Skip to main content

2018 | OriginalPaper | Buchkapitel

10. NIR Light-Sensitive Plasmonic Gold Nanomaterials for Cancer Photothermal and Chemotherapy Applications

verfasst von : Nagamalai Vasimalai

Erschienen in: Metal Nanoparticles and Clusters

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

After AIDS, cancer is the second most lethal disease in the world. According to the World Health Organization (WHO), worldwide 8.8 million deaths in 2015 are due to cancer disease. Therefore, this is an essential issue nowadays to develop effective diagnostic and treatment modalities for cancer to save human life from its deathtrap. Chemotherapy is a well-known cancer treatment tool and used for the bio-distribution of anticancer drugs to specific cancer target. Photothermal therapy (PTT) is an alternative to chemotherapy and considered to be a novel technique for treating a variety of cancers, because of their high efficacy, convenience, and minimal damage to the normal cells. Near-infrared (NIR) light-sensitive gold nanomaterials are considered as noninvasive candidate for PTT, because of their highly efficient production of heat from light. In recent decades, the combined chemo and PTT (chemophotothermal therapy) has been gaining momentum. Generally, the non-specific anticancer drug release can produce some toxic side effects. To overcome this problem, chemophotothermal therapy has been used, and it enhances the anticancer drug release rate.
In this book chapter, I have highlighted the synthesis and properties of novel plasmonic NIR light-sensitive nanomaterials (gold nanorods, gold nanoshells, gold nanocages, hollow gold nanospheres, gold nanostars, and gold nanoclusters) and their PTT and chemotherapeutic applications. Further, this book chapter will provide a recent progress of chemophotothermal therapy-based combined treatments for various tumor cells and modification protocol of these nanomaterials and address specifically on tumor target, drug delivery, etc. The aim of this book chapter is to provide a summary of synthesis of different plasmonic gold nanomaterials and their efficiency in PTT and chemotherapy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Z. Zhang, J. Wang, C. Chen, Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 25, 3869–3880 (2013)CrossRef Z. Zhang, J. Wang, C. Chen, Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 25, 3869–3880 (2013)CrossRef
4.
Zurück zum Zitat R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, B. Liu, Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 26(8), 5428–5434 (2010)CrossRef R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, B. Liu, Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 26(8), 5428–5434 (2010)CrossRef
5.
Zurück zum Zitat V. Shanmugam, S. Selvakumar, C.-S. Yeh, Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 43, 6254–6287 (2014)CrossRef V. Shanmugam, S. Selvakumar, C.-S. Yeh, Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 43, 6254–6287 (2014)CrossRef
6.
Zurück zum Zitat X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006)CrossRef X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006)CrossRef
7.
Zurück zum Zitat A.M. Smith, M.C. Mancini, S. Nie, Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009)CrossRef A.M. Smith, M.C. Mancini, S. Nie, Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009)CrossRef
8.
Zurück zum Zitat C.M. Cobley, J. Chen, E.C. Cho, L.V. Wang, Y. Xia, Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 40, 44–56 (2011)CrossRef C.M. Cobley, J. Chen, E.C. Cho, L.V. Wang, Y. Xia, Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 40, 44–56 (2011)CrossRef
9.
Zurück zum Zitat A. Llevot, D. Astruc, Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev. 41, 242–257 (2012)CrossRef A. Llevot, D. Astruc, Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev. 41, 242–257 (2012)CrossRef
10.
Zurück zum Zitat B.N. Khlebtsov, N.G. Khlebtsov, On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 73, 118–127 (2011)CrossRef B.N. Khlebtsov, N.G. Khlebtsov, On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 73, 118–127 (2011)CrossRef
11.
Zurück zum Zitat K. Park, L.F. Drummy, R.C. Wadams, H. Koerner, D. Nepal, L. Fabris, R.A. Vaia, Growth mechanism of gold nanorods. Chem. Mater. 25, 555–563 (2013)CrossRef K. Park, L.F. Drummy, R.C. Wadams, H. Koerner, D. Nepal, L. Fabris, R.A. Vaia, Growth mechanism of gold nanorods. Chem. Mater. 25, 555–563 (2013)CrossRef
12.
Zurück zum Zitat M. Liu, P. Guyot-Sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 109, 22192–22200 (2005)CrossRef M. Liu, P. Guyot-Sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 109, 22192–22200 (2005)CrossRef
13.
