Skip to main content

2020 | OriginalPaper | Buchkapitel

Neurons and Plasticity: What Do Glial Cells Have to Do with This?

verfasst von : Nicolangelo Iannella, Michel Condemine

Erschienen in: Functional Brain Mapping: Methods and Aims

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It has long been the view that the neurons in the brain are responsible for its ability to process information from external cues and adapt accordingly. The key to this is the brain’s ability to change its internal structure in an activity-dependent manner over several timescales. Synapses are the key sites where changes, both structurally ad functionally, such take place. The neurons in the mammalian brain, however, only make up half the number of cells. The remaining cells are collectively called glial cells, a family of cells that are comprised of astrocytes, oligodendrocytes, ependymal cells and radial glia. Historically, these cells were believed to only support the maintenance and wellbeing of neurons, playing no role in information processing, however, over the last twenty years there is mounting evidence illustrating that this is not the case. Currently, experiments have shown that glial cells are directly involved in transmission and modulation of neurotransmitters, synaptic plasticity and have also been implicated in brain disorders, such as epilepsy. To this end, the traditional picture of a synapse being composed of a pre-synaptic terminal, a small extracellular gap and a post-synaptic spine needs revision to include both glial cell and extracellular matrix components. To this end, computational investigations of neural-glial signaling and their impact on synaptic plasticity and spiking neural network dynamics has been sorely lacking. It is the authors’ aspiration that this will inspire future researcher to investigate the complex interactions between neurons and glial cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rose CR, Konnerth A (2001) Stores not just for storage: intracellular calcium release and synaptic plasticity. Neuron 31:519–522CrossRefPubMed Rose CR, Konnerth A (2001) Stores not just for storage: intracellular calcium release and synaptic plasticity. Neuron 31:519–522CrossRefPubMed
2.
Zurück zum Zitat Zucker RS (1999) Calcium-and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9:305–313CrossRefPubMed Zucker RS (1999) Calcium-and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9:305–313CrossRefPubMed
3.
Zurück zum Zitat Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci 99:10831–10836CrossRefPubMedPubMedCentral Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci 99:10831–10836CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, Lent R, Herculano-Houzel S et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541CrossRefPubMed Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, Lent R, Herculano-Houzel S et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541CrossRefPubMed
5.
Zurück zum Zitat Snell RS (2010) Clinical neuroanatomy. Lippincott Williams & Wilkins Snell RS (2010) Clinical neuroanatomy. Lippincott Williams & Wilkins
6.
Zurück zum Zitat Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692CrossRefPubMed Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692CrossRefPubMed
7.
Zurück zum Zitat Bacci A, Verderio C, Pravettoni E, Matteoli M (1999) The role of glial cells in synaptic function. Philos Trans R Soc B: Biol Sci 354:403–409CrossRef Bacci A, Verderio C, Pravettoni E, Matteoli M (1999) The role of glial cells in synaptic function. Philos Trans R Soc B: Biol Sci 354:403–409CrossRef
8.
Zurück zum Zitat Kurosinski P, Götz J (2002) Glial cells under physiologic and pathologic conditions. Arch Neurol 59:1524–1528CrossRefPubMed Kurosinski P, Götz J (2002) Glial cells under physiologic and pathologic conditions. Arch Neurol 59:1524–1528CrossRefPubMed
9.
Zurück zum Zitat Verkhratsky A, Butt A (2013) Neuroglia: definition, classification, evolution, numbers, development. Glial Physiol Pathophysiol 73–104 Verkhratsky A, Butt A (2013) Neuroglia: definition, classification, evolution, numbers, development. Glial Physiol Pathophysiol 73–104
10.
Zurück zum Zitat Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology, Wiley Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology, Wiley
11.
Zurück zum Zitat Laming PR, Syková E (1998) Glial cells: their role in behaviour, Cambridge University Press Laming PR, Syková E (1998) Glial cells: their role in behaviour, Cambridge University Press
12.
