on Hydrostatic Micro Gas Journal Bearing Dynamic Behavior, Proc. ASME Turbo Expo 2005, Paper No. GT-2005–68199 (Reno, Nevada 2005)
50.87.
Zurück zum Zitat M. Mehregany, K. J. Gabriel, W. S. N. Trimmer: Integrated fabrication of polysilicon mechanisms, IEEE Trans. Electron. Dev. 35, 719–723 (1988)CrossRef M. Mehregany, K. J. Gabriel, W. S. N. Trimmer: Integrated fabrication of polysilicon mechanisms, IEEE Trans. Electron. Dev. 35, 719–723 (1988)CrossRef
50.88.
Zurück zum Zitat H. Lehr, S. Abel, J. Doppler, W. Ehrfeld, B. Hagemann, K. P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigen: Microactuators as Driving Units for Microrobotic Systems. In: Proc. Microrobotics: Components and Applications, Vol. Vol. 2906, ed. by A. Sulzmann (SPIE, Bellingham 1996) pp. 202–210 H. Lehr, S. Abel, J. Doppler, W. Ehrfeld, B. Hagemann, K. P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigen: Microactuators as Driving Units for Microrobotic Systems. In: Proc. Microrobotics: Components and Applications, Vol. Vol. 2906, ed. by A. Sulzmann (SPIE, Bellingham 1996) pp. 202–210
50.89.
Zurück zum Zitat H. Lehr, W. Ehrfeld, B. Hagemann, K. P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigen: Development of micro-millimotors, Min. Invas. Ther. Allied Technol. 6, 191–194 (1997)CrossRef H. Lehr, W. Ehrfeld, B. Hagemann, K. P. Kamper, F. Michel, Ch. Schulz, Ch. Thurigen: Development of micro-millimotors, Min. Invas. Ther. Allied Technol. 6, 191–194 (1997)CrossRef
50.90.
Zurück zum Zitat F. Michel, W. Ehrfeld: Microfabrication Technologies for High Performance Microactuators. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 53–72CrossRef F. Michel, W. Ehrfeld: Microfabrication Technologies for High Performance Microactuators. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 53–72CrossRef
50.91.
Zurück zum Zitat D. M. Tanner, N. F. Smith: MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes, SAND2000-0091 (Sandia National Laboratories, Albuquerque 2000) Download from www.prod.sandia.gov CrossRef D. M. Tanner, N. F. Smith: MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes, SAND2000-0091 (Sandia National Laboratories, Albuquerque 2000) Download from www.​prod.​sandia.​gov CrossRef
50.92.
Zurück zum Zitat E. J. Garcia, J. J. Sniegowski: Surface micromachined microengine, Sens. Actuators A 48, 203–214 (1995)CrossRef E. J. Garcia, J. J. Sniegowski: Surface micromachined microengine, Sens. Actuators A 48, 203–214 (1995)CrossRef
50.93.
Zurück zum Zitat S. S. Mani, J. G. Fleming, J. A. Walraven, J. J. Sniegowski: Effect of W Coating on Microengine Performance, Proc. 38th Annual Inter. Reliability Phys. Symp. (IEEE, New York 2000) pp. 146–151 S. S. Mani, J. G. Fleming, J. A. Walraven, J. J. Sniegowski: Effect of W Coating on Microengine Performance, Proc. 38th Annual Inter. Reliability Phys. Symp. (IEEE, New York 2000) pp. 146–151
50.94.
Zurück zum Zitat M. G. Hankins, P. J. Resnick, P. J. Clews, T. M. Mayer, D. R. Wheeler, D. M. Tanner, R. A. Plass: Vapor Deposition of Amino-Functionalized Self-Assembled Monolayers on MEMS, Proc. SPIE, Vol. 4980 (SPIE, Bellingham 2003) pp. 238–247 M. G. Hankins, P. J. Resnick, P. J. Clews, T. M. Mayer, D. R. Wheeler, D. M. Tanner, R. A. Plass: Vapor Deposition of Amino-Functionalized Self-Assembled Monolayers on MEMS, Proc. SPIE, Vol. 4980 (SPIE, Bellingham 2003) pp. 238–247
50.95.
Zurück zum Zitat J. K. Robertson, K. D. Wise: An electrostatically actuated integrated microflow controller, Sens. Actuators A 71, 98–106 (1998)CrossRef J. K. Robertson, K. D. Wise: An electrostatically actuated integrated microflow controller, Sens. Actuators A 71, 98–106 (1998)CrossRef
50.96.
Zurück zum Zitat B. Bhushan: Nanotribology and Nanomechanics of MEMS Devices, Proc. Ninth Annual Workshop on Micro Electro Mechanical Systems (IEEE, New York 1996) pp. 91–98 B. Bhushan: Nanotribology and Nanomechanics of MEMS Devices, Proc. Ninth Annual Workshop on Micro Electro Mechanical Systems (IEEE, New York 1996) pp. 91–98
50.97.
Zurück zum Zitat R. E. Sulouff: MEMS Opportunities in Accelerometers and Gyros and the Microtribology Problems Limiting Commercialization. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 109–120CrossRef R. E. Sulouff: MEMS Opportunities in Accelerometers and Gyros and the Microtribology Problems Limiting Commercialization. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 109–120CrossRef
50.98.
Zurück zum Zitat J. R. Martin, Y. Zhao: Micromachined Device Packaged to Reduce Stiction, US Patent 5,694,740 (1997) Dec. 9 J. R. Martin, Y. Zhao: Micromachined Device Packaged to Reduce Stiction, US Patent 5,694,740 (1997) Dec. 9
50.99.
Zurück zum Zitat G. Smith: The application of microtechnology to sensors for the automotive industry, Microelectron. J. 28, 371–379 (1997)CrossRef G. Smith: The application of microtechnology to sensors for the automotive industry, Microelectron. J. 28, 371–379 (1997)CrossRef
50.100.