Zurück zum Zitat H. Wang, D.W. Brandl, F. Le, P. Nordlander, N.J. Halas, Nanorice: A hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006)CrossRef H. Wang, D.W. Brandl, F. Le, P. Nordlander, N.J. Halas, Nanorice: A hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006)CrossRef
14.
Zurück zum Zitat B.N. Khlebtsov, V.A. Khanadeev, I.L. Maksimova, G.S. Terentyuk, N.G. Khlebtsov, Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties. Nanotechnol. Russ. 5(7–8), 454–468 (2010)CrossRef B.N. Khlebtsov, V.A. Khanadeev, I.L. Maksimova, G.S. Terentyuk, N.G. Khlebtsov, Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties. Nanotechnol. Russ. 5(7–8), 454–468 (2010)CrossRef
15.
Zurück zum Zitat A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, L.M. Liz-Marzán, Nanostars shine bright for you: Colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011)CrossRef A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, L.M. Liz-Marzán, Nanostars shine bright for you: Colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011)CrossRef
16.
Zurück zum Zitat F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677 (2004)CrossRef F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673–3677 (2004)CrossRef
17.
Zurück zum Zitat M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.-M. Liz-Marzán, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783–1791 (2008)CrossRef M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.-M. Liz-Marzán, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783–1791 (2008)CrossRef
18.
Zurück zum Zitat C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)CrossRef C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)CrossRef
19.
Zurück zum Zitat R. Bukasov, J.S. Shumaker-Parry, Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 7, 1113–1118 (2007)CrossRef R. Bukasov, J.S. Shumaker-Parry, Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 7, 1113–1118 (2007)CrossRef
20.
Zurück zum Zitat Z. Xiao, C. Ji, J. Shi, E.M. Pridgen, J. Frieder, J. Wu, O.C. Farokhzad, DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. 51, 11853–11857 (2012)CrossRef Z. Xiao, C. Ji, J. Shi, E.M. Pridgen, J. Frieder, J. Wu, O.C. Farokhzad, DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. 51, 11853–11857 (2012)CrossRef
21.
Zurück zum Zitat X. Zhang, K. Wang, M. Liu, X. Zhang, L. Tao, Y. Chen, Y. Wei, Polymeric AIE-based nanoprobes for biomedical applications: Recent advances and perspectives. Nanoscale 7, 11486–11508 (2015)CrossRef X. Zhang, K. Wang, M. Liu, X. Zhang, L. Tao, Y. Chen, Y. Wei, Polymeric AIE-based nanoprobes for biomedical applications: Recent advances and perspectives. Nanoscale 7, 11486–11508 (2015)CrossRef
22.
Zurück zum Zitat D.P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004)CrossRef D.P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004)CrossRef
23.
Zurück zum Zitat J.H. Breasted, The Edwin Smith Surgical Papyrus, vol 1 (University of Chicago, Chicago, 1930) J.H. Breasted, The Edwin Smith Surgical Papyrus, vol 1 (University of Chicago, Chicago, 1930)
24.
Zurück zum Zitat L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–13554 (2003)CrossRef L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–13554 (2003)CrossRef
25.
Zurück zum Zitat C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett. 5(4), 709–711 (2005) C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett. 5(4), 709–711 (2005)
26.
Zurück zum Zitat A.M. Gobin, M.H. Lee, N.J. Halas, W.D. James, R.A. Drezek, J.L. West, Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007)CrossRef A.M. Gobin, M.H. Lee, N.J. Halas, W.D. James, R.A. Drezek, J.L. West, Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007)CrossRef
27.
Zurück zum Zitat U.S. Chung, J.-H. Kim, B. Kim, E. Kim, W.-D. Jang, W.-G. Koh, Dendrimer porphyrin-coated gold nanoshells for the synergistic combination of photodynamic and photothermal therapy. Chem. Commun. 52, 1258–1261 (2016)CrossRef U.S. Chung, J.-H. Kim, B. Kim, E. Kim, W.-D. Jang, W.-G. Koh, Dendrimer porphyrin-coated gold nanoshells for the synergistic combination of photodynamic and photothermal therapy. Chem. Commun. 52, 1258–1261 (2016)CrossRef
28.
