Skip to main content
Erschienen in: International Journal of Social Robotics 8/2023

21.04.2023

NeuroCERIL: Robotic Imitation Learning via Hierarchical Cause-Effect Reasoning in Programmable Attractor Neural Networks

verfasst von: Gregory P. Davis, Garrett E. Katz, Rodolphe J. Gentili, James A. Reggia

Erschienen in: International Journal of Social Robotics | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Imitation learning allows social robots to learn new skills from human teachers without substantial manual programming, but it is difficult for robotic imitation learning systems to generalize demonstrated skills as well as human learners do. Contemporary neurocomputational approaches to imitation learning achieve limited generalization at the cost of data-intensive training, and often produce opaque models that are difficult to understand and debug. In this study, we explore the viability of developing purely-neural controllers for social robots that learn to imitate by reasoning about the underlying intentions of demonstrated behaviors. We present a novel hypothetico-deductive reasoning algorithm that combines bottom-up abductive inference with top-down predictive verification and captures important aspects of human causal reasoning that are relevant to a broad range of cognitive domains. We also present NeuroCERIL, a neurocognitive architecture that implements this algorithm using only neural computations, and produces generalizable and human-readable explanations for demonstrated behavior. Our empirical results demonstrate that NeuroCERIL can learn various procedural skills in a simulated robotic imitation learning domain. We also show that its causal reasoning procedure is computationally efficient, and that its memory use is dominated by highly transient short-term memories, much like human working memory. We conclude that NeuroCERIL is a viable neural model of human-like imitation learning that can improve human-robot collaboration and contribute to investigations of the neurocomputational basis of human cognition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
2
The model was tested on a GPU accelerated desktop computer, which completed one million timesteps of model execution in \(\sim \) 88 min using \(\sim \) 20.5 GB of GPU memory.
 
3
We used slightly more complex versions of the IL and AI block stacking tasks that include more blocks and actions than those reported in [8].
 
Literatur
1.
Zurück zum Zitat Jones SS (2009) The development of imitation in infancy. Philos Trans R Soc B Biol Sci 364(1528):2325–2335CrossRef Jones SS (2009) The development of imitation in infancy. Philos Trans R Soc B Biol Sci 364(1528):2325–2335CrossRef
2.
Zurück zum Zitat Meltzoff AN, Kuhl PK, Movellan J, Sejnowski TJ (2009) Foundations for a new science of learning. Science 325(5938):284–288CrossRef Meltzoff AN, Kuhl PK, Movellan J, Sejnowski TJ (2009) Foundations for a new science of learning. Science 325(5938):284–288CrossRef
3.
Zurück zum Zitat Ravichandar H, Polydoros AS, Chernova S, Billard A (2020) Recent advances in robot learning from demonstration. Ann Rev Control Robot Autonom Syst 3:297–330CrossRef Ravichandar H, Polydoros AS, Chernova S, Billard A (2020) Recent advances in robot learning from demonstration. Ann Rev Control Robot Autonom Syst 3:297–330CrossRef
4.
Zurück zum Zitat Hussein A, Gaber MM, Elyan E, Jayne C (2017) Imitation learning: a survey of learning methods. ACM Comput Surv (CSUR) 50(2):1–35CrossRef Hussein A, Gaber MM, Elyan E, Jayne C (2017) Imitation learning: a survey of learning methods. ACM Comput Surv (CSUR) 50(2):1–35CrossRef
5.
Zurück zum Zitat Billard A, Calinon S, Dillmann R, Schaal S (2008) Survey: robot programming by demonstration. Springer, Technical report Billard A, Calinon S, Dillmann R, Schaal S (2008) Survey: robot programming by demonstration. Springer, Technical report
6.
Zurück zum Zitat Schaal S (1999) Is imitation learning the route to humanoid robots? Trends Cogn Sci 3(6):233–242CrossRef Schaal S (1999) Is imitation learning the route to humanoid robots? Trends Cogn Sci 3(6):233–242CrossRef
7.