Zurück zum Zitat Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192PubMedCentralPubMedCrossRef Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553CrossRefPubMed Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553CrossRefPubMed
15.
Zurück zum Zitat Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542–548CrossRefPubMed Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542–548CrossRefPubMed
16.
Zurück zum Zitat Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457:675–677CrossRefPubMed Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457:675–677CrossRefPubMed
17.
Zurück zum Zitat Spassky N, Merkle FT, Flames N, Tramontin AD, Garcı́a-Verdugo JM, Alvarez-Buylla A, (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18PubMedCentralPubMedCrossRef Spassky N, Merkle FT, Flames N, Tramontin AD, Garcı́a-Verdugo JM, Alvarez-Buylla A, (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Abney ER, Bartlett PP, Raff MC (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev Biol 83:301–310CrossRefPubMed Abney ER, Bartlett PP, Raff MC (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev Biol 83:301–310CrossRefPubMed
19.
Zurück zum Zitat Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90:435–447PubMedCentralPubMedCrossRef Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90:435–447PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30CrossRefPubMed Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30CrossRefPubMed
21.
Zurück zum Zitat Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890CrossRefPubMed Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890CrossRefPubMed
22.
Zurück zum Zitat Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retinal Eye Res 25:397–424CrossRef Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retinal Eye Res 25:397–424CrossRef
23.
Zurück zum Zitat Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840CrossRefPubMed Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840CrossRefPubMed
24.
Zurück zum Zitat Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483CrossRefPubMed Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483CrossRefPubMed
25.
Zurück zum Zitat Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440CrossRefPubMed Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440CrossRefPubMed
26.
Zurück zum Zitat Kettenmann H, Verkhratsky A (2011) Neuroglia, der lebende Nervenkitt. Fortschritte der Neurologie\textperiodcentered Psychiatrie 79: 588–597 Kettenmann H, Verkhratsky A (2011) Neuroglia, der lebende Nervenkitt. Fortschritte der Neurologie\textperiodcentered Psychiatrie 79: 588–597
27.
Zurück zum Zitat Grosche J, Matyash V, Möller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143CrossRefPubMed Grosche J, Matyash V, Möller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143CrossRefPubMed
29.
Zurück zum Zitat Eroglu C, Barres BA, Stevens B (2008) Glia as active participants in the development and function of synapses. In: Structural and functional organization of the synapse. Springer, pp 683–714 Eroglu C, Barres BA, Stevens B (2008) Glia as active participants in the development and function of synapses. In: Structural and functional organization of the synapse. Springer, pp 683–714
30.
31.
32.
Zurück zum Zitat Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99PubMedCrossRef Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99PubMedCrossRef
33.
Zurück zum Zitat Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440PubMedCrossRef Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440PubMedCrossRef
34.
Zurück zum Zitat Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K+ channel, Kir4. 1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol-Cell Physiol 281:C922–C931PubMedCrossRef Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K+ channel, Kir4. 1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol-Cell Physiol 281:C922–C931PubMedCrossRef
35.
Zurück zum Zitat Hille B et al (2001) Ion channels of excitable membranes, vol 507. Sinauer Sunderland, MA Hille B et al (2001) Ion channels of excitable membranes, vol 507. Sinauer Sunderland, MA
37.
Zurück zum Zitat Figley CR, Stroman PW (2011) The role (s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33:577–588PubMedCrossRef Figley CR, Stroman PW (2011) The role (s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33:577–588PubMedCrossRef
38.
Zurück zum Zitat Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749PubMedCentralPubMedCrossRef Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832PubMedCentralPubMedCrossRef Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53PubMedCrossRef Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53PubMedCrossRef
42.
Zurück zum Zitat Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2000) Principles of neural science, vol 4. McGraw-hill, New York Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2000) Principles of neural science, vol 4. McGraw-hill, New York
43.
Zurück zum Zitat Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927PubMedCrossRef Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927PubMedCrossRef
44.
Zurück zum Zitat Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34PubMedCrossRef Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34PubMedCrossRef
45.