Zurück zum Zitat L. S. Chang, P. L. Gendler, J. H. Jou: Thermal mechanical and chemical effects in the degradation of the plasma-deposited α-SC:H passivation layer in a multlayer thin-film device, J. Mater. Sci. 26, 1882–1290 (1991)CrossRef L. S. Chang, P. L. Gendler, J. H. Jou: Thermal mechanical and chemical effects in the degradation of the plasma-deposited α-SC:H passivation layer in a multlayer thin-film device, J. Mater. Sci. 26, 1882–1290 (1991)CrossRef
50.101.
Zurück zum Zitat M. Parsons: Design and manufacture of automotive pressure sensors, Sensors 18(4), 32–46 (2001) M. Parsons: Design and manufacture of automotive pressure sensors, Sensors 18(4), 32–46 (2001)
50.102.
Zurück zum Zitat S. A. Henck: Lubrication of digital micromirror devices, Tribol. Lett. 3, 239–247 (1997)CrossRef S. A. Henck: Lubrication of digital micromirror devices, Tribol. Lett. 3, 239–247 (1997)CrossRef
50.103.
Zurück zum Zitat M. R. Douglass: Lifetime Estimates and Unique Failure Mechanisms of the Digital Micromirror Devices (DMD), Proc. 36th Annual Inter. Reliability Phys. Symp. (IEEE, New York 1998) pp. 9–16 M. R. Douglass: Lifetime Estimates and Unique Failure Mechanisms of the Digital Micromirror Devices (DMD), Proc. 36th Annual Inter. Reliability Phys. Symp. (IEEE, New York 1998) pp. 9–16
50.104.
Zurück zum Zitat M. R. Douglass: DMD Reliability: A MEMS Success Story, Reliability, Testing, and Characterization of MEMS/MOEMS II, Proc. of SPIE Vol. 4980 (SPIE, Bellingham 2003) pp. 1–11 M. R. Douglass: DMD Reliability: A MEMS Success Story, Reliability, Testing, and Characterization of MEMS/MOEMS II, Proc. of SPIE Vol. 4980 (SPIE, Bellingham 2003) pp. 1–11
50.105.
Zurück zum Zitat L. J. Hornbeck: Low Surface Energy Passivation Layer for Micromechanical Devices, US Patent 5,602,671 (1997) Feb. 11 L. J. Hornbeck: Low Surface Energy Passivation Layer for Micromechanical Devices, US Patent 5,602,671 (1997) Feb. 11
50.106.
Zurück zum Zitat R. A. Robbins, S. J. Jacobs: Lubricant Delivery for Micromechanical Devices, US Patent 6,300,294 B1 (2001) Oct. 9 R. A. Robbins, S. J. Jacobs: Lubricant Delivery for Micromechanical Devices, US Patent 6,300,294 B1 (2001) Oct. 9
50.107.
Zurück zum Zitat I. DeWolf, W. M. van Spengen: Techniques to study the reliability of metal RF MEMS capacitive switches, Microelectron. Reliab. 42, 1789–1794 (2002)CrossRef I. DeWolf, W. M. van Spengen: Techniques to study the reliability of metal RF MEMS capacitive switches, Microelectron. Reliab. 42, 1789–1794 (2002)CrossRef
50.108.
Zurück zum Zitat B. McCarthy, G. G. Adams, N. E. McGruer, D. Potter: A dynamic model, including contact bounce, of an electrostatically actuated microswitch, J. MEMS 11, 276–283 (2002) B. McCarthy, G. G. Adams, N. E. McGruer, D. Potter: A dynamic model, including contact bounce, of an electrostatically actuated microswitch, J. MEMS 11, 276–283 (2002)
50.109.
Zurück zum Zitat S. Shoji, M. Esashi: Microflow devices and systems, J. Micromech. Microeng. 4, 157–171 (1994)CrossRef S. Shoji, M. Esashi: Microflow devices and systems, J. Micromech. Microeng. 4, 157–171 (1994)CrossRef
50.110.
Zurück zum Zitat M. Stehr, S. Messner, H. Sandmaier, R. Zenergle: The VAMP – A new device for handing liquids or gases, Sens. Actuators A 57, 153–157 (1996)CrossRef M. Stehr, S. Messner, H. Sandmaier, R. Zenergle: The VAMP – A new device for handing liquids or gases, Sens. Actuators A 57, 153–157 (1996)CrossRef
50.111.
Zurück zum Zitat P. Woias: Micropumps – Summarizing the First Two Decades. In: Proc. of SPIE - Microfluidics and BioMEMS, Vol. Vol. 4560, ed. by C. H. Mastrangelo, H. Becker (SPIE, Bellingham 2001) pp. 39–52 P. Woias: Micropumps – Summarizing the First Two Decades. In: Proc. of SPIE - Microfluidics and BioMEMS, Vol. Vol. 4560, ed. by C. H. Mastrangelo, H. Becker (SPIE, Bellingham 2001) pp. 39–52
50.112.
Zurück zum Zitat N. T. Nguyen, X. Huang, T. K. Chuan: MEMS-micropumps: A review, ASME J. Fluids Eng. 124, 384–392 (2002)CrossRef N. T. Nguyen, X. Huang, T. K. Chuan: MEMS-micropumps: A review, ASME J. Fluids Eng. 124, 384–392 (2002)CrossRef
50.113.
50.114.
Zurück zum Zitat M. Sakaguchi, H. Kashiwabara: A generation mechanism of triboelectricity due to the reaction of mechaniradicals with mechanoions which are produced by mechanical fracture of solid polymer, Colloid Polym. Sci. 270, 621–626 (1992)CrossRef M. Sakaguchi, H. Kashiwabara: A generation mechanism of triboelectricity due to the reaction of mechaniradicals with mechanoions which are produced by mechanical fracture of solid polymer, Colloid Polym. Sci. 270, 621–626 (1992)CrossRef
50.115.