Zurück zum Zitat Trafton JG, Cassimatis NL, Bugajska MD, Brock DP, Mintz FE, Schultz AC (2005) Enabling effective human–robot interaction using perspective-taking in robots. IEEE Trans Syst Man Cybern Part A Syst Hum 35(4):460–470CrossRef Trafton JG, Cassimatis NL, Bugajska MD, Brock DP, Mintz FE, Schultz AC (2005) Enabling effective human–robot interaction using perspective-taking in robots. IEEE Trans Syst Man Cybern Part A Syst Hum 35(4):460–470CrossRef
8.
Zurück zum Zitat Katz G, Huang D-W, Hauge T, Gentili R, Reggia J (2017) A novel parsimonious cause-effect reasoning algorithm for robot imitation and plan recognition. IEEE Trans Cognit Dev Syst 10(2):177–193CrossRef Katz G, Huang D-W, Hauge T, Gentili R, Reggia J (2017) A novel parsimonious cause-effect reasoning algorithm for robot imitation and plan recognition. IEEE Trans Cognit Dev Syst 10(2):177–193CrossRef
9.
Zurück zum Zitat Bandura A (2017) Psychological modeling: conflicting theories. Transaction Publishers, New Jersey Bandura A (2017) Psychological modeling: conflicting theories. Transaction Publishers, New Jersey
10.
Zurück zum Zitat Meltzoff AN (1995) Understanding the intentions of others: re-enactment of intended acts by 18-month-old children. Dev Psychol 31(5):838CrossRef Meltzoff AN (1995) Understanding the intentions of others: re-enactment of intended acts by 18-month-old children. Dev Psychol 31(5):838CrossRef
11.
Zurück zum Zitat Baldwin DA, Baird JA (2001) Discerning intentions in dynamic human action. Trends Cogn Sci 5(4):171–178CrossRef Baldwin DA, Baird JA (2001) Discerning intentions in dynamic human action. Trends Cogn Sci 5(4):171–178CrossRef
12.
Zurück zum Zitat Tomasello M, Kruger AC, Ratner HH (1993) Cultural learning. Behav Brain Sci 16(3):495–511CrossRef Tomasello M, Kruger AC, Ratner HH (1993) Cultural learning. Behav Brain Sci 16(3):495–511CrossRef
13.
Zurück zum Zitat Oztop E, Kawato M, Arbib MA (2013) Mirror neurons: functions, mechanisms and models. Neurosci Lett 540:43–55CrossRef Oztop E, Kawato M, Arbib MA (2013) Mirror neurons: functions, mechanisms and models. Neurosci Lett 540:43–55CrossRef
14.
Zurück zum Zitat Jackson PL, Meltzoff AN, Decety J (2006) Neural circuits involved in imitation and perspective-taking. Neuroimage 31(1):429–439CrossRef Jackson PL, Meltzoff AN, Decety J (2006) Neural circuits involved in imitation and perspective-taking. Neuroimage 31(1):429–439CrossRef
15.
Zurück zum Zitat Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667CrossRef Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667CrossRef
16.
Zurück zum Zitat Köster M, Langeloh M, Kliesch C, Kanngiesser P, Hoehl S (2020) Motor cortex activity during action observation predicts subsequent action imitation in human infants. Neuroimage 218:116958CrossRef Köster M, Langeloh M, Kliesch C, Kanngiesser P, Hoehl S (2020) Motor cortex activity during action observation predicts subsequent action imitation in human infants. Neuroimage 218:116958CrossRef
17.
Zurück zum Zitat Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robot Auton Syst 57(5):469–483CrossRef Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robot Auton Syst 57(5):469–483CrossRef
19.
Zurück zum Zitat Barros JJO, dos Santos VMF, da Silva FMTP (2015) Bimanual haptics for humanoid robot teleoperation using ros and v-rep. In: 2015 IEEE international conference on autonomous robot systems and competitions. IEEE, pp 174–179 Barros JJO, dos Santos VMF, da Silva FMTP (2015) Bimanual haptics for humanoid robot teleoperation using ros and v-rep. In: 2015 IEEE international conference on autonomous robot systems and competitions. IEEE, pp 174–179
20.