Zurück zum Zitat L. Luo, Y. Bian, Y. Liu, X. Zhang, M. Wang, S. Xing, L. Li, D. Gao, Combined near infrared photothermal therapy and chemotherapy using gold nanoshells coated liposomes to enhance antitumor effect. Small 12(30), 4103–4112 (2016)CrossRef L. Luo, Y. Bian, Y. Liu, X. Zhang, M. Wang, S. Xing, L. Li, D. Gao, Combined near infrared photothermal therapy and chemotherapy using gold nanoshells coated liposomes to enhance antitumor effect. Small 12(30), 4103–4112 (2016)CrossRef
29.
Zurück zum Zitat D. Chen, L.L. Li, F.Q. Tang, S. Qi, Facile and scalable synthesis of tailored silica “Nanorattle” structures. Adv. Mater. 21, 3804–3807 (2009)CrossRef D. Chen, L.L. Li, F.Q. Tang, S. Qi, Facile and scalable synthesis of tailored silica “Nanorattle” structures. Adv. Mater. 21, 3804–3807 (2009)CrossRef
30.
Zurück zum Zitat H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu, F. Tang, Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. 50, 891–895 (2011)CrossRef H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu, F. Tang, Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. 50, 891–895 (2011)CrossRef
31.
Zurück zum Zitat H. Liu, T. Liu, X. Wu, L. Li, L. Tan, D. Chen, F. Tang, Targeting gold nanoshells on silica nanorattles: A drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv. Mater. 24, 755–761 (2012)CrossRef H. Liu, T. Liu, X. Wu, L. Li, L. Tan, D. Chen, F. Tang, Targeting gold nanoshells on silica nanorattles: A drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv. Mater. 24, 755–761 (2012)CrossRef
32.
Zurück zum Zitat C. Wu, C. Yu, M. Chu, A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int. J. Nanomedicine 6, 807–813 (2011) C. Wu, C. Yu, M. Chu, A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. Int. J. Nanomedicine 6, 807–813 (2011)
33.
Zurück zum Zitat S.M. Lee, H. Park, K.H. Yoo, Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv. Mater. 22, 4049–4053 (2010)CrossRef S.M. Lee, H. Park, K.H. Yoo, Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv. Mater. 22, 4049–4053 (2010)CrossRef
34.
Zurück zum Zitat M.-R. Choi, K.J.S. Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, S.E. Clare, A cellular trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7, 3759–3765 (2007) M.-R. Choi, K.J.S. Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, S.E. Clare, A cellular trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7, 3759–3765 (2007)
35.
Zurück zum Zitat Y. Wang, X. Teng, J.-S. Wang, H. Yang, Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene Core−Shell nanoparticles. Nano Lett. 3, 789–793 (2003)CrossRef Y. Wang, X. Teng, J.-S. Wang, H. Yang, Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene Core−Shell nanoparticles. Nano Lett. 3, 789–793 (2003)CrossRef
36.
Zurück zum Zitat J. Kim, S. Park, J.E. Lee, S.M. Jin, J.H. Lee, I.S. Lee, I. Yang, J.-S. Kim, S.K. Kim, M.-H. Cho, T. Hyeon, Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. Int. Ed. 45, 7754–7758 (2006)CrossRef J. Kim, S. Park, J.E. Lee, S.M. Jin, J.H. Lee, I.S. Lee, I. Yang, J.-S. Kim, S.K. Kim, M.-H. Cho, T. Hyeon, Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. Int. Ed. 45, 7754–7758 (2006)CrossRef
37.
Zurück zum Zitat X. Ji, R. Shao, A.M. Elliott, R.J. Stafford, E.E. Coss, J.A. Bankson, G. Liang, Z.-P. Luo, K. Park, J.T. Markert, C. Li, Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both mr imaging and photothermal therapy. J. Phys. Chem. C. Nanomater. Interfaces 111, 6245–6251 (2007)CrossRef X. Ji, R. Shao, A.M. Elliott, R.J. Stafford, E.E. Coss, J.A. Bankson, G. Liang, Z.-P. Luo, K. Park, J.T. Markert, C. Li, Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both mr imaging and photothermal therapy. J. Phys. Chem. C. Nanomater. Interfaces 111, 6245–6251 (2007)CrossRef
38.