Zurück zum Zitat G. R. Freeman, N. H. March: Triboelectricity and some associated phenomena, Mater. Sci. Eng. 15, 1454–1458 (1999) G. R. Freeman, N. H. March: Triboelectricity and some associated phenomena, Mater. Sci. Eng. 15, 1454–1458 (1999)
50.116.
Zurück zum Zitat S. K. Cho, H. Moon, C. –J. Kim: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. MEMS 12, 70–80 (2003) S. K. Cho, H. Moon, C. –J. Kim: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. MEMS 12, 70–80 (2003)
50.117.
Zurück zum Zitat A. R. Wheeler, H. Moon, C. A. Bird, R. R. O. Loo, C. –J. Kim, J. A. Loo, R. L. Garrell: Digital microfluidics with in-line sample purification for proteomics analysis with MALDI-MS, Anal. Chem. 77, 534–540 (2005)CrossRef A. R. Wheeler, H. Moon, C. A. Bird, R. R. O. Loo, C. –J. Kim, J. A. Loo, R. L. Garrell: Digital microfluidics with in-line sample purification for proteomics analysis with MALDI-MS, Anal. Chem. 77, 534–540 (2005)CrossRef
50.118.
Zurück zum Zitat S. C. Lee, M. T. Keener, D. R. Tokachichu, B. Bhushan, P. D. Barnes, B. R. Cipriany, M. Gao, L. J. Brillson: Preparation of a thin protein surface on thermally grown silicon dioxide, J. Vac. Sci. Technol. B 23, 1856–1865 (2005)CrossRef S. C. Lee, M. T. Keener, D. R. Tokachichu, B. Bhushan, P. D. Barnes, B. R. Cipriany, M. Gao, L. J. Brillson: Preparation of a thin protein surface on thermally grown silicon dioxide, J. Vac. Sci. Technol. B 23, 1856–1865 (2005)CrossRef
50.119.
Zurück zum Zitat J. Black: Biological Performance of Materials: Fundamentals of Biocompatibility (Marcel Dekker, New York 1999) J. Black: Biological Performance of Materials: Fundamentals of Biocompatibility (Marcel Dekker, New York 1999)
50.120.
Zurück zum Zitat D. R. Tokachichu, B. Bhushan: Bioadhesion of Polymers for BioMEMS, IEEE Trans. Nanotech. 5, 228–231 (2006)CrossRef D. R. Tokachichu, B. Bhushan: Bioadhesion of Polymers for BioMEMS, IEEE Trans. Nanotech. 5, 228–231 (2006)CrossRef
50.121.
Zurück zum Zitat G. Wei, B. Bhushan, N. Ferrell, D. Hansford: Microfabrication and nanomechanical characterization of polymer microelectromechanical systems for biological applications, J. Vac. Sci. Technol. A 23, 811–819 (2005)CrossRef G. Wei, B. Bhushan, N. Ferrell, D. Hansford: Microfabrication and nanomechanical characterization of polymer microelectromechanical systems for biological applications, J. Vac. Sci. Technol. A 23, 811–819 (2005)CrossRef
50.122.
Zurück zum Zitat B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffman: AFM study of perfluorosilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS, Ultramicroscopy 105, 176–188 (2005)CrossRef B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffman: AFM study of perfluorosilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS, Ultramicroscopy 105, 176–188 (2005)CrossRef
50.123.
Zurück zum Zitat B. Bhushan, D. Hansford, K. K. Lee: Surface Modification of Silicon and PDMS Surfaces with Vapor Phase Deposited Ultrathin Fluorosilane Films for Biomedical Nanodevices, J. Vac. Sci. Technol. A 24, 1197–1202 (2005)CrossRef B. Bhushan, D. Hansford, K. K. Lee: Surface Modification of Silicon and PDMS Surfaces with Vapor Phase Deposited Ultrathin Fluorosilane Films for Biomedical Nanodevices, J. Vac. Sci. Technol. A 24, 1197–1202 (2005)CrossRef
50.124.
Zurück zum Zitat T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffman: Nanotribological study of perfluorosilane SAMs for anti-stiction and low wear, J. Vac. Sci. Technol. B 23, 995–1003 (2005)CrossRef T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffman: Nanotribological study of perfluorosilane SAMs for anti-stiction and low wear, J. Vac. Sci. Technol. B 23, 995–1003 (2005)CrossRef
50.125.
Zurück zum Zitat K. K. Lee, B. Bhushan, D. Hansford: Nanotribological characterization of perfluoropolymer thin films for biomems applications, J. Vac. Sci. Technol. A 23, 804–810 (2005)CrossRef K. K. Lee, B. Bhushan, D. Hansford: Nanotribological characterization of perfluoropolymer thin films for biomems applications, J. Vac. Sci. Technol. A 23, 804–810 (2005)CrossRef
50.126.
Zurück zum Zitat P. Decuzzi, S. Lee, B. Bhushan, M. Ferrari: A theoretical model for the margination of particles with blood vessels, Annals Biomed. Eng. 33, 179–190 (2005)CrossRef P. Decuzzi, S. Lee, B. Bhushan, M. Ferrari: A theoretical model for the margination of particles with blood vessels, Annals Biomed. Eng. 33, 179–190 (2005)CrossRef
50.127.
Zurück zum Zitat H. Guckel, D. W. Burns: Fabrication of micromechanical devices from polysilicon films with smooth surfaces, Sens. Actuators 20, 117–122 (1989)CrossRef H. Guckel, D. W. Burns: Fabrication of micromechanical devices from polysilicon films with smooth surfaces, Sens. Actuators 20, 117–122 (1989)CrossRef
50.128.
