Skip to main content
Erschienen in: Wireless Networks 6/2019

15.02.2019

New dual-game-based cooperative bandwidth control scheme for ultra-dense networks

verfasst von: Sungwook Kim

Erschienen in: Wireless Networks | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Future 5G cellular networks are being designed to address the explosive traffic growth of mobile users. In emerging new wireless system paradigms, the ultra-dense network (UDN) is considered to be one of the key technologies for potentially achieving the next generation network capacity. For UDN operations, the main challenge is to design efficient bandwidth resource allocation algorithms while considering quality-of-service provisioning. In this paper, we present an intelligent UDN bandwidth control scheme using efficient and innovative methodologies. Based on the basic ideas of cooperative game theory, the proposed scheme can adaptively assign the limited bandwidth resource for each small cell operator. By employing two different game solutions, the proposed approach is designed as a novel dual-game model. First, individual cell operators estimate their bandwidth requirements according to the iterative Nash bargaining solution. Then, limited bandwidth is distributed to each cell operator based on the τ-value. To reduce the computation complexity, the proposed algorithms are hierarchically implemented with cascade interactions. Through simulation results, we confirm that system throughput, bandwidth utilization, and load balancing among the cells can be improved with the proposed approach compared to the existing schemes. Finally, we propose further challenges and opportunities in the research area of UDN operations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, M., & Hao, Y. (2018). Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications, 36(3), 587–597.MathSciNetCrossRef Chen, M., & Hao, Y. (2018). Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications, 36(3), 587–597.MathSciNetCrossRef
3.
Zurück zum Zitat Shi, Y., Zhang, J., Chen, W., & Letaief, K. B. (2018). Generalized sparse and low-rank optimization for ultra-dense networks. IEEE Communications Magazine, 56(6), 42–48.CrossRef Shi, Y., Zhang, J., Chen, W., & Letaief, K. B. (2018). Generalized sparse and low-rank optimization for ultra-dense networks. IEEE Communications Magazine, 56(6), 42–48.CrossRef
4.
Zurück zum Zitat Kamel, M., Hamouda, W., & Youssef, A. (2016). Ultra-dense networks: a survey. IEEE Communications Surveys & Tutorials, 18(4), 2522–2545.CrossRef Kamel, M., Hamouda, W., & Youssef, A. (2016). Ultra-dense networks: a survey. IEEE Communications Surveys & Tutorials, 18(4), 2522–2545.CrossRef
5.
Zurück zum Zitat Marabissi, D., Bartoli, G., Fantacci, R., & Micciullo, L. (2018). Energy efficient cooperative multicast beamforming in ultra dense networks. IET Communications, 12(5), 573–578.CrossRef Marabissi, D., Bartoli, G., Fantacci, R., & Micciullo, L. (2018). Energy efficient cooperative multicast beamforming in ultra dense networks. IET Communications, 12(5), 573–578.CrossRef
6.
Zurück zum Zitat Uno, K. K. S., & Kim, M. (2010). Adaptive QoS mechanism for wireless mobile network. JCSE, 4(2), 153–172.CrossRef Uno, K. K. S., & Kim, M. (2010). Adaptive QoS mechanism for wireless mobile network. JCSE, 4(2), 153–172.CrossRef
7.
Zurück zum Zitat Pande, A., Ramamurthi, V., & Mohapatra, P. (2013). Quality-oriented video delivery over LTE. JCSE, 7(3), 168–176.CrossRef Pande, A., Ramamurthi, V., & Mohapatra, P. (2013). Quality-oriented video delivery over LTE. JCSE, 7(3), 168–176.CrossRef
8.
Zurück zum Zitat Jang, I., Pyeon, D., Kim, S., & Yoon, H. (2013). A survey on communication protocols for wireless sensor networks. JCSE, 7(4), 231–241.CrossRef Jang, I., Pyeon, D., Kim, S., & Yoon, H. (2013). A survey on communication protocols for wireless sensor networks. JCSE, 7(4), 231–241.CrossRef
9.
Zurück zum Zitat Guanding, Yu., Liu, R., Chen, Q., & Tang, Z. (2018). A hierarchical SDN architecture for ultra-dense millimeter-wave cellular networks. IEEE Communications Magazine, 56(6), 79–85.CrossRef Guanding, Yu., Liu, R., Chen, Q., & Tang, Z. (2018). A hierarchical SDN architecture for ultra-dense millimeter-wave cellular networks. IEEE Communications Magazine, 56(6), 79–85.CrossRef
10.
Zurück zum Zitat Rizvi, S., Karpinski, K., & Razaque, A. (2015). Novel architecture of self-organized mobile wireless sensor networks. JCSE, 9(4), 163–176.CrossRef Rizvi, S., Karpinski, K., & Razaque, A. (2015). Novel architecture of self-organized mobile wireless sensor networks. JCSE, 9(4), 163–176.CrossRef
11.
Zurück zum Zitat Kim, S. (2014). Game theory applications in network design. Hershey, PA: IGI Global.CrossRef Kim, S. (2014). Game theory applications in network design. Hershey, PA: IGI Global.CrossRef