Zurück zum Zitat Y. Su, X. Wei, F. Peng, Y. Zhong, Y. Lu, S. Su, T. Xu, S.-T. Lee, Y. He, Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett. 12, 1845–1850 (2012)CrossRef Y. Su, X. Wei, F. Peng, Y. Zhong, Y. Lu, S. Su, T. Xu, S.-T. Lee, Y. He, Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett. 12, 1845–1850 (2012)CrossRef
39.
Zurück zum Zitat R. Bardhan, W. Chen, C.P. Torres, M. Bartels, R.M. Huschka, L.L. Zhao, E. Morosan, R.G. Pautler, A. Joshi, N.J. Halas, Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Funct. Mater. 19, 3901–3909 (2009)CrossRef R. Bardhan, W. Chen, C.P. Torres, M. Bartels, R.M. Huschka, L.L. Zhao, E. Morosan, R.G. Pautler, A. Joshi, N.J. Halas, Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Funct. Mater. 19, 3901–3909 (2009)CrossRef
40.
Zurück zum Zitat W. Zhou, J. Shao, Q. Jin, Q. Wei, J. Tang, J. Ji, Zwitterionic phosphorylcholine as a better ligand for gold nanorods cell uptake and selective photothermal ablation of cancer cells. Chem. Commun. 46, 1479–1481 (2010)CrossRef W. Zhou, J. Shao, Q. Jin, Q. Wei, J. Tang, J. Ji, Zwitterionic phosphorylcholine as a better ligand for gold nanorods cell uptake and selective photothermal ablation of cancer cells. Chem. Commun. 46, 1479–1481 (2010)CrossRef
41.
Zurück zum Zitat B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003)CrossRef B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003)CrossRef
42.
Zurück zum Zitat F. Ren, S. Bhana, D.D. Norman, J. Johnson, L. Xu, D.L. Baker, A.L. Parrill, X. Huang, Gold nanorods carrying paclitaxel for photothermal-chemotherapy of cancer. Bioconjug. Chem. 24, 376–386 (2013)CrossRef F. Ren, S. Bhana, D.D. Norman, J. Johnson, L. Xu, D.L. Baker, A.L. Parrill, X. Huang, Gold nanorods carrying paclitaxel for photothermal-chemotherapy of cancer. Bioconjug. Chem. 24, 376–386 (2013)CrossRef
43.
Zurück zum Zitat L. Tong, Y. Zhao, T.B. Huff, M.N. Hansen, A. Wei, J.-X. Cheng, Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 19, 3136–3141 (2007)CrossRef L. Tong, Y. Zhao, T.B. Huff, M.N. Hansen, A. Wei, J.-X. Cheng, Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 19, 3136–3141 (2007)CrossRef
44.
Zurück zum Zitat W. Choi, J.-Y. Kim, C. Kang, C.C. Byeon, Y.H. Kim, G. Tae, Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5(3), 1995–2003 (2011)CrossRef W. Choi, J.-Y. Kim, C. Kang, C.C. Byeon, Y.H. Kim, G. Tae, Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5(3), 1995–2003 (2011)CrossRef
45.
Zurück zum Zitat C. Bremer, C.H. Tung, R. Weissleder, In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med. 7, 743–748 (2001)CrossRef C. Bremer, C.H. Tung, R. Weissleder, In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med. 7, 743–748 (2001)CrossRef
46.
Zurück zum Zitat T.S. Hauck, T.L. Jennings, T. Yatsenko, J.C. Kumaradas, W.C.W. Chan, Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater. 20, 3832–3838 (2008)CrossRef T.S. Hauck, T.L. Jennings, T. Yatsenko, J.C. Kumaradas, W.C.W. Chan, Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater. 20, 3832–3838 (2008)CrossRef
47.
Zurück zum Zitat M.-F. Tsai, S.-H.G. Chang, F.-Y. Cheng, P.S. Vijayakumar, Y.-S. Cheng, C.-H. Su, C.-S. Yeh, Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 7, 5330–5342 (2013)CrossRef M.-F. Tsai, S.-H.G. Chang, F.-Y. Cheng, P.S. Vijayakumar, Y.-S. Cheng, C.-H. Su, C.-S. Yeh, Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 7, 5330–5342 (2013)CrossRef
48.