Zurück zum Zitat G. T. Mulhern, D. S. Soane, R. T. Howe: Supercritical Carbon Dioxide Drying of Microstructures, Proc. Int. Conf. on Solid-State Sensors and Actuators (IEEE, New York 1993) pp. 296–299 G. T. Mulhern, D. S. Soane, R. T. Howe: Supercritical Carbon Dioxide Drying of Microstructures, Proc. Int. Conf. on Solid-State Sensors and Actuators (IEEE, New York 1993) pp. 296–299
50.129.
Zurück zum Zitat K. F. Man, B. H. Stark, R. Ramesham: A Resource Handbook for MEMS Reliability, Rev. A. (JPL Press, Jet Propulsion Laboratory, California Institute of Technology, Pasadena 1998) K. F. Man, B. H. Stark, R. Ramesham: A Resource Handbook for MEMS Reliability, Rev. A. (JPL Press, Jet Propulsion Laboratory, California Institute of Technology, Pasadena 1998)
50.130.
Zurück zum Zitat S. Kayali, R. Lawton, B. H. Stark: MEMS reliability assurance activities at JPL, EEE Links 5, 10–13 (1999) S. Kayali, R. Lawton, B. H. Stark: MEMS reliability assurance activities at JPL, EEE Links 5, 10–13 (1999)
50.131.
Zurück zum Zitat S. Arney: Designing for MEMS reliability, MRS Bull. 26, 296–299 (2001)CrossRef S. Arney: Designing for MEMS reliability, MRS Bull. 26, 296–299 (2001)CrossRef
50.133.
Zurück zum Zitat B. Bhushan, A. V. Kulkarni, W. Bonin, J. T. Wyrobek: Nano/picoindentation measurement using a capacitance transducer system in atomic force microscopy, Philos. Mag. 74, 1117–1128 (1996)CrossRef B. Bhushan, A. V. Kulkarni, W. Bonin, J. T. Wyrobek: Nano/picoindentation measurement using a capacitance transducer system in atomic force microscopy, Philos. Mag. 74, 1117–1128 (1996)CrossRef
50.134.
Zurück zum Zitat S. Sundararajan, B. Bhushan: Development of AFM-based techniques to measure mechanical properties of nanoscale structures, Sens. Actuators A 101, 338–351 (2002)CrossRef S. Sundararajan, B. Bhushan: Development of AFM-based techniques to measure mechanical properties of nanoscale structures, Sens. Actuators A 101, 338–351 (2002)CrossRef
50.135.
Zurück zum Zitat B. Bhushan, J. N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)CrossRef B. Bhushan, J. N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)CrossRef
50.136.
Zurück zum Zitat B. Bhushan, B. K. Gupta: Handbook of Tribology: Materials, Coatings and Surface Treatments, Reprint edition edn. (Krieger, Malabar 1997) B. Bhushan, B. K. Gupta: Handbook of Tribology: Materials, Coatings and Surface Treatments, Reprint edition edn. (Krieger, Malabar 1997)
50.137.
Zurück zum Zitat J. F. Shackelford, W. Alexander, J. S. Park (eds.): CRC Material Science and Engineering Handbook, 2nd edn. (CRC, Boca Raton 1994) J. F. Shackelford, W. Alexander, J. S. Park (eds.): CRC Material Science and Engineering Handbook, 2nd edn. (CRC, Boca Raton 1994)
50.138.
Zurück zum Zitat J. S. Shor, D. Goldstein, A. D. Kurtz: Characterization of n-type β-SiC as a piezoresistor, IEEE Trans. Electron. Dev. 40, 1093–1099 (1993)CrossRef J. S. Shor, D. Goldstein, A. D. Kurtz: Characterization of n-type β-SiC as a piezoresistor, IEEE Trans. Electron. Dev. 40, 1093–1099 (1993)CrossRef
50.139.
Zurück zum Zitat M. Mehregany, C. A. Zorman, N. Rajan, C. H. Wu: Silicon Carbide MEMS for Harsh Environments, Proc. IEEE 86, 1594–1610 (1998)CrossRef M. Mehregany, C. A. Zorman, N. Rajan, C. H. Wu: Silicon Carbide MEMS for Harsh Environments, Proc. IEEE 86, 1594–1610 (1998)CrossRef
50.140.
Zurück zum Zitat C. A. Zorman, A. J. Fleischmann, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, P. Pirouz: Epitaxial growth of 3C–SiC films on 4 in. diam Si(100) silicon wafers by atmospheric pressure chemical vapor deposition, J. Appl. Phys. 78, 5136–5138 (1995)CrossRef C. A. Zorman, A. J. Fleischmann, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, P. Pirouz: Epitaxial growth of 3C–SiC films on 4 in. diam Si(100) silicon wafers by atmospheric pressure chemical vapor deposition, J. Appl. Phys. 78, 5136–5138 (1995)CrossRef
50.141.
Zurück zum Zitat C. A. Zorman, S. Roy, C. H. Wu, A. J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1998)CrossRef C. A. Zorman, S. Roy, C. H. Wu, A. J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1998)CrossRef
50.142.
Zurück zum Zitat C. H. Wu, S. Stefanescu, H. I. Kuo, C. A. Zorman, M. Mehregany: Fabrication and Testing of Single Crystalline 3C–SiC Piezoresistive Pressure Sensors, Technical Digest – 11th Int. Conf. Solid State Sensors and Actuators – Eurosensors, Vol. XV (Munich 2001) pp. 514–517 C. H. Wu, S. Stefanescu, H. I. Kuo, C. A. Zorman, M. Mehregany: Fabrication and Testing of Single Crystalline 3C–SiC Piezoresistive Pressure Sensors, Technical Digest – 11th Int. Conf. Solid State Sensors and Actuators – Eurosensors, Vol. XV (Munich 2001) pp. 514–517
50.143.