Zurück zum Zitat Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312PubMedCrossRef Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312PubMedCrossRef
46.
Zurück zum Zitat Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83PubMedCrossRef Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83PubMedCrossRef
47.
Zurück zum Zitat Rakic P (1988) Specification of cerebral cortical areas. Sci 241:170–176CrossRef Rakic P (1988) Specification of cerebral cortical areas. Sci 241:170–176CrossRef
49.
Zurück zum Zitat Doetsch F, Caille I, Lim DA, Garcı́a-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716 Doetsch F, Caille I, Lim DA, Garcı́a-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716
51.
Zurück zum Zitat Rash BG, Lim HD, Breunig JJ, Vaccarino FM (2011) FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J Neurosci 31:15604–15617PubMedCentralPubMedCrossRef Rash BG, Lim HD, Breunig JJ, Vaccarino FM (2011) FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J Neurosci 31:15604–15617PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM (2013) Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci 33:10802–10814PubMedCentralPubMedCrossRef Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM (2013) Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci 33:10802–10814PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Reuss B, Unsicker K (2005) Neuroglia. In: Kettenmann H, Ransom BR (eds). Oxford University Press, New York Reuss B, Unsicker K (2005) Neuroglia. In: Kettenmann H, Ransom BR (eds). Oxford University Press, New York
55.
56.
Zurück zum Zitat Perea G, Araque A (2005a) Glial calcium signaling and neuron–glia communication. Cell Calcium 38:375–382PubMedCrossRef Perea G, Araque A (2005a) Glial calcium signaling and neuron–glia communication. Cell Calcium 38:375–382PubMedCrossRef
57.
Zurück zum Zitat Paixão S, Klein R (2010) Neuron–astrocyte communication and synaptic plasticity. Curr Opin Neurobiol 20:466–473PubMedCrossRef Paixão S, Klein R (2010) Neuron–astrocyte communication and synaptic plasticity. Curr Opin Neurobiol 20:466–473PubMedCrossRef
58.
Zurück zum Zitat Auld DS, Robitaille R (2003) Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron 40:389–400PubMedCrossRef Auld DS, Robitaille R (2003) Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron 40:389–400PubMedCrossRef
59.
Zurück zum Zitat Kettenmann H, Verkhratsky A et al (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653PubMedCrossRef Kettenmann H, Verkhratsky A et al (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653PubMedCrossRef
60.
Zurück zum Zitat Achour SB, Pascual O (2012) Astrocyte–neuron communication: functional consequences. Neurochem Res 37:2464–2473PubMedCrossRef Achour SB, Pascual O (2012) Astrocyte–neuron communication: functional consequences. Neurochem Res 37:2464–2473PubMedCrossRef
61.
Zurück zum Zitat Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830PubMedCentralPubMedCrossRef Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Pfrieger FW (2010) Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 63:39–46PubMedCrossRef Pfrieger FW (2010) Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 63:39–46PubMedCrossRef
63.
Zurück zum Zitat Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215PubMedCrossRef Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215PubMedCrossRef
64.
Zurück zum Zitat Perea G, Araque A (2005b) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203PubMedCentralPubMedCrossRef Perea G, Araque A (2005b) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Witcher MR, Kirov SA, Harris KM (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55:13–23PubMedCrossRef Witcher MR, Kirov SA, Harris KM (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55:13–23PubMedCrossRef
66.
Zurück zum Zitat Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141PubMedCrossRef Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141PubMedCrossRef
67.
Zurück zum Zitat Bolton MM, Eroglu C (2009) Look who is weaving the neural web: glial control of synapse formation. Curr Opin Neurobiol 19:491–497PubMedCrossRef Bolton MM, Eroglu C (2009) Look who is weaving the neural web: glial control of synapse formation. Curr Opin Neurobiol 19:491–497PubMedCrossRef
68.
Zurück zum Zitat Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813PubMedCrossRef Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813PubMedCrossRef
69.
