Skip to main content
Erschienen in: Journal of Elasticity 2/2022

Open Access 17.03.2022 | Classroom Note

New Representations for the Curvature Tensor of a Surface with Application to Theories of Elastic Shells

verfasst von: Nathaniel N. Goldberg, Oliver M. O’Reilly

Erschienen in: Journal of Elasticity | Ausgabe 2/2022

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Consider two points \(P\) and \(Q\) on a surface. Modulo rotations about the normal vector to the surface at \(P\) and the normal vector to the surface at \(Q\), a rotation can be defined that maps the unit normal vector to the surface at \(Q\) to the corresponding unit normal vector at \(P\). With the help of Weingarten’s formulae, new representations are established for the components of the curvature tensor of a surface and the associated mean and Gaussian curvatures in terms of components of a pair of vectors associated with the rotation. The formulae are shown to be helpful in demonstrating how different strain measures for Kirchhoff-Love shell theory are equivalent.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Given a surface \(S\), Weingarten’s well-known formulae express the evolution of a unit normal vector \({\mathbf{n}}\) to a two-dimensional surface in terms of the coefficients \(b_{\alpha \beta }\) of second-fundamental form of the surface and the covariant basis vectors \({\mathbf{a}}_{\gamma }\) (cf. Fig. 1). In this paper, we use his formulae to establish new representations for the components of the curvature tensor \({\mathbf{b}} = b_{\alpha \beta }{\mathbf{a}}^{\alpha }\otimes {\mathbf{a}}^{\beta }= b^{ \delta }_{\beta }{\mathbf{a}}_{\delta }\otimes {\mathbf{a}}^{\beta }\), the mean curvature \(H\), and the Gaussian curvature \(K\):
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ1_HTML.png
(1.1)
where the angular rate vectors https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq14_HTML.gif are used to compute the partial derivatives of \({\mathbf{n}}\):
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ2_HTML.png
(1.2)
As an illustrative example, the case of a spherical surface is considered. The representations (1.1) are then shown to be helpful in relating two different formulations for some of the strain measures used in Kirchhoff-Love shell theory. We also note that the discussion in this paper complements alternative representations for \(b_{\alpha \beta }\), \(H\), and \(K\), including those using Cartan’s moving frames that can be found in texts on differential geometry (see, e.g., [1, 5, 12]).

2 Background

Consider a two-dimensional surface \(S\) that is embedded in three-dimensional Euclidean space \(\mathbb{E}^{3}\). The surface is parameterized using a curvilinear coordinate system \(\left \{ \theta ^{1},\theta ^{2}\right \} \) such that every point \(P\) on the surface can be uniquely identified by a position vector (relative to a fixed origin):
$$\begin{gathered} {\mathbf{r}} = {\mathbf{r}}\left (\theta ^{1}, \theta ^{2}\right ). \end{gathered}$$
(2.1)
We now define a covariant basis \(\left \{ {\mathbf{a}}_{1},{\mathbf{a}}_{2} \right \} \) for the tangent space to a point on \(S\):
$$\begin{gathered} {\mathbf{a}}_{\beta }= {\mathbf{r}}_{,\beta } = \frac{\partial {\mathbf{r}}}{\partial \theta ^{\beta }}, \qquad \left (\beta = 1,2\right ). \end{gathered}$$
(2.2)
Here, and in the sequel, lower-case Greek letters range from 1 to 2, the summation convention on repeated indices is employed, and the comma denotes partial derivative. A unit normal \({\mathbf{n}}\) is assumed to be defined at every point \(P\) on the surface where \(\left ({\mathbf{a}}_{1}\times {\mathbf{a}}_{2}\right )\cdot {\mathbf{n}} > 0\).
We can define a contravariant basis \(\left \{ {\mathbf{a}}^{1}, {\mathbf{a}}^{2}\right \} \) where \({\mathbf{a}}_{\alpha }\cdot {\mathbf{a}}^{\beta }= \delta ^{\beta }_{\alpha }\) and \({\mathbf{n}}\cdot {\mathbf{a}}^{\beta }= 0\). The Kronecker delta \(\delta ^{\beta }_{\alpha }= 0\) if \(\beta \ne \alpha \) and \(= 1\) if \(\alpha = \beta \). Solving \({\mathbf{a}}_{\alpha }\cdot {\mathbf{a}}^{\beta }= \delta ^{\beta }_{\alpha }\) for \({\mathbf{a}}^{\beta }\):
$$\begin{gathered} \sqrt{a} {\mathbf{a}}^{1} = {\mathbf{a}}_{2} \times {\mathbf{n}}, \qquad \sqrt{a} { \mathbf{a}}^{2} = - {\mathbf{a}}_{1} \times {\mathbf{n}}, \end{gathered}$$
(2.3)
where \(\sqrt{a} = \|{\mathbf{a}}_{1}\times {\mathbf{a}}_{2}\| = \left ({\mathbf{a}}_{1} \times {\mathbf{a}}_{2}\right )\cdot {\mathbf{n}}\). We note that
$$\begin{gathered} {\mathbf{a}}_{\beta }= a_{\beta \alpha } {\mathbf{a}}^{\alpha }, \qquad {\mathbf{a}}^{\delta }= a^{\delta \alpha } {\mathbf{a}}_{\alpha }, \end{gathered}$$
(2.4)
where
$$\begin{gathered} a_{\alpha \beta } = {\mathbf{a}}_{\alpha }\cdot {\mathbf{a}}_{\beta }, \qquad a^{ \alpha \beta } = {\mathbf{a}}^{\alpha }\cdot {\mathbf{a}}^{\beta }. \end{gathered}$$
(2.5)
Here, \(a_{\alpha \beta }\) are the coefficients of the first fundamental form of \(S\).