Zurück zum Zitat Fitzgerald T, Goel AK, Thomaz AL (2014) Representing skill demonstrations for adaptation and transfer. In: 2014 AAAI fall symposium series Fitzgerald T, Goel AK, Thomaz AL (2014) Representing skill demonstrations for adaptation and transfer. In: 2014 AAAI fall symposium series
21.
Zurück zum Zitat Wu Y, Su Y, Demiris Y (2014) A morphable template framework for robot learning by demonstration: integrating one-shot and incremental learning approaches. Robot Auton Syst 62(10):1517–1530CrossRef Wu Y, Su Y, Demiris Y (2014) A morphable template framework for robot learning by demonstration: integrating one-shot and incremental learning approaches. Robot Auton Syst 62(10):1517–1530CrossRef
22.
Zurück zum Zitat Abbeel P, Coates A, Ng AY (2010) Autonomous helicopter aerobatics through apprenticeship learning. Int J Robot Res 29(13):1608–1639CrossRef Abbeel P, Coates A, Ng AY (2010) Autonomous helicopter aerobatics through apprenticeship learning. Int J Robot Res 29(13):1608–1639CrossRef
23.
Zurück zum Zitat Argall B, Browning B, Veloso M (2011) Learning mobile robot motion control from demonstrated primitives and human feedback. Robot Res 70:417–432CrossRef Argall B, Browning B, Veloso M (2011) Learning mobile robot motion control from demonstrated primitives and human feedback. Robot Res 70:417–432CrossRef
24.
Zurück zum Zitat Ho J, Ermon S (2016) Generative adversarial imitation learning. Adv Neural Inf Process Syst 29 Ho J, Ermon S (2016) Generative adversarial imitation learning. Adv Neural Inf Process Syst 29
25.
Zurück zum Zitat Osa T, Pajarinen J, Neumann G, Bagnell JA, Abbeel P, Peters J (2018) An algorithmic perspective on imitation learning. Found Trends Robot 7(1–2):1–179 Osa T, Pajarinen J, Neumann G, Bagnell JA, Abbeel P, Peters J (2018) An algorithmic perspective on imitation learning. Found Trends Robot 7(1–2):1–179
26.
Zurück zum Zitat MacGlashan J, Littman ML (2015) Between imitation and intention learning. In: Twenty-fourth international joint conference on artificial intelligence MacGlashan J, Littman ML (2015) Between imitation and intention learning. In: Twenty-fourth international joint conference on artificial intelligence
27.
Zurück zum Zitat Sun S-H, Noh H, Somasundaram S, Lim J (2018) Neural program synthesis from diverse demonstration videos. In: International conference on machine learning. PMLR, pp 4790–4799 Sun S-H, Noh H, Somasundaram S, Lim J (2018) Neural program synthesis from diverse demonstration videos. In: International conference on machine learning. PMLR, pp 4790–4799
28.
Zurück zum Zitat Xu D, Nair S, Zhu Y, Gao J, Garg A, Fei-Fei L, Savarese S (2018) Neural task programming: learning to generalize across hierarchical tasks. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3795–3802 Xu D, Nair S, Zhu Y, Gao J, Garg A, Fei-Fei L, Savarese S (2018) Neural task programming: learning to generalize across hierarchical tasks. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 3795–3802
29.
Zurück zum Zitat Boteanu A, Kent D, Mohseni-Kabir A, Rich C, Chernova S (2015) Towards robot adaptability in new situations. In: 2015 AAAI fall symposium series Boteanu A, Kent D, Mohseni-Kabir A, Rich C, Chernova S (2015) Towards robot adaptability in new situations. In: 2015 AAAI fall symposium series
30.