Zurück zum Zitat Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823PubMedCrossRef Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823PubMedCrossRef
70.
Zurück zum Zitat Amiri M, Montaseri G, Bahrami F (2011) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105:153–166CrossRefPubMed Amiri M, Montaseri G, Bahrami F (2011) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105:153–166CrossRefPubMed
71.
Zurück zum Zitat Amiri M, Bahrami F, Janahmadi M (2012) Modified thalamocortical model: A step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33:285–299PubMedCrossRef Amiri M, Bahrami F, Janahmadi M (2012) Modified thalamocortical model: A step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33:285–299PubMedCrossRef
72.
Zurück zum Zitat Postnov DE, Brazhe NA, Sosnovtseva OV (2012) Functional modeling of neural-glial interaction. In: Biosimulation in biomedical research, health care and drug development. Springer, pp 133–151 Postnov DE, Brazhe NA, Sosnovtseva OV (2012) Functional modeling of neural-glial interaction. In: Biosimulation in biomedical research, health care and drug development. Springer, pp 133–151
73.
Zurück zum Zitat Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J Biol Phys 35:425–445PubMedCentralPubMedCrossRef Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J Biol Phys 35:425–445PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Kell DB, Oliver SG (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26:99–105PubMedCrossRef Kell DB, Oliver SG (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26:99–105PubMedCrossRef
75.
Zurück zum Zitat Postnov DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural–glial interaction. BioSystems 89:84–91PubMedCrossRef Postnov DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural–glial interaction. BioSystems 89:84–91PubMedCrossRef
76.
Zurück zum Zitat Postnov DE, Ryazanova LS, Brazhe NA, Brazhe AR, Maximov GV, Mosekilde E, Sosnovtseva OV (2008) Giant glial cell: New insight through mechanism-based modeling. J Biol Phys 34:441–457PubMedCentralPubMedCrossRef Postnov DE, Ryazanova LS, Brazhe NA, Brazhe AR, Maximov GV, Mosekilde E, Sosnovtseva OV (2008) Giant glial cell: New insight through mechanism-based modeling. J Biol Phys 34:441–457PubMedCentralPubMedCrossRef
77.
Zurück zum Zitat Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013) Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34:489–504PubMedCrossRef Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013) Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34:489–504PubMedCrossRef
78.
Zurück zum Zitat De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural plasticity 2016 De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural plasticity 2016
79.
Zurück zum Zitat De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98 De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98
80.
Zurück zum Zitat Fellin T, Ellenbogen JM, De Pittà M, Ben-Jacob E, Halassa MM (2012) Astrocyte regulation of sleep circuits: experimental and modeling perspectives. Front Comput Neurosci 6:65 Fellin T, Ellenbogen JM, De Pittà M, Ben-Jacob E, Halassa MM (2012) Astrocyte regulation of sleep circuits: experimental and modeling perspectives. Front Comput Neurosci 6:65
81.
Zurück zum Zitat Gordleeva SY, Stasenko SV, Semyanov AV, Dityatev AE, Kazantsev VB (2012) Bi-directional astrocytic regulation of neuronal activity within a network. Front Comput Neurosci 6:92 Gordleeva SY, Stasenko SV, Semyanov AV, Dityatev AE, Kazantsev VB (2012) Bi-directional astrocytic regulation of neuronal activity within a network. Front Comput Neurosci 6:92
82.
Zurück zum Zitat Tewari SG, Majumdar KK (2012) A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. J Biol Phys 38:465–496 Tewari SG, Majumdar KK (2012) A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. J Biol Phys 38:465–496
83.
Zurück zum Zitat Nadkarni S, Jung P (2004) Dressed neurons: modeling neural–glial interactions. Phys Biol 1:35CrossRefPubMed Nadkarni S, Jung P (2004) Dressed neurons: modeling neural–glial interactions. Phys Biol 1:35CrossRefPubMed
84.