3 A Rotation of the Unit Normal Vector and a Pair of Axial Vectors

We consider a point \(Q\) on the surface and denote the normal to the surface at this point by \({\mathbf{n}}_{0}\). As the normal vector is a unit vector, we can define a rotation that transforms \({\mathbf{n}}_{0}\) to the normal \({\mathbf{n}}\) at any point on the surface. The resulting rotation tensor, which we denote by \({\mathbf{Q}}\), is a function of the coordinates \(\theta ^{\beta }\):
$$\begin{gathered} {\mathbf{n}} = {\mathbf{n}}\left (\theta ^{1}, \theta ^{2}\right ) = {\mathbf{Q}} \left (\theta ^{1}, \theta ^{2}\right ) {\mathbf{n}}_{0}. \end{gathered}$$
(3.1)
As discussed in the sequel, the tensor \({\mathbf{Q}}\) is not uniquely defined. We also note that various representations, including Euler angles, axis-angle, Euler parameters, unit quaternions, and Cayley parameters for \({\mathbf{Q}}\) can be employed but this specification is not needed for present purposes.
Differentiating the identity \({\mathbf{n}} = {\mathbf{Q}}{\mathbf{n}}_{0}\) with respect to \(\theta ^{\beta }\), using the facts that \({\mathbf{Q}}^{T}{\mathbf{Q}} = {\mathbf{I}}\) and \({\mathbf{n}}_{0}\) is constant, we conclude that
$$\begin{gathered} {\mathbf{n}}_{,\beta } = {\mathbf{Q}}_{,\beta }{\mathbf{Q}}^{T} {\mathbf{n}}. \end{gathered}$$
(3.2)
However, as \({\mathbf{Q}}_{,\beta }{\mathbf{Q}}^{T}\) is skew-symmetric, we can define an axial vector https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq64_HTML.gif such that
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ10_HTML.png
(3.3)
for any vector \({\mathbf{a}}\). The vector https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq66_HTML.gif has the representations
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ11_HTML.png
(3.4)
As the vectors https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq67_HTML.gif associated with \({\mathbf{Q}}\) are identical to those associated with \({\mathbf{Q}}{\mathbf{Q}}_{1}\) where \({\mathbf{Q}}_{1}\) is an arbitrary constant rotation tensor, the choice of \(Q\), as anticipated, does not effect the forthcoming results.
The prescription (3.1) for \({\mathbf{Q}}\) does not define a unique rotation tensor. Indeed, if \({\mathbf{Q}}\) satisfies (3.1) then so does
$$\begin{gathered} {\mathbf{R}} = {\mathbf{L}}\left (\nu , {\mathbf{n}}\right ){\mathbf{Q}}{\mathbf{L}}\left ( \nu _{0}, {\mathbf{n}}_{0}\right ), \end{gathered}$$
(3.5)
where the tensor \({\mathbf{L}}\left (\theta , {\mathbf{p}}\right )\) represents a rotation through an angle \(\theta \) about the unit vector \({\mathbf{p}}\):1
$$\begin{aligned} {\mathbf{R}}{\mathbf{n}}_{0} &= {\mathbf{L}}\left (\nu , {\mathbf{n}}\right ){\mathbf{Q}}{\mathbf{L}} \left (\nu _{0}, {\mathbf{n}}_{0}\right ){\mathbf{n}}_{0} \\ &= {\mathbf{L}}\left (\nu , {\mathbf{n}}\right ){\mathbf{Q}}{\mathbf{n}}_{0} \\ &= {\mathbf{L}}\left (\nu , {\mathbf{n}}\right ){\mathbf{n}} \\ &= {\mathbf{n}}. \end{aligned}$$
(3.6)
The angle of rotation \(\nu _{0}\) is a constant. The axial vectors associated with the rotation \({\mathbf{R}}\) can be computed using relative angular velocity vectors [3]:
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ14_HTML.png
(3.7)
Thus, the non-uniqueness of \({\mathbf{Q}}\) implies that the \({\mathbf{n}}\) component of https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq84_HTML.gif are not uniquely prescribed. Examining (1.1), we find that the components of \({\mathbf{b}}\) and \(K\) and \(H\) are independent of https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq88_HTML.gif . In conclusion, the curvature tensor \({\mathbf{b}}\) is insensitive to the fact that \({\mathbf{Q}}\) is defined modulo an arbitrary rotation about \({\mathbf{n}}\).