Zurück zum Zitat A. A. Yasseen, C. H. Wu, C. A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline sic micromotors, IEEE Electron. Dev. Lett. 21, 164–166 (2000)CrossRef A. A. Yasseen, C. H. Wu, C. A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline sic micromotors, IEEE Electron. Dev. Lett. 21, 164–166 (2000)CrossRef
50.144.
Zurück zum Zitat B. K. Gupta, J. Chevallier, B. Bhushan: Tribology of ion bombarded silicon for micromechanical applications, ASME J. Tribol. 115, 392–399 (1993)CrossRef B. K. Gupta, J. Chevallier, B. Bhushan: Tribology of ion bombarded silicon for micromechanical applications, ASME J. Tribol. 115, 392–399 (1993)CrossRef
50.145.
Zurück zum Zitat B. K. Gupta, B. Bhushan: Nanoindentation studies of ion implanted silicon, Surf. Coat. Technol. 68-69, 564–570 (1994)CrossRef B. K. Gupta, B. Bhushan: Nanoindentation studies of ion implanted silicon, Surf. Coat. Technol. 68-69, 564–570 (1994)CrossRef
50.146.
Zurück zum Zitat B. K. Gupta, B. Bhushan, J. Chevallier: Modification of tribological properties of silicon by boron ion implantation, Tribol. Trans. 37, 601–607 (1994)CrossRef B. K. Gupta, B. Bhushan, J. Chevallier: Modification of tribological properties of silicon by boron ion implantation, Tribol. Trans. 37, 601–607 (1994)CrossRef
50.147.
Zurück zum Zitat B. Bhushan, V. N. Koinkar: Tribological studies of silicon for magnetic recording applications, J. Appl. Phys. 75, 5741–5746 (1994)CrossRef B. Bhushan, V. N. Koinkar: Tribological studies of silicon for magnetic recording applications, J. Appl. Phys. 75, 5741–5746 (1994)CrossRef
50.148.
Zurück zum Zitat G. M. Pharr: The Anomalous Behavior of Silicon During Nanoindentation. In: Thin Films: Stresses and Mechanical Properties III, Vol. 239, ed. by W. D. Nix, J. C. Bravman, E. Arzt, L. B. Freund (Materials Research Soc., Pittsburgh 1991) pp. 301–312 G. M. Pharr: The Anomalous Behavior of Silicon During Nanoindentation. In: Thin Films: Stresses and Mechanical Properties III, Vol. 239, ed. by W. D. Nix, J. C. Bravman, E. Arzt, L. B. Freund (Materials Research Soc., Pittsburgh 1991) pp. 301–312
50.149.
Zurück zum Zitat D. L. Callahan, J. C. Morris: The extent of phase transformation in silicon hardness indentation, J. Mater. Res. 7, 1612–1617 (1992)CrossRef D. L. Callahan, J. C. Morris: The extent of phase transformation in silicon hardness indentation, J. Mater. Res. 7, 1612–1617 (1992)CrossRef
50.150.
Zurück zum Zitat N. A. Fleck, G. M. Muller, M. F. Ashby, J. W. Hutchinson: Strain gradient plasticity: theory and experiment, Acta Metall. Mater. 42, 475–487 (1994)CrossRef N. A. Fleck, G. M. Muller, M. F. Ashby, J. W. Hutchinson: Strain gradient plasticity: theory and experiment, Acta Metall. Mater. 42, 475–487 (1994)CrossRef
50.151.
Zurück zum Zitat B. Bhushan, S. Venkatesan: Friction and wear studies of silicon in sliding contact with thin-film magnetic rigid disks, J. Mater. Res. 8, 1611–1628 (1993)CrossRef B. Bhushan, S. Venkatesan: Friction and wear studies of silicon in sliding contact with thin-film magnetic rigid disks, J. Mater. Res. 8, 1611–1628 (1993)CrossRef
50.152.
Zurück zum Zitat S. Venkatesan, B. Bhushan: The role of environment in the friction and wear of single-crystal silicon in sliding contact with thin-film magnetic rigid disks, Adv. Info Storage Syst. 5, 241–257 (1993) S. Venkatesan, B. Bhushan: The role of environment in the friction and wear of single-crystal silicon in sliding contact with thin-film magnetic rigid disks, Adv. Info Storage Syst. 5, 241–257 (1993)
50.153.
Zurück zum Zitat S. Venkatesan, B. Bhushan: The sliding friction and wear behavior of single-crystal, polycrystalline and oxidized silicon, Wear 171, 25–32 (1994)CrossRef S. Venkatesan, B. Bhushan: The sliding friction and wear behavior of single-crystal, polycrystalline and oxidized silicon, Wear 171, 25–32 (1994)CrossRef
50.154.
Zurück zum Zitat B. Bhushan: Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments, Diam. Relat. Mater. 8, 1985–2015 (1999)CrossRef B. Bhushan: Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments, Diam. Relat. Mater. 8, 1985–2015 (1999)CrossRef
50.155.
Zurück zum Zitat B. Bhushan, S. Sundararajan, X. Li, C. A. Zorman, M. Mehregany: Micro/Nanotribological Studies of Single-Crystal Silicon and Polysilicon and SiC Films for Use in MEMS Devices. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 407–430CrossRef B. Bhushan, S. Sundararajan, X. Li, C. A. Zorman, M. Mehregany: Micro/Nanotribological Studies of Single-Crystal Silicon and Polysilicon and SiC Films for Use in MEMS Devices. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 407–430CrossRef
50.156.
Zurück zum Zitat S. Sundararajan, B. Bhushan: Micro/nanotribological studies of polysilicon and sic films for mems applications, Wear 217, 251–261 (1998)CrossRef S. Sundararajan, B. Bhushan: Micro/nanotribological studies of polysilicon and sic films for mems applications, Wear 217, 251–261 (1998)CrossRef
50.157.