Zurück zum Zitat Nadkarni S, Jung P (2005) Synaptic inhibition and pathologic hyperexcitability through enhanced neuron-astrocyte interaction: a modeling study. J Integr Neurosci 4:207–226CrossRefPubMed Nadkarni S, Jung P (2005) Synaptic inhibition and pathologic hyperexcitability through enhanced neuron-astrocyte interaction: a modeling study. J Integr Neurosci 4:207–226CrossRefPubMed
85.
Zurück zum Zitat Nadkarni S, Jung P (2007) Modeling synaptic transmission of the tripartite synapse. Phys Biol 4:1CrossRefPubMed Nadkarni S, Jung P (2007) Modeling synaptic transmission of the tripartite synapse. Phys Biol 4:1CrossRefPubMed
86.
Zurück zum Zitat Izhikevich EM et al (2003) Simple model of spiking neurons. IEEE Trans Neural Networks 14:1569–1572CrossRefPubMed Izhikevich EM et al (2003) Simple model of spiking neurons. IEEE Trans Neural Networks 14:1569–1572CrossRefPubMed
87.
Zurück zum Zitat Reato D, Cammarota M, Parra LC, Carmignoto G (2012) Computational model of neuron-astrocyte interactions during focal seizure generation. Frontiers Comput Neurosci 6 Reato D, Cammarota M, Parra LC, Carmignoto G (2012) Computational model of neuron-astrocyte interactions during focal seizure generation. Frontiers Comput Neurosci 6
88.
Zurück zum Zitat Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455CrossRefPubMed Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455CrossRefPubMed
89.
Zurück zum Zitat Kawabata S, Tsutsumi R, Kohara A, Yamaguchi T, Nakanishi S, Okada M (1996) Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature 383:88–92CrossRef Kawabata S, Tsutsumi R, Kohara A, Yamaguchi T, Nakanishi S, Okada M (1996) Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature 383:88–92CrossRef
90.
Zurück zum Zitat Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–236PubMedCentralPubMedCrossRef Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–236PubMedCentralPubMedCrossRef
91.
Zurück zum Zitat Gordon GRJ, Iremonger KJ, Kantevari S, Ellis-Davies GCR, MacVicar BA, Bains JS (2009) Astrocyte mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:391PubMedCentralPubMedCrossRef Gordon GRJ, Iremonger KJ, Kantevari S, Ellis-Davies GCR, MacVicar BA, Bains JS (2009) Astrocyte mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:391PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul J-Y, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116CrossRefPubMed Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul J-Y, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116CrossRefPubMed
93.
Zurück zum Zitat Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-α. Nature 440:1054–1059CrossRefPubMed Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-α. Nature 440:1054–1059CrossRefPubMed
94.
Zurück zum Zitat Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680PubMedCentralPubMedCrossRef Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680PubMedCentralPubMedCrossRef
95.
Zurück zum Zitat Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFα. Science 295:2282–2285CrossRefPubMed Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFα. Science 295:2282–2285CrossRefPubMed
96.
Zurück zum Zitat Chiu C-S, Brickley S, Jensen K, Southwell A, Mckinney S, Cull-Candy S, Mody I, Lester HA (2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 25:3234–3245PubMedCentralPubMedCrossRef Chiu C-S, Brickley S, Jensen K, Southwell A, Mckinney S, Cull-Candy S, Mody I, Lester HA (2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 25:3234–3245PubMedCentralPubMedCrossRef
97.
Zurück zum Zitat Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA, Group MGD et al (2008) The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res 36: D724–D728 Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA, Group MGD et al (2008) The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res 36: D724–D728
98.
Zurück zum Zitat Doengi M, Hirnet D, Coulon P, Pape H-C, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca2+ signaling in developing olfactory bulb astrocytes. Proc Natl Acad Sci 106:17570–17575CrossRefPubMedPubMedCentral Doengi M, Hirnet D, Coulon P, Pape H-C, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca2+ signaling in developing olfactory bulb astrocytes. Proc Natl Acad Sci 106:17570–17575CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Gomeza J, Hülsmann S, Ohno K, Eulenburg V, Szöke K, Richter D, Betz H (2003) Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40:785–796CrossRefPubMed Gomeza J, Hülsmann S, Ohno K, Eulenburg V, Szöke K, Richter D, Betz H (2003) Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40:785–796CrossRefPubMed
100.