4 Formulae for the Curvature Tensor, the Mean Curvature, and the Gaussian Curvature

The curvature tensor \({\mathbf{b}}\) has the representations (see, e.g., [2, 9]):
$$\begin{gathered} {\mathbf{b}} = b^{\alpha }_{\beta }{\mathbf{a}}_{\alpha }\otimes {\mathbf{a}}^{\beta }= b_{ \alpha \beta }{\mathbf{a}}^{\alpha }\otimes {\mathbf{a}}^{\beta }, \end{gathered}$$
(4.1)
where
$$\begin{gathered} b_{\alpha \beta } = {\mathbf{a}}_{\alpha ,\beta }\cdot {\mathbf{n}}, \qquad b^{\gamma }_{\beta }= a^{\gamma \alpha } b_{\alpha \beta }, \end{gathered}$$
(4.2)
and ⊗ is the tensor product: \(\left ({\mathbf{a}}\otimes {\mathbf{b}}\right ){\mathbf{c}} = {\mathbf{a}} \left ({\mathbf{b}} \cdot {\mathbf{c}}\right )\) for any vectors \({\mathbf{a}}\), \({\mathbf{b}}\), and \({\mathbf{c}}\).
Weingarten’s formulae relate the evolution of \({\mathbf{n}}\) to the components of \({\mathbf{b}}\):
$$\begin{gathered} {\mathbf{n}}_{,\beta } = - b_{\alpha \beta }{\mathbf{a}}^{\alpha }. \end{gathered}$$
(4.3)
The standard derivation of this formula starts by differentiating the identities \({\mathbf{n}}\cdot {\mathbf{n}} = 1\) and \({\mathbf{n}}\cdot {\mathbf{a}}_{\beta }= 0\). For our purposes, it is fruitful to consider the components of \({\mathbf{n}}_{,\beta }\):
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ18_HTML.png
(4.4)
where \(\epsilon _{11} = \epsilon _{22} = 0\) and \(\epsilon _{12} = - \epsilon _{21} = \sqrt{a}\).
We can use (4.3) along with (4.4) to show that
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ19_HTML.png
(4.5)
Thus, we find the sought-after representations (1.1)1,2 for the components \(b_{\alpha \beta }\) and \(b^{\gamma }_{\beta }\):
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ20_HTML.png
(4.6)
The identities \(b^{\gamma }_{\delta }= a^{\gamma \beta } b_{\beta \delta }\) and \({\mathbf{a}}^{\alpha }= a^{\alpha \beta } {\mathbf{a}}_{\beta }\) were used to establish the second representation. The identity (4.6)1 along with the symmetry \(b_{12} = b_{21}\) implies that
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ21_HTML.png
(4.7)
Thus, the components of https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq109_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq110_HTML.gif are not all independent.
The representation (1.1)3 for \(H\) can be obtained by first substituting for \(b^{\alpha }_{\beta }\) in the definition of \(H\) (cf. [9]) and then appealing to (2.3) and (4.6):
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ22_HTML.png
(4.8)
The representation (1.1)4 for \(K\) can be obtained by first substituting for \(b_{\alpha \beta }\) in the definition of \(K\) (cf. [12]) and then using (2.3):
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ23_HTML.png
(4.9)
We observe that the representation for \(K\) provides an elegant representation for \(K dA\) where \(dA\) is the element of area on \(S\):
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ24_HTML.png
(4.10)
The integral of \(K dA\) is central to the Gauss-Bonnet theorem.