Zurück zum Zitat X. Li, B. Bhushan: Micro/nanomechanical characterization of ceramic films for microdevices, Thin Solid Films 340, 210–217 (1999)CrossRef X. Li, B. Bhushan: Micro/nanomechanical characterization of ceramic films for microdevices, Thin Solid Films 340, 210–217 (1999)CrossRef
50.158.
Zurück zum Zitat H. Liu, B. Bhushan: Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)CrossRef H. Liu, B. Bhushan: Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)CrossRef
50.159.
Zurück zum Zitat B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin: Microtribological characterization of self-assembled and langmuir–blodgett monolayers by atomic force and friction force microscopy, Langmuir 11, 3189–3198 (1995)CrossRef B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin: Microtribological characterization of self-assembled and langmuir–blodgett monolayers by atomic force and friction force microscopy, Langmuir 11, 3189–3198 (1995)CrossRef
50.160.
Zurück zum Zitat V. N. Koinkar, B. Bhushan: Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks, J. Appl. Phys 79, 8071–8075 (1996)CrossRef V. N. Koinkar, B. Bhushan: Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks, J. Appl. Phys 79, 8071–8075 (1996)CrossRef
50.161.
Zurück zum Zitat V. N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A 14, 2378–2391 (1996)CrossRef V. N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A 14, 2378–2391 (1996)CrossRef
50.162.
Zurück zum Zitat B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63, 245412:1–11 (2001)CrossRef B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63, 245412:1–11 (2001)CrossRef
50.163.
Zurück zum Zitat H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91, 185–202 (2002)CrossRef H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91, 185–202 (2002)CrossRef
50.164.
Zurück zum Zitat N. S. Tambe, B. Bhushan: Nanotribological characterization of self assembled monolayers deposited on silicon and aluminum substrates, Nanotechnology 16, 1549–1558 (2005)CrossRef N. S. Tambe, B. Bhushan: Nanotribological characterization of self assembled monolayers deposited on silicon and aluminum substrates, Nanotechnology 16, 1549–1558 (2005)CrossRef
50.165.
Zurück zum Zitat Z. Tao, B. Bhushan: Bonding, degradation, and environmental effects on novel perfluoropolyether lubrications, Wear 259, 1352–1361 (2005)CrossRef Z. Tao, B. Bhushan: Bonding, degradation, and environmental effects on novel perfluoropolyether lubrications, Wear 259, 1352–1361 (2005)CrossRef
50.166.
Zurück zum Zitat Z. Tao, B. Bhushan: Degradation mechanisms and environmental effects on perfluoropolyether, self assembled monolayers, and diamondlike carbon films, Langmuir 21, 2391–2399 (2005)CrossRef Z. Tao, B. Bhushan: Degradation mechanisms and environmental effects on perfluoropolyether, self assembled monolayers, and diamondlike carbon films, Langmuir 21, 2391–2399 (2005)CrossRef
50.167.
Zurück zum Zitat T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der waals forces in scanning force microscopy, Phys. Rev. B 62, 13667–13673 (2000)CrossRef T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der waals forces in scanning force microscopy, Phys. Rev. B 62, 13667–13673 (2000)CrossRef
50.168.
Zurück zum Zitat H. Liu, B. Bhushan, W. Eck, V. Stadler: Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy, J. Vac. Sci. Technol. A 19, 1234–1240 (2001)CrossRef H. Liu, B. Bhushan, W. Eck, V. Stadler: Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy, J. Vac. Sci. Technol. A 19, 1234–1240 (2001)CrossRef
50.169.
Zurück zum Zitat N. S. Tambe, B. Bhushan: Identifying materials with low friction and adhesion for nanotechnology applications, Appl. Phys. Lett. 86, 061906–1 to –3 (2005)CrossRef N. S. Tambe, B. Bhushan: Identifying materials with low friction and adhesion for nanotechnology applications, Appl. Phys. Lett. 86, 061906–1 to –3 (2005)CrossRef
50.170.
Zurück zum Zitat N. S. Tambe, B. Bhushan: Micro/nanotribological characterization of PDMS and PMMA used for bioMEMS/NEMS applications, Ultramicroscopy 105, 238–247 (2005)CrossRef N. S. Tambe, B. Bhushan: Micro/nanotribological characterization of PDMS and PMMA used for bioMEMS/NEMS applications, Ultramicroscopy 105, 238–247 (2005)CrossRef
50.171.
Zurück zum Zitat B. Bhushan, Z. Burton: Adhesion and friction properties of polymers in microfluidic devices, Nanotechnology 16, 467–478 (2005)CrossRef B. Bhushan, Z. Burton: Adhesion and friction properties of polymers in microfluidic devices, Nanotechnology 16, 467–478 (2005)CrossRef
50.172.
Zurück zum Zitat B. Bhushan, D. Tokachichu, M. T. Keener, S. C. Lee: Nanoscale adhesion, friction, and wear studies of biomolecules on silicon based surfaces, Acta Biomaterialia 2, 39–49 (2005)CrossRef B. Bhushan, D. Tokachichu, M. T. Keener, S. C. Lee: Nanoscale adhesion, friction, and wear studies of biomolecules on silicon based surfaces, Acta Biomaterialia 2, 39–49 (2005)CrossRef
50.173.
Zurück zum Zitat M. Nosonovsky, B. Bhushan: Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol. 11, 535–549 (2005)CrossRef M. Nosonovsky, B. Bhushan: Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol. 11, 535–549 (2005)CrossRef
50.174.
Zurück zum Zitat R. N. Wenzel: Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988–994 (1936)CrossRef R. N. Wenzel: Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988–994 (1936)CrossRef
50.175.
Zurück zum Zitat A. Cassie, S. Baxter: Wetting of porous surfaces, Trans. Faraday Soc. 40, 546–551 (1944)CrossRef A. Cassie, S. Baxter: Wetting of porous surfaces, Trans. Faraday Soc. 40, 546–551 (1944)CrossRef
50.176.