Zurück zum Zitat Le H, Jiang N, Agarwal A, Dudik M, Yue Y, Daumé H (2018) III: hierarchical imitation and reinforcement learning. In: Proceedings of the 35th international conference on machine learning. Proceedings of machine learning research, vol. 80, pp 2917–2926 Le H, Jiang N, Agarwal A, Dudik M, Yue Y, Daumé H (2018) III: hierarchical imitation and reinforcement learning. In: Proceedings of the 35th international conference on machine learning. Proceedings of machine learning research, vol. 80, pp 2917–2926
31.
Zurück zum Zitat Friesen AL, Rao RP (2010) Imitation learning with hierarchical actions. In: 2010 IEEE 9th international conference on development and learning. IEEE, pp 263–268 Friesen AL, Rao RP (2010) Imitation learning with hierarchical actions. In: 2010 IEEE 9th international conference on development and learning. IEEE, pp 263–268
32.
Zurück zum Zitat De Haan P, Jayaraman D, Levine S (2019) Causal confusion in imitation learning. Adv Neural Inf Process Syst 32 De Haan P, Jayaraman D, Levine S (2019) Causal confusion in imitation learning. Adv Neural Inf Process Syst 32
33.
Zurück zum Zitat Zhang J, Kumor D, Bareinboim E (2020) Causal imitation learning with unobserved confounders. Adv Neural Inf Process Syst 33:12263–12274 Zhang J, Kumor D, Bareinboim E (2020) Causal imitation learning with unobserved confounders. Adv Neural Inf Process Syst 33:12263–12274
34.
Zurück zum Zitat Swamy G, Choudhury S, Bagnell D, Wu S (2022) Causal imitation learning under temporally correlated noise. In: International conference on machine learning. PMLR, pp 20877–20890 Swamy G, Choudhury S, Bagnell D, Wu S (2022) Causal imitation learning under temporally correlated noise. In: International conference on machine learning. PMLR, pp 20877–20890
35.
Zurück zum Zitat Reggia JA, Katz GE, Davis GP (2018) Humanoid cognitive robots that learn by imitating: implications for consciousness studies. Front Robot AI 5:1CrossRef Reggia JA, Katz GE, Davis GP (2018) Humanoid cognitive robots that learn by imitating: implications for consciousness studies. Front Robot AI 5:1CrossRef
36.
Zurück zum Zitat Duan Y, Andrychowicz M, Stadie B, Ho J, Schneider J, Sutskever I, Abbeel P, Zaremba W (2017) One-shot imitation learning. In: Proceedings of the 31st international conference on neural information processing systems, pp 1087–1098 Duan Y, Andrychowicz M, Stadie B, Ho J, Schneider J, Sutskever I, Abbeel P, Zaremba W (2017) One-shot imitation learning. In: Proceedings of the 31st international conference on neural information processing systems, pp 1087–1098
37.
Zurück zum Zitat Liu Y, Gupta A, Abbeel P, Levine S (2018) Imitation from observation: learning to imitate behaviors from raw video via context translation. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1118–1125 Liu Y, Gupta A, Abbeel P, Levine S (2018) Imitation from observation: learning to imitate behaviors from raw video via context translation. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1118–1125
38.
Zurück zum Zitat Bunel R, Hausknecht M, Devlin J, Singh R, Kohli P (2018) Leveraging grammar and reinforcement learning for neural program synthesis. arXiv:1805.04276 Bunel R, Hausknecht M, Devlin J, Singh R, Kohli P (2018) Leveraging grammar and reinforcement learning for neural program synthesis. arXiv:​1805.​04276
39.
Zurück zum Zitat Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489CrossRef Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489CrossRef
40.
Zurück zum Zitat Kalyan A, Mohta A, Polozov O, Batra D, Jain P, Gulwani S (2018) Neural-guided deductive search for real-time program synthesis from examples. arXiv:1804.01186 Kalyan A, Mohta A, Polozov O, Batra D, Jain P, Gulwani S (2018) Neural-guided deductive search for real-time program synthesis from examples. arXiv:​1804.​01186
41.
