Skip to main content
Erschienen in: Knowledge and Information Systems 12/2021

02.11.2021 | Regular Paper

Neural networks for model-free and scale-free automated planning

verfasst von: Michaela Urbanovská, Antonín Komenda

Erschienen in: Knowledge and Information Systems | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Automated planning for problems without an explicit model is an elusive research challenge. However, if tackled, it could provide a general approach to problems in real-world unstructured environments. There are currently two strong research directions in the area of artificial intelligence (AI), namely machine learning and symbolic AI. The former provides techniques to learn models of unstructured data but does not provide further problem solving capabilities on such models. The latter provides efficient algorithms for general problem solving, but requires a model to work with. Creating the model can itself be a bottleneck of many problem domains. Complicated problems require an explicit description that can be very costly or even impossible to create. In this paper, we propose a combination of the two areas, namely deep learning and classical planning, to form a planning system that works without a human-encoded model for variably scaled problems. The deep learning part extracts the model in the form of a transition system and a goal-distance heuristic estimator; the classical planning part uses such a model to efficiently solve the planning problem. Both networks in the planning system, we introduced, work with a problem in its graphic form and there is no need for any additional information to create the state transition system or to estimate a heuristic value. We proposed three different architectures for the heuristic estimator to compare different characteristics of well- known deep learning techniques. Besides the design of such planning systems, we provide experimental evaluation comparing the implemented techniques to classical model-based methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Asai M, Fukunaga A (2017) Classical planning in deep latent space: from unlabeled images to pddl (and back). In: NeSy Asai M, Fukunaga A (2017) Classical planning in deep latent space: from unlabeled images to pddl (and back). In: NeSy
3.
Zurück zum Zitat Asai M, Fukunaga A (2018) Classical planning in deep latent space: bridging the subsymbolic-symbolic boundary Asai M, Fukunaga A (2018) Classical planning in deep latent space: bridging the subsymbolic-symbolic boundary
5.
Zurück zum Zitat Bottou L (1991) Stochastic gradient learning in neural networks. Proc Neuro-Nımes 91(8):12 Bottou L (1991) Stochastic gradient learning in neural networks. Proc Neuro-Nımes 91(8):12
6.
Zurück zum Zitat Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:​1406.​1078
7.
Zurück zum Zitat Culberson J, Yang F, Holte R (2007) A general additive search abstraction Culberson J, Yang F, Holte R (2007) A general additive search abstraction
8.
Zurück zum Zitat Fikes RE, Nilsson NJ (1971) Strips: a new approach to the application of theorem proving to problem solving. Artif Intell 2(3–4):189–208CrossRef Fikes RE, Nilsson NJ (1971) Strips: a new approach to the application of theorem proving to problem solving. Artif Intell 2(3–4):189–208CrossRef
9.
Zurück zum Zitat Garrett CR, Kaelbling LP, Lozano-Pérez T (2016) Learning to rank for synthesizing planning heuristics. arXiv preprint arXiv:1608.01302 Garrett CR, Kaelbling LP, Lozano-Pérez T (2016) Learning to rank for synthesizing planning heuristics. arXiv preprint arXiv:​1608.​01302
10.
Zurück zum Zitat Ghallab M, Nau D, Traverso P (2016) Automated planning and acting. Cambridge University Press, CambridgeMATH Ghallab M, Nau D, Traverso P (2016) Automated planning and acting. Cambridge University Press, CambridgeMATH
11.
Zurück zum Zitat Gomoluch P, Alrajeh D, Russo A, Bucchiarone A (2019) Learning neural search policies for classical planning. arXiv preprint arXiv:1911.12200 Gomoluch P, Alrajeh D, Russo A, Bucchiarone A (2019) Learning neural search policies for classical planning. arXiv preprint arXiv:​1911.​12200
12.