Zurück zum Zitat M. Nosonovsky, B. Bhushan: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces, Microsyst. Technol. 12, 231–237 (2006)CrossRef M. Nosonovsky, B. Bhushan: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces, Microsyst. Technol. 12, 231–237 (2006)CrossRef
50.177.
Zurück zum Zitat Z. Burton, B. Bhushan: Hydrophobicity, adhesion and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems, Nano Lett. 20, 83–90 (2005) Z. Burton, B. Bhushan: Hydrophobicity, adhesion and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems, Nano Lett. 20, 83–90 (2005)
50.178.
Zurück zum Zitat S. Sundararajan, B. Bhushan: Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/friction force microscope, J. Vac. Sci. Technol. A 19, 1777–1785 (2001)CrossRef S. Sundararajan, B. Bhushan: Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/friction force microscope, J. Vac. Sci. Technol. A 19, 1777–1785 (2001)CrossRef
50.179.
Zurück zum Zitat C. H. Mastrangelo, C. H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – Part II: Experiments, J. Microelectromech. Syst. 2, 44–55 (1993)CrossRef C. H. Mastrangelo, C. H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – Part II: Experiments, J. Microelectromech. Syst. 2, 44–55 (1993)CrossRef
50.180.
Zurück zum Zitat R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1–20 (1997)CrossRef R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1–20 (1997)CrossRef
50.181.
Zurück zum Zitat C. H. Mastrangelo: Surface Force Induced Failures in Microelectromechanical Systems. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 367–395CrossRef C. H. Mastrangelo: Surface Force Induced Failures in Microelectromechanical Systems. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 367–395CrossRef
50.182.
Zurück zum Zitat M. P. De Boer, T. A. Michalske: Accurate method for determining adhesion of cantilever beams, J. Appl. Phys. 86, 817 (1999)CrossRef M. P. De Boer, T. A. Michalske: Accurate method for determining adhesion of cantilever beams, J. Appl. Phys. 86, 817 (1999)CrossRef
50.183.
Zurück zum Zitat R. L. Alley, G. J. Cuan, R. T. Howe, K. Komvopoulos: In: Proc. Solid State Sensor and Actuator Workshop, ed. by C. H. Mastrangelo, C. H. Hsu (IEEE, New York 1992) pp. 202–207CrossRef R. L. Alley, G. J. Cuan, R. T. Howe, K. Komvopoulos: In: Proc. Solid State Sensor and Actuator Workshop, ed. by C. H. Mastrangelo, C. H. Hsu (IEEE, New York 1992) pp. 202–207CrossRef
50.184.
Zurück zum Zitat H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)CrossRef H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)CrossRef
50.185.
Zurück zum Zitat B. Bhushan, H. Liu, S. M. Hsu: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. 126, 583–590 (2004)CrossRef B. Bhushan, H. Liu, S. M. Hsu: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. 126, 583–590 (2004)CrossRef
50.186.
Zurück zum Zitat S. K. Chilamakuri, B. Bhushan: A comprehensive kinetic meniscus model for prediction of long-term static friction, J. Appl. Phys. 15, 4649–4656 (1999)CrossRef S. K. Chilamakuri, B. Bhushan: A comprehensive kinetic meniscus model for prediction of long-term static friction, J. Appl. Phys. 15, 4649–4656 (1999)CrossRef
50.187.
Zurück zum Zitat Y. C. Tai, R. S. Muller: Frictional study of IC processed micromotors, Sens. Actuators A 21-23, 180–183 (1990) Y. C. Tai, R. S. Muller: Frictional study of IC processed micromotors, Sens. Actuators A 21-23, 180–183 (1990)
50.188.
Zurück zum Zitat K. J. Gabriel, F. Behi, R. Mahadevan, M. Mehregany: In situ friction and wear measurement in integrated polysilicon mechanisms, Sens. Actuators A. 21-23, 184–188 (1990) K. J. Gabriel, F. Behi, R. Mahadevan, M. Mehregany: In situ friction and wear measurement in integrated polysilicon mechanisms, Sens. Actuators A. 21-23, 184–188 (1990)
50.189.
Zurück zum Zitat M. G. Lim, J. C. Chang, D. P. Schultz, R. T. Howe, R. M. White: Polysilicon Microstructures to Characterize Static Friction, Proc. IEEE Micro Electro Mechanical Systems (IEEE, New York 1990) pp. 82–88 M. G. Lim, J. C. Chang, D. P. Schultz, R. T. Howe, R. M. White: Polysilicon Microstructures to Characterize Static Friction, Proc. IEEE Micro Electro Mechanical Systems (IEEE, New York 1990) pp. 82–88
50.190.
Zurück zum Zitat U. Beerschwinger, S. J. Yang, R. L. Reuben, M. R. Taghizadeh, U. Wallrabe: Friction measurements on LIGA-processed microstructures, J. Micromech. Microeng. 4, 14–24 (1994)CrossRef U. Beerschwinger, S. J. Yang, R. L. Reuben, M. R. Taghizadeh, U. Wallrabe: Friction measurements on LIGA-processed microstructures, J. Micromech. Microeng. 4, 14–24 (1994)CrossRef
50.191.
Zurück zum Zitat D. Matheison, U. Beerschwinger, S. J. Young, R. L. Rueben, M. Taghizadeh, S. Eckert, U. Wallrabe: Effect of progressive wear on the friction characteristics of nickel LIGA processed rotors, Wear 192, 199–207 (1996)CrossRef D. Matheison, U. Beerschwinger, S. J. Young, R. L. Rueben, M. Taghizadeh, S. Eckert, U. Wallrabe: Effect of progressive wear on the friction characteristics of nickel LIGA processed rotors, Wear 192, 199–207 (1996)CrossRef
50.192.