Zurück zum Zitat Davis GP, Katz GE, Gentili RJ, Reggia JA (2021) Compositional memory in attractor neural networks with one-step learning. Neural Netw 138:78–97CrossRef Davis GP, Katz GE, Gentili RJ, Reggia JA (2021) Compositional memory in attractor neural networks with one-step learning. Neural Netw 138:78–97CrossRef
42.
Zurück zum Zitat Katz GE, Davis GP, Gentili RJ, Reggia JA (2019) A programmable neural virtual machine based on a fast store-erase learning rule. Neural Netw 119:10–30CrossRef Katz GE, Davis GP, Gentili RJ, Reggia JA (2019) A programmable neural virtual machine based on a fast store-erase learning rule. Neural Netw 119:10–30CrossRef
43.
Zurück zum Zitat Sylvester J, Reggia J (2016) Engineering neural systems for high-level problem solving. Neural Netw 79:37–52CrossRef Sylvester J, Reggia J (2016) Engineering neural systems for high-level problem solving. Neural Netw 79:37–52CrossRef
44.
Zurück zum Zitat Davis GP, Katz GE, Gentili RJ, Reggia JA (2022) NeuroLISP: high-level symbolic programming with attractor neural networks. Neural Netw 146:200–219CrossRef Davis GP, Katz GE, Gentili RJ, Reggia JA (2022) NeuroLISP: high-level symbolic programming with attractor neural networks. Neural Netw 146:200–219CrossRef
45.
Zurück zum Zitat Katz GE, Akshay, Davis GP, Gentili RJ, Reggia JA (2021) Tunable neural encoding of a symbolic robotic manipulation algorithm. Front Neurorobot 167 Katz GE, Akshay, Davis GP, Gentili RJ, Reggia JA (2021) Tunable neural encoding of a symbolic robotic manipulation algorithm. Front Neurorobot 167
46.
Zurück zum Zitat Gentili RJ, Oh H, Huang D-W, Katz GE, Miller RH, Reggia JA (2015) A neural architecture for performing actual and mentally simulated movements during self-intended and observed bimanual arm reaching movements. Int J Soc Robot 7(3):371–392CrossRef Gentili RJ, Oh H, Huang D-W, Katz GE, Miller RH, Reggia JA (2015) A neural architecture for performing actual and mentally simulated movements during self-intended and observed bimanual arm reaching movements. Int J Soc Robot 7(3):371–392CrossRef
47.
Zurück zum Zitat Lawson AE (2000) How do humans acquire knowledge? and what does that imply about the nature of knowledge? Sci Educ 9(6):577–598CrossRef Lawson AE (2000) How do humans acquire knowledge? and what does that imply about the nature of knowledge? Sci Educ 9(6):577–598CrossRef
48.
Zurück zum Zitat Sprenger J (2011) Hypothetico-deductive confirmation. Philos Compass 6(7):497–508CrossRef Sprenger J (2011) Hypothetico-deductive confirmation. Philos Compass 6(7):497–508CrossRef
49.
Zurück zum Zitat Marcum JA (2012) An integrated model of clinical reasoning: dual-process theory of cognition and metacognition. J Eval Clin Pract 18(5):954–961CrossRef Marcum JA (2012) An integrated model of clinical reasoning: dual-process theory of cognition and metacognition. J Eval Clin Pract 18(5):954–961CrossRef
50.
Zurück zum Zitat Reggia JA, Peng Y (1987) Modeling diagnostic reasoning: a summary of parsimonious covering theory. Comput Methods Programs Biomed 25(2):125–134CrossRef Reggia JA, Peng Y (1987) Modeling diagnostic reasoning: a summary of parsimonious covering theory. Comput Methods Programs Biomed 25(2):125–134CrossRef
51.
Zurück zum Zitat Lawson AE (2000) The generality of hypothetico-deductive reasoning: making scientific thinking explicit. Am Biol Teach 62(7):482–495CrossRef Lawson AE (2000) The generality of hypothetico-deductive reasoning: making scientific thinking explicit. Am Biol Teach 62(7):482–495CrossRef
52.