12.
Zurück zum Zitat Zhang, H., Huang, S., Jiang, C., Long, K., Leung, Victor C. M., & Vincent Poor, H. (2017). Energy efficient user association and power allocation in millimeter wave based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRef Zhang, H., Huang, S., Jiang, C., Long, K., Leung, Victor C. M., & Vincent Poor, H. (2017). Energy efficient user association and power allocation in millimeter wave based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRef
13.
Zurück zum Zitat Zhang, H., Dong, Y., Julian Cheng, M., Hossain, J., & Leung, Victor C. M. (2016). Fronthauling for 5G LTE-U ultra dense cloud small cell networks. IEEE Wireless Communications, 23(6), 48–53.CrossRef Zhang, H., Dong, Y., Julian Cheng, M., Hossain, J., & Leung, Victor C. M. (2016). Fronthauling for 5G LTE-U ultra dense cloud small cell networks. IEEE Wireless Communications, 23(6), 48–53.CrossRef
14.
Zurück zum Zitat Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, Tony Q. S. (2015). Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3481–3493.CrossRef Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, Tony Q. S. (2015). Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3481–3493.CrossRef
15.
Zurück zum Zitat Qiu, J., Ding, G., Qihui, W., Qian, Z., Tsiftsis, T. A., Zhiyong, D., et al. (2016). Hierarchical resource allocation framework for hyper-dense small cell networks. IEEE Access, 4, 8657–8669.CrossRef Qiu, J., Ding, G., Qihui, W., Qian, Z., Tsiftsis, T. A., Zhiyong, D., et al. (2016). Hierarchical resource allocation framework for hyper-dense small cell networks. IEEE Access, 4, 8657–8669.CrossRef
16.
Zurück zum Zitat Li, W., & Zhang, J. (2018). Cluster-based resource allocation scheme with QoS guarantee in ultra-dense networks. IET Communications, 12(7), 861–867.CrossRef Li, W., & Zhang, J. (2018). Cluster-based resource allocation scheme with QoS guarantee in ultra-dense networks. IET Communications, 12(7), 861–867.CrossRef
17.
Zurück zum Zitat Liu, Y., Wang, Y., Zhang, Y., Sun, R., & Jiang, L. (2016). Game-theoretic hierarchical resource allocation in ultra-dense networks. In IEEE PIMRC’2016 (pp. 1–6). Liu, Y., Wang, Y., Zhang, Y., Sun, R., & Jiang, L. (2016). Game-theoretic hierarchical resource allocation in ultra-dense networks. In IEEE PIMRC’2016 (pp. 1–6).
19.
Zurück zum Zitat Yanovskaya, E. B. (2010). The nucleolus and the τ-value of interval games. Contributions to Game Theory and Management, 3, 421–430.MathSciNetMATH Yanovskaya, E. B. (2010). The nucleolus and the τ-value of interval games. Contributions to Game Theory and Management, 3, 421–430.MathSciNetMATH
20.
21.
Zurück zum Zitat Kim, J. Y., Bang, I., Sung, D. K., Yi, Y., & Kim, B.-H. (2015). Design of a multi-variable QoE function based on the remaining battery energy. In IEEE PIMRC’2015 (pp. 976–980). Kim, J. Y., Bang, I., Sung, D. K., Yi, Y., & Kim, B.-H. (2015). Design of a multi-variable QoE function based on the remaining battery energy. In IEEE PIMRC’2015 (pp. 976–980).
22.
Zurück zum Zitat Benkacem, I., Taleb, T., Bagaa, M., & Flinck, H. (2018). Optimal VNFs placement in CDN slicing over multi-cloud environment. IEEE Journal on Selected Areas in Communications, 36(3), 616–627.CrossRef Benkacem, I., Taleb, T., Bagaa, M., & Flinck, H. (2018). Optimal VNFs placement in CDN slicing over multi-cloud environment. IEEE Journal on Selected Areas in Communications, 36(3), 616–627.CrossRef
23.
Zurück zum Zitat Branzei, R., Dimitrov, D., & Tijs, S. (2005). Models in cooperative game theory: crisp, fuzzy and multichoice games. Berlin: Springer.MATH Branzei, R., Dimitrov, D., & Tijs, S. (2005). Models in cooperative game theory: crisp, fuzzy and multichoice games. Berlin: Springer.MATH
24.
Zurück zum Zitat Jia, Y., Tian, H., Fan, S., Zhao, P., & Zhao, K. (2018). Bankruptcy game based resource allocation algorithm for 5G Cloud-RAN slicing. In IEEE WCNC’2018 (pp. 1–6). Jia, Y., Tian, H., Fan, S., Zhao, P., & Zhao, K. (2018). Bankruptcy game based resource allocation algorithm for 5G Cloud-RAN slicing. In IEEE WCNC’2018 (pp. 1–6).
25.
Zurück zum Zitat Niyato, D., & Hossain, E. (2006). A cooperative game framework for bandwidth allocation in 4G heterogeneous wireless networks. In IEEE international conference on communications (pp. 4357–4362). Niyato, D., & Hossain, E. (2006). A cooperative game framework for bandwidth allocation in 4G heterogeneous wireless networks. In IEEE international conference on communications (pp. 4357–4362).
Metadaten
Titel
New dual-game-based cooperative bandwidth control scheme for ultra-dense networks
verfasst von
Sungwook Kim
Publikationsdatum
15.02.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-01961-4

Weitere Artikel der Ausgabe 6/2019

Wireless Networks 6/2019 Zur Ausgabe

Neuer Inhalt