Zurück zum Zitat Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T et al (2009) Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12:1285–1292PubMedCentralPubMedCrossRef Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T et al (2009) Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12:1285–1292PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci 106:12524–12529CrossRefPubMedPubMedCentral Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci 106:12524–12529CrossRefPubMedPubMedCentral
102.
Zurück zum Zitat Klein R (2009) Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 12:15–20CrossRefPubMed Klein R (2009) Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 12:15–20CrossRefPubMed
103.
Zurück zum Zitat Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F (2009) Up-regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses. J Physiol 587:4575–4588PubMedCentralPubMedCrossRef Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F (2009) Up-regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses. J Physiol 587:4575–4588PubMedCentralPubMedCrossRef
104.
Zurück zum Zitat Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Hoberg MD, Vidensky S, Chung DS et al (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nat 433:73–77CrossRef Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Hoberg MD, Vidensky S, Chung DS et al (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nat 433:73–77CrossRef
105.
Zurück zum Zitat Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658CrossRefPubMed Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658CrossRefPubMed
106.
Zurück zum Zitat Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nat 420:788–794CrossRef Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nat 420:788–794CrossRef
107.
Zurück zum Zitat Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433CrossRefPubMed Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433CrossRefPubMed
108.
Zurück zum Zitat Meyer-Franke A, Kaplan MR, Pfieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–819CrossRefPubMed Meyer-Franke A, Kaplan MR, Pfieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–819CrossRefPubMed
109.
Zurück zum Zitat Elmariah SB, Hughes EG, Oh EJ, Balice-Gordon RJ (2004) Neurotrophin signaling among neurons and glia during formation of tripartite synapses. Neuron Glia biol 1:339–349CrossRef Elmariah SB, Hughes EG, Oh EJ, Balice-Gordon RJ (2004) Neurotrophin signaling among neurons and glia during formation of tripartite synapses. Neuron Glia biol 1:339–349CrossRef
110.
Zurück zum Zitat Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Özkan E, Chakraborty C, Mulinyawe SB, Annis DS, Huberman AD et al (2009) Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–392PubMedCentralPubMedCrossRef Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Özkan E, Chakraborty C, Mulinyawe SB, Annis DS, Huberman AD et al (2009) Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–392PubMedCentralPubMedCrossRef
111.
Zurück zum Zitat Xu J, Xiao N, Xia J (2010) Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat Neurosci 13:22–24PubMedCrossRef Xu J, Xiao N, Xia J (2010) Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat Neurosci 13:22–24PubMedCrossRef
112.
Zurück zum Zitat Goritz C, Mauch DH, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 29:190–201PubMedCrossRef Goritz C, Mauch DH, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 29:190–201PubMedCrossRef
113.
Zurück zum Zitat Mauch DH, Nägler K, Schumacher S, Göritz C, Müller E-C, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Sci 294:1354–1357CrossRef Mauch DH, Nägler K, Schumacher S, Göritz C, Müller E-C, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Sci 294:1354–1357CrossRef
114.
Zurück zum Zitat Garcia O, Torres M, Helguera P, Coskun P, Busciglio J (2010) A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. PLoS ONE 5:e14200PubMedCentralPubMedCrossRef Garcia O, Torres M, Helguera P, Coskun P, Busciglio J (2010) A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. PLoS ONE 5:e14200PubMedCentralPubMedCrossRef
115.
Zurück zum Zitat Pacey LKK, Doering LC (2007) Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome. Glia 55:1601–1609PubMedCrossRef Pacey LKK, Doering LC (2007) Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome. Glia 55:1601–1609PubMedCrossRef
117.