Zurück zum Zitat Huang D-W, Katz G, Langsfeld J, Gentili R, Reggia J (2015) A virtual demonstrator environment for robot imitation learning. In: 2015 IEEE international conference on technologies for practical robot applications (TePRA). IEEE, pp 1–6 Huang D-W, Katz G, Langsfeld J, Gentili R, Reggia J (2015) A virtual demonstrator environment for robot imitation learning. In: 2015 IEEE international conference on technologies for practical robot applications (TePRA). IEEE, pp 1–6
53.
Zurück zum Zitat Erol K, Hendler JA, Nau DS (1994) UMCP: a sound and complete procedure for hierarchical task-network planning. Aips 94:249–254 Erol K, Hendler JA, Nau DS (1994) UMCP: a sound and complete procedure for hierarchical task-network planning. Aips 94:249–254
54.
Zurück zum Zitat Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ (2017) Building machines that learn and think like people. Behav Brain Sci 40 Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ (2017) Building machines that learn and think like people. Behav Brain Sci 40
55.
Zurück zum Zitat Hupkes D, Dankers V, Mul M, Bruni E (2020) Compositionality decomposed: How do neural networks generalise? J Artif Intell Res 67:757–795MathSciNetCrossRef Hupkes D, Dankers V, Mul M, Bruni E (2020) Compositionality decomposed: How do neural networks generalise? J Artif Intell Res 67:757–795MathSciNetCrossRef
56.
Zurück zum Zitat Lake B, Baroni M (2018) Generalization without systematicity: on the compositional skills of sequence-to-sequence recurrent networks. In: International conference on machine learning, pp 2873–2882 Lake B, Baroni M (2018) Generalization without systematicity: on the compositional skills of sequence-to-sequence recurrent networks. In: International conference on machine learning, pp 2873–2882
57.
Zurück zum Zitat Loula J, Baroni M, Lake B (2018) Rearranging the familiar: testing compositional generalization in recurrent networks. In: Proceedings of the 2018 EMNLP workshop BlackboxNLP: analyzing and interpreting neural networks for NLP, pp 108–114 Loula J, Baroni M, Lake B (2018) Rearranging the familiar: testing compositional generalization in recurrent networks. In: Proceedings of the 2018 EMNLP workshop BlackboxNLP: analyzing and interpreting neural networks for NLP, pp 108–114
58.
Zurück zum Zitat Reggia JA, Katz GE, Davis GP (2019) Modeling working memory to identify computational correlates of consciousness. Open Philos 2(1):252–269 Reggia JA, Katz GE, Davis GP (2019) Modeling working memory to identify computational correlates of consciousness. Open Philos 2(1):252–269
59.
Zurück zum Zitat Lea C, Flynn MD, Vidal R, Reiter A, Hager GD (2017) Temporal convolutional networks for action segmentation and detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 156–165 Lea C, Flynn MD, Vidal R, Reiter A, Hager GD (2017) Temporal convolutional networks for action segmentation and detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 156–165
60.
Zurück zum Zitat Farha YA, Gall J (2019) Ms-tcn: multi-stage temporal convolutional network for action segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3575–3584 Farha YA, Gall J (2019) Ms-tcn: multi-stage temporal convolutional network for action segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3575–3584
61.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. Adv Neural Inf Process Syst 27 Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. Adv Neural Inf Process Syst 27
Metadaten
Titel
NeuroCERIL: Robotic Imitation Learning via Hierarchical Cause-Effect Reasoning in Programmable Attractor Neural Networks
verfasst von
Gregory P. Davis
Garrett E. Katz
Rodolphe J. Gentili
James A. Reggia
Publikationsdatum
21.04.2023
Verlag
Springer Netherlands
Erschienen in
International Journal of Social Robotics / Ausgabe 8/2023
Print ISSN: 1875-4791
Elektronische ISSN: 1875-4805
DOI
https://doi.org/10.1007/s12369-023-00997-z

Weitere Artikel der Ausgabe 8/2023

International Journal of Social Robotics 8/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.