Zurück zum Zitat Groshev E, Goldstein M, Tamar A, Srivastava S, Abbeel P (2018) Learning generalized reactive policies using deep neural networks. In: de Weerdt M, Koenig S, Röger G, Spaan MTJ(eds) Proceedings of the twenty-eighth international conference on automated planning and scheduling, ICAPS 2018, Delft, The Netherlands, June 24–29, 2018. AAAI Press, pp 408–416. https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17782 Groshev E, Goldstein M, Tamar A, Srivastava S, Abbeel P (2018) Learning generalized reactive policies using deep neural networks. In: de Weerdt M, Koenig S, Röger G, Spaan MTJ(eds) Proceedings of the twenty-eighth international conference on automated planning and scheduling, ICAPS 2018, Delft, The Netherlands, June 24–29, 2018. AAAI Press, pp 408–416. https://​aaai.​org/​ocs/​index.​php/​ICAPS/​ICAPS18/​paper/​view/​17782
14.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition, pp 770–778
15.
Zurück zum Zitat Helmert M, Haslum P, Hoffmann J (2007) Flexible abstraction heuristics for optimal sequential planning. In: Boddy MS, Fox M, Thiébaux S (eds) Proceedings of the seventeenth international conference on automated planning and scheduling, ICAPS 2007, Providence, Rhode Island, USA, September 22–26, 2007. AAAI, pp 176–183. http://www.aaai.org/Library/ICAPS/2007/icaps07-023.php Helmert M, Haslum P, Hoffmann J (2007) Flexible abstraction heuristics for optimal sequential planning. In: Boddy MS, Fox M, Thiébaux S (eds) Proceedings of the seventeenth international conference on automated planning and scheduling, ICAPS 2007, Providence, Rhode Island, USA, September 22–26, 2007. AAAI, pp 176–183. http://​www.​aaai.​org/​Library/​ICAPS/​2007/​icaps07-023.​php
16.
Zurück zum Zitat Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
17.
Zurück zum Zitat Hoffmann J (2001) Ff: the fast-forward planning system. AI Mag 22(3):57–57 Hoffmann J (2001) Ff: the fast-forward planning system. AI Mag 22(3):57–57
18.
20.
Zurück zum Zitat Latombe JC (2012) Robot motion planning, vol 124. Springer, New York Latombe JC (2012) Robot motion planning, vol 124. Springer, New York
21.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
22.
Zurück zum Zitat LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551CrossRef LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551CrossRef
23.
Zurück zum Zitat Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing ATARI with deep reinforcement learning. arXiv preprint arXiv:1312.5602 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing ATARI with deep reinforcement learning. arXiv preprint arXiv:​1312.​5602
24.
Zurück zum Zitat Pommerening F, Helmert M (2013) Incremental lm-cut. In: Twenty-third international conference on automated planning and scheduling Pommerening F, Helmert M (2013) Incremental lm-cut. In: Twenty-third international conference on automated planning and scheduling
25.
Zurück zum Zitat Pommerening F, Helmert M, Röger G, Seipp J (2015) From non-negative to general operator cost partitioning. In: Proceedings of the AAAI conference on artificial intelligence, vol 29 Pommerening F, Helmert M, Röger G, Seipp J (2015) From non-negative to general operator cost partitioning. In: Proceedings of the AAAI conference on artificial intelligence, vol 29
27.
Zurück zum Zitat Sharon G, Stern R, Felner A, Sturtevant NR (2015) Conflict-based search for optimal multi-agent pathfinding. Artif Intell 219:40–66MathSciNetCrossRef Sharon G, Stern R, Felner A, Sturtevant NR (2015) Conflict-based search for optimal multi-agent pathfinding. Artif Intell 219:40–66MathSciNetCrossRef
28.
Zurück zum Zitat Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, CambridgeMATH Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, CambridgeMATH
29.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A.N, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A.N, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008
30.
Zurück zum Zitat Wei X, Bârsan IA, Wang S, Martinez J, Urtasun R (2019) Learning to localize through compressed binary maps, pp 10316–10324 Wei X, Bârsan IA, Wang S, Martinez J, Urtasun R (2019) Learning to localize through compressed binary maps, pp 10316–10324
31.
Metadaten
Titel
Neural networks for model-free and scale-free automated planning
verfasst von
Michaela Urbanovská
Antonín Komenda
Publikationsdatum
02.11.2021
Verlag
Springer London
Erschienen in
Knowledge and Information Systems / Ausgabe 12/2021
Print ISSN: 0219-1377
Elektronische ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-021-01619-8

Weitere Artikel der Ausgabe 12/2021

Knowledge and Information Systems 12/2021 Zur Ausgabe

Premium Partner