Zurück zum Zitat H. Liu, B. Bhushan: Nanotribological characterization of digital micromirror devices using an atomic force microscope, Ultramicroscopy 100, 391–412 (2004)CrossRef H. Liu, B. Bhushan: Nanotribological characterization of digital micromirror devices using an atomic force microscope, Ultramicroscopy 100, 391–412 (2004)CrossRef
50.193.
Zurück zum Zitat G. Wei, B. Bhushan, S. J. Jacobs: Nanomechanical characterization of digital multilayered thin film structures for digital micromirror devices, Ultramicroscopy 100, 375–389 (2004)CrossRef G. Wei, B. Bhushan, S. J. Jacobs: Nanomechanical characterization of digital multilayered thin film structures for digital micromirror devices, Ultramicroscopy 100, 375–389 (2004)CrossRef
50.194.
Zurück zum Zitat G. Wei, B. Bhushan, S. J. Jacobs: Nanoscale indentation fatigue and fracture toughness measurements of multilayered thin film structures for digital micromirror devices, J. Vac. Sci. Technol. A 22, 1397–1405 (2004)CrossRef G. Wei, B. Bhushan, S. J. Jacobs: Nanoscale indentation fatigue and fracture toughness measurements of multilayered thin film structures for digital micromirror devices, J. Vac. Sci. Technol. A 22, 1397–1405 (2004)CrossRef
50.195.
Zurück zum Zitat H. Liu, B. Bhushan: Investigation of nanotribological and nanomechanical properties of the digital micromirror device by atomic force microscope, J. Vac. Sci. Technol. A 22, 1388–1396 (2004)CrossRef H. Liu, B. Bhushan: Investigation of nanotribological and nanomechanical properties of the digital micromirror device by atomic force microscope, J. Vac. Sci. Technol. A 22, 1388–1396 (2004)CrossRef
50.196.
Zurück zum Zitat H. Liu, B. Bhushan: Bending and fatigue study on a nanoscale hinge by an atomic force microscope, Nanotechnology 15, 1246–1251 (2004)CrossRef H. Liu, B. Bhushan: Bending and fatigue study on a nanoscale hinge by an atomic force microscope, Nanotechnology 15, 1246–1251 (2004)CrossRef
50.197.
Zurück zum Zitat B. Bhushan, H. Liu: Characterization of nanomechanical and nanotribological properties of digital micromirror devices, Nanotechnology 15, 1785–1791 (2004)CrossRef B. Bhushan, H. Liu: Characterization of nanomechanical and nanotribological properties of digital micromirror devices, Nanotechnology 15, 1785–1791 (2004)CrossRef
50.198.
Zurück zum Zitat R. C. Jaeger: Introduction to Microelectronic Fabrication, Vol. Vol. 5 (Addison–Wesley, Reading 1988) R. C. Jaeger: Introduction to Microelectronic Fabrication, Vol. Vol. 5 (Addison–Wesley, Reading 1988)
50.199.
Zurück zum Zitat J. W. Judy: Microelectromechanical systems (MEMS): Fabrication, design, and applications, Smart Mater. Struct. 10, 1115–1134 (2001)CrossRef J. W. Judy: Microelectromechanical systems (MEMS): Fabrication, design, and applications, Smart Mater. Struct. 10, 1115–1134 (2001)CrossRef
50.200.
Zurück zum Zitat G. Brewer: Electron-Bean Technology in Microelectronic Fabrication (Academic, New York 1980) G. Brewer: Electron-Bean Technology in Microelectronic Fabrication (Academic, New York 1980)
50.201.
Zurück zum Zitat K. Valiev: The Physics of Submicron Lithography (Plenum, New York 1992)CrossRef K. Valiev: The Physics of Submicron Lithography (Plenum, New York 1992)CrossRef
50.202.
Zurück zum Zitat E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4, 35–56 (1986)CrossRef E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4, 35–56 (1986)CrossRef
50.203.
Zurück zum Zitat C. R. Friedrich, R. O. Warrington: Surface Characterization of Non-Lithographic Micromachining. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 73–84CrossRef C. R. Friedrich, R. O. Warrington: Surface Characterization of Non-Lithographic Micromachining. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer Academic, Dordrecht 1998) pp. 73–84CrossRef
50.204.
Zurück zum Zitat M. Tanaka: Development of desktop machining microfactory, Riken Rev. 34, 46–49 (April 2001) M. Tanaka: Development of desktop machining microfactory, Riken Rev. 34, 46–49 (April 2001)
50.205.
Zurück zum Zitat Y. Xia, G. M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRef Y. Xia, G. M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRef
50.206.
Zurück zum Zitat H. Becker, C. Gaertner: Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis 21, 12–26 (2000)CrossRef H. Becker, C. Gaertner: Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis 21, 12–26 (2000)CrossRef
50.207.
Zurück zum Zitat Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides: Complex optical surfaces formed by replica molding against elastomeric masters, Science 273, 347–349 (1996)CrossRef Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides: Complex optical surfaces formed by replica molding against elastomeric masters, Science 273, 347–349 (1996)CrossRef
50.208.
Zurück zum Zitat S. Y. Chou, P. R. Krauss, P. J. Renstrom: Imprint lithography with 25–nanometer resolution, Science 272, 85–87 (1996)CrossRef S. Y. Chou, P. R. Krauss, P. J. Renstrom: Imprint lithography with 25–nanometer resolution, Science 272, 85–87 (1996)CrossRef
50.209.
Zurück zum Zitat A. Kumar, G. M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63, 2002–2004 (1993)CrossRef A. Kumar, G. M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63, 2002–2004 (1993)CrossRef
50.210.
Zurück zum Zitat J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides: Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27–40 (2000)CrossRef J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides: Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27–40 (2000)CrossRef
Metadaten
Titel
Nanotribology and Materials Characterization of MEMS/NEMS and BioMEMS/BioNEMS Materials and Devices
verfasst von
Bharat Bhushan, Prof.
Copyright-Jahr
2007
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-29857-1_50

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.