Zurück zum Zitat Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437CrossRefPubMed Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437CrossRefPubMed
118.
Zurück zum Zitat Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Sci 320:1224–1229CrossRef Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Sci 320:1224–1229CrossRef
120.
121.
Zurück zum Zitat Annegers JF, Hauser WA, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injuries. N Engl J Med 338:20–24CrossRefPubMed Annegers JF, Hauser WA, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injuries. N Engl J Med 338:20–24CrossRefPubMed
122.
Zurück zum Zitat DeLorenzo RJ, Sun DA, Deshpande LS (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 105:229–266CrossRefPubMed DeLorenzo RJ, Sun DA, Deshpande LS (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 105:229–266CrossRefPubMed
123.
Zurück zum Zitat Bhalla D, Godet B, Druet-Cabanac M, Preux P-M (2011) Etiologies of epilepsy: a comprehensive review. Expert Rev Neurother 11:861–876CrossRefPubMed Bhalla D, Godet B, Druet-Cabanac M, Preux P-M (2011) Etiologies of epilepsy: a comprehensive review. Expert Rev Neurother 11:861–876CrossRefPubMed
125.
Zurück zum Zitat Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada K, Gutmann DH (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296CrossRefPubMed Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada K, Gutmann DH (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296CrossRefPubMed
127.
Zurück zum Zitat Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Sci 276:1699–1702CrossRef Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Sci 276:1699–1702CrossRef
128.
Zurück zum Zitat Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40CrossRefPubMed Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40CrossRefPubMed
129.
Zurück zum Zitat Janzer RC, Raff MC (1987) Astrocytes induce blood–brain barrier properties in endothelial cells. Nat 325:253–257CrossRef Janzer RC, Raff MC (1987) Astrocytes induce blood–brain barrier properties in endothelial cells. Nat 325:253–257CrossRef
130.
Zurück zum Zitat Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53CrossRefPubMed Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53CrossRefPubMed
131.
Zurück zum Zitat Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185PubMedCrossRef Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185PubMedCrossRef
132.
Zurück zum Zitat Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13PubMedCrossRef Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13PubMedCrossRef
133.
Zurück zum Zitat Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of parkinsonism—chronic treatment with L-dopa. N Engl J Med 280:337–345PubMedCrossRef Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of parkinsonism—chronic treatment with L-dopa. N Engl J Med 280:337–345PubMedCrossRef
134.
Zurück zum Zitat Barbeau A (1969) L-dopa therapy in Parkinson’s disease: a critical review of nine years’ experience. Can Med Assoc J 101:59PubMedCentralPubMed Barbeau A (1969) L-dopa therapy in Parkinson’s disease: a critical review of nine years’ experience. Can Med Assoc J 101:59PubMedCentralPubMed
135.
Zurück zum Zitat Fahn S (1986) Recent developments in Parkinson’s disease. Raven Pr Fahn S (1986) Recent developments in Parkinson’s disease. Raven Pr
136.
Zurück zum Zitat Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771PubMedCentralPubMedCrossRef Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771PubMedCentralPubMedCrossRef
137.
Zurück zum Zitat Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228PubMedCrossRef Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228PubMedCrossRef
138.
Zurück zum Zitat McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483PubMedCrossRef McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483PubMedCrossRef
139.
Zurück zum Zitat Hunot S, Bernard V, Faucheux B, Boissiere F, Leguern E, Brana C, Gautris PP, Guerin J, Bloch B, Agid Y et al (1996) Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J Neural Trans 103:1043–1052CrossRef Hunot S, Bernard V, Faucheux B, Boissiere F, Leguern E, Brana C, Gautris PP, Guerin J, Bloch B, Agid Y et al (1996) Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J Neural Trans 103:1043–1052CrossRef
140.
Zurück zum Zitat Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355PubMedCrossRef Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355PubMedCrossRef
141.
Zurück zum Zitat Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. Ann Neurol 32:S82–S87PubMedCrossRef Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. Ann Neurol 32:S82–S87PubMedCrossRef
143.