5 Application to a Sphere

As an example, we consider a sphere of radius \(R\) and use a set of polar angles \(\theta ^{1} = \varphi \) and \(\theta ^{2} = \vartheta \) to parameterize the sphere (cf. Fig. 2). The representation for the position vector \({\mathbf{r}}\) of any point on the sphere is
$$\begin{gathered} {\mathbf{r}} = R {\mathbf{e}}_{R}, \end{gathered}$$
(5.1)
where
$$\begin{gathered} {\mathbf{e}}_{r} = \cos \left (\vartheta \right ) {\mathbf{E}}_{1} + \sin \left (\vartheta \right ) {\mathbf{E}}_{2}, \qquad {\mathbf{e}}_{R} = \sin \left (\varphi \right ) {\mathbf{e}}_{r} + \cos \left (\varphi \right ) { \mathbf{E}}_{3}. \end{gathered}$$
(5.2)
Differentiating \({\mathbf{r}}\), the covariant basis vectors can be computed along with their contravariant counterparts:
$$\begin{gathered} {\mathbf{a}}_{1} = R {\mathbf{e}}_{\varphi }, \qquad {\mathbf{a}}_{2} = R \sin \left ( \varphi \right ) {\mathbf{e}}_{\vartheta }, \qquad {\mathbf{a}}^{1} = \frac{1}{R} { \mathbf{e}}_{\varphi }, \qquad {\mathbf{a}}^{2} = \frac{1}{R \sin \left (\varphi \right )} {\mathbf{e}}_{\vartheta }, \end{gathered}$$
(5.3)
where
$$\begin{gathered} {\mathbf{e}}_{\varphi }= \cos \left (\varphi \right ) {\mathbf{e}}_{r} - \sin \left (\varphi \right ) {\mathbf{E}}_{3}, \qquad {\mathbf{e}}_{\vartheta }= \cos \left (\vartheta \right ) {\mathbf{E}}_{2} - \sin \left (\vartheta \right ) {\mathbf{E}}_{1}. \end{gathered}$$
(5.4)
Clearly, \({\mathbf{n}} = {\mathbf{e}}_{R}\) and \(\sqrt{a} = R^{2} \sin \left (\varphi \right )\).
The rotation tensor \({\mathbf{Q}}\) can be defined as the product of two rotations: one about the \({\mathbf{E}}_{3}\) axis through an angle \(\vartheta \) followed by a rotation about \({\mathbf{e}}_{\vartheta }\) through an angle \(\varphi \):
$$\begin{gathered} {\mathbf{Q}} = {\mathbf{L}}\left (\varphi , {\mathbf{e}}_{\vartheta }\right ) {\mathbf{L}} \left (\vartheta , {\mathbf{E}}_{3}\right ). \end{gathered}$$
(5.5)
Thus,
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ30_HTML.png
(5.6)
Noting that \({\mathbf{e}}_{\vartheta }\times {\mathbf{e}}_{R} = {\mathbf{e}}_{\varphi }\), we can now compute the components of \({\mathbf{b}}\) using either (1.1)1 or (1.1)2:2
$$\begin{gathered} {\mathbf{b}} = - \frac{1}{R} \left ( {\mathbf{e}}_{\varphi }\otimes {\mathbf{e}}_{\varphi }+ {\mathbf{e}}_{\vartheta }\otimes {\mathbf{e}}_{\vartheta }\right ). \end{gathered}$$
(5.7)
The curvatures \(H\) and \(K\) can be computed using (1.1)3,4:
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ32_HTML.png
(5.8)
as anticipated.

6 Comments on Applications to Kirchhoff-Love Shell Theory

The representation (1.1)1 is of particular use when demonstrating the equivalence of formulations of Kirchhoff-Love shell theory. The strain energy density function for this shell theory has the representations (cf., e.g., [7, 11]):
$$\begin{gathered} W = \hat{W}\left ( a_{\alpha \beta }, b_{\gamma \delta }, \theta ^{1}, \theta ^{2}\right ) \end{gathered}$$
(6.1)
and (cf., e.g., [4, 6])
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ34_HTML.png
(6.2)
The formula (1.1)1 can be used to establish the equivalence of \(\tilde{W}\) and \(\hat{W}\):
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ35_HTML.png
(6.3)
It should also be evident from (6.3) that the strain energy function \(\tilde{W}\) should be independent of the components https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq152_HTML.gif . This restriction is in complete agreement with our earlier remarks that \({\mathbf{Q}}\) is defined modulo a rotation about \({\mathbf{n}}\).
Although the tensor \({\mathbf{Q}}\) plays a central role in some formulations of Kirchhoff-Love shell theory (see [6]), we have not found a previous discussion of the non-uniqueness of \({\mathbf{Q}}\). In some shell theories (cf. [4, 10]) where a rotation tensor https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq157_HTML.gif is associated with each point of the material surface, a pair of right-handed orthonormal triads (or adapted frames) are chosen: one comprised of \({\mathbf{n}}_{0}\) and two unit tangent vectors \({\mathbf{s}}_{0_{1}}\) and \({\mathbf{s}}_{0_{2}}\) in the reference configuration and the other comprised of \({\mathbf{n}}\) and two unit tangent vectors \({\mathbf{s}}_{1}\) and \({\mathbf{s}}_{2}\) in the present configuration. The rotation tensor https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq164_HTML.gif , where
https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_Equ36_HTML.png
(6.4)
is uniquely defined in this case. The fact that there are infinitely many choices of the triads \(\left \{ {\mathbf{n}}_{0}, {\mathbf{s}}_{0_{1}}, {\mathbf{s}}_{0_{2}} \right \} \) and \(\left \{ {\mathbf{n}}, {\mathbf{s}}_{1}, {\mathbf{s}}_{2}\right \} \) provides another explanation for the non-uniqueness of \({\mathbf{Q}}\).3

Acknowledgements

This work was supported by the United States Department of Defense through the National Defense Science and Engineering Graduate Fellowship and a Berkeley Graduate Fellowship awarded to N. N. Goldberg. The authors are also grateful to our colleagues Professors James Casey and David Steigmann for their comments on an earlier draft of this paper.

Declarations

Declaration of Competing Interests

The authors declare no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Fußnoten
1
Representations for the rotation \({\mathbf{L}}\) using a wide range of parameterizations can be found in [8]. A discussion of how to compute https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq78_HTML.gif and https://static-content.springer.com/image/art%3A10.1007%2Fs10659-022-09885-5/MediaObjects/10659_2022_9885_IEq79_HTML.gif using relative angular velocity vectors [3] is presented in [8].
 
2
That is, \(b_{11} = - R\), \(b^{1}_{1} = - \frac{1}{R}\), \(b^{1}_{2} = b^{2}_{1} = b_{12} = b_{21} = 0\), \(b_{22} = - R \sin ^{2}\left (\varphi \right )\), and \(b^{2}_{2} = - \frac{1}{R}\).
 
3
We are indebted to an anonymous reviewer for pointing out this alternative explanation.
 
Literatur
5.
Zurück zum Zitat Kreyszig, E.: Differential Geometry. Mathematical Expositions, vol. 11. University of Toronto Press, Toronto (1959) CrossRef Kreyszig, E.: Differential Geometry. Mathematical Expositions, vol. 11. University of Toronto Press, Toronto (1959) CrossRef
12.
Zurück zum Zitat Struik, D.J.: Lectures on Classical Differential Geometry, second edn. Dover, New York (1988) MATH Struik, D.J.: Lectures on Classical Differential Geometry, second edn. Dover, New York (1988) MATH
Metadaten
Titel
New Representations for the Curvature Tensor of a Surface with Application to Theories of Elastic Shells
verfasst von
Nathaniel N. Goldberg
Oliver M. O’Reilly
Publikationsdatum
17.03.2022
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 2/2022
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-022-09885-5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.