144.
Zurück zum Zitat Kastner A, Anglade P, Bounaix C, Damier P, Javoy-Agid F, Bromet N, Agid Y, Hirsch EC (1994) Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neurosci 62:449–457CrossRef Kastner A, Anglade P, Bounaix C, Damier P, Javoy-Agid F, Bromet N, Agid Y, Hirsch EC (1994) Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neurosci 62:449–457CrossRef
145.
Zurück zum Zitat Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with parkinson’s disease. Histol Histopathol 12:25–32PubMed Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with parkinson’s disease. Histol Histopathol 12:25–32PubMed
146.
Zurück zum Zitat Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994) Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150PubMedCrossRef Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994) Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150PubMedCrossRef
147.
Zurück zum Zitat Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210PubMedCrossRef Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210PubMedCrossRef
148.
Zurück zum Zitat Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211:13–16PubMedCrossRef Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211:13–16PubMedCrossRef
149.
Zurück zum Zitat McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine administration. Ann Neurol 54:599–604PubMedCrossRef McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine administration. Ann Neurol 54:599–604PubMedCrossRef
150.
Zurück zum Zitat Dugas B, Mossalayi MD, Damais C, Kolb J-P (1995) Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol Today 16:574–580PubMedCrossRef Dugas B, Mossalayi MD, Damais C, Kolb J-P (1995) Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol Today 16:574–580PubMedCrossRef
151.
Zurück zum Zitat Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90:1977–1981PubMedCrossRefPubMedCentral Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90:1977–1981PubMedCrossRefPubMedCentral
152.
Zurück zum Zitat Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the alzheimer locus. Sci 235: 880–884 Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the alzheimer locus. Sci 235: 880–884
153.
Zurück zum Zitat Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Sci 297:353–356CrossRef Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Sci 297:353–356CrossRef
154.
Zurück zum Zitat Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Causative and susceptibility genes for alzheimer’s disease: a review. Brain Res Bull 61:1–24PubMedCrossRef Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Causative and susceptibility genes for alzheimer’s disease: a review. Brain Res Bull 61:1–24PubMedCrossRef
155.
Zurück zum Zitat Roßner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR (2005) Alzheimer’s disease β-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 92:226–234PubMedCrossRef Roßner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR (2005) Alzheimer’s disease β-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 92:226–234PubMedCrossRef
156.
Zurück zum Zitat Heneka MT, O’Banion MK (2007) Inflammatory processes in alzheimer’s disease. J Neuroimmunol 184:69–91PubMedCrossRef Heneka MT, O’Banion MK (2007) Inflammatory processes in alzheimer’s disease. J Neuroimmunol 184:69–91PubMedCrossRef
157.
Zurück zum Zitat Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nat 374:647–650CrossRef Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nat 374:647–650CrossRef
158.
Zurück zum Zitat Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Aβ and its associated proteins. Neurobiol Aging 22:885–893PubMedCrossRef Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Aβ and its associated proteins. Neurobiol Aging 22:885–893PubMedCrossRef
159.
Zurück zum Zitat Deane R, Wu Z, Zlokovic BV (2004) RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood–brain barrier. Stroke 35:2628–2631PubMedCrossRef Deane R, Wu Z, Zlokovic BV (2004) RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood–brain barrier. Stroke 35:2628–2631PubMedCrossRef
160.
Zurück zum Zitat Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of alzheimer’s disease. J Cell Mol Med 12:762–780PubMedCentralPubMedCrossRef Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of alzheimer’s disease. J Cell Mol Med 12:762–780PubMedCentralPubMedCrossRef
161.
162.
Zurück zum Zitat Mattson MP, Chan SL (2003b) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397CrossRefPubMed Mattson MP, Chan SL (2003b) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397CrossRefPubMed
Metadaten
Titel
Neurons and Plasticity: What Do Glial Cells Have to Do with This?
verfasst von
Nicolangelo Iannella
Michel Condemine
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6883-1_2