Zurück zum Zitat G. Von Maltzahn, J.-H. Park, A. Agrawal, N.K. Bandaru, S.K. Das, M.J. Sailor, S.N. Bhatia, Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009)CrossRef G. Von Maltzahn, J.-H. Park, A. Agrawal, N.K. Bandaru, S.K. Das, M.J. Sailor, S.N. Bhatia, Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009)CrossRef
49.
Zurück zum Zitat X. Kang, X. Guo, W. An, X. Niu, S. Li, Z. Liu, Y. Yang, N. Wang, Q. Jiang, C. Yan, H. Wang, Q. Zhang, Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer. Sci Rep 7, 42069 (2017)CrossRef X. Kang, X. Guo, W. An, X. Niu, S. Li, Z. Liu, Y. Yang, N. Wang, Q. Jiang, C. Yan, H. Wang, Q. Zhang, Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer. Sci Rep 7, 42069 (2017)CrossRef
50.
Zurück zum Zitat X. Su, B. Fu, J. Yuan, Gold nanocluster-coated gold nanorods for simultaneously enhanced photothermal performance and stability. Mater. Lett. 188, 111–114 (2017)CrossRef X. Su, B. Fu, J. Yuan, Gold nanocluster-coated gold nanorods for simultaneously enhanced photothermal performance and stability. Mater. Lett. 188, 111–114 (2017)CrossRef
51.
Zurück zum Zitat Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen, Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 24, 1418–1423 (2012)CrossRef Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen, Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 24, 1418–1423 (2012)CrossRef
52.
Zurück zum Zitat L. Feng, Y. Chen, J. Ren, X. Qu, A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32, 2930–2937 (2011)CrossRef L. Feng, Y. Chen, J. Ren, X. Qu, A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32, 2930–2937 (2011)CrossRef
53.
Zurück zum Zitat X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, X. Qu, Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater. 24, 2890–2895 (2012)CrossRef X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, X. Qu, Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater. 24, 2890–2895 (2012)CrossRef
54.
Zurück zum Zitat S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, W. Yang, Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 34, 3150–3158 (2013)CrossRef S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, W. Yang, Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 34, 3150–3158 (2013)CrossRef
55.
Zurück zum Zitat L. Au, D. Zheng, F. Zhou, Z.-Y. Li, X. Li, Y. Xia, A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2, 1645–1652 (2008)CrossRef L. Au, D. Zheng, F. Zhou, Z.-Y. Li, X. Li, Y. Xia, A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2, 1645–1652 (2008)CrossRef
56.
Zurück zum Zitat M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, L.V. Wang, Y. Xia, Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009)CrossRef M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, L.V. Wang, Y. Xia, Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009)CrossRef
57.
Zurück zum Zitat P. Shi, K. Qu, J. Wang, M. Li, J. Ren, X. Qu, pH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chem. Commun. 48, 7640–7642 (2012)CrossRef P. Shi, K. Qu, J. Wang, M. Li, J. Ren, X. Qu, pH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chem. Commun. 48, 7640–7642 (2012)CrossRef
58.
Zurück zum Zitat S.E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Gold nanocages for biomedical applications. Adv. Mater. 19, 3177–3184 (2007)CrossRef S.E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Gold nanocages for biomedical applications. Adv. Mater. 19, 3177–3184 (2007)CrossRef
59.
Zurück zum Zitat W.J. Cui, J.Z. Bei, S.G. Wang, G. Zhi, Y.Y. Zhao, X.S. Zhou, H.W. Zhang, Y. Xu, Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography. J. Biomed. Mater. Res. B 73, 171–178 (2005)CrossRef W.J. Cui, J.Z. Bei, S.G. Wang, G. Zhi, Y.Y. Zhao, X.S. Zhou, H.W. Zhang, Y. Xu, Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography. J. Biomed. Mater. Res. B 73, 171–178 (2005)CrossRef
60.
Zurück zum Zitat H. Ke, J. Wang, Z. Dai, Y. Jin, E. Qu, Z. Xing, C. Guo, X. Yue, J. Liu, Gold-nanoshelled microcapsules: A theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chem. Int. Ed. 50, 3017–3021 (2011)CrossRef H. Ke, J. Wang, Z. Dai, Y. Jin, E. Qu, Z. Xing, C. Guo, X. Yue, J. Liu, Gold-nanoshelled microcapsules: A theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chem. Int. Ed. 50, 3017–3021 (2011)CrossRef
61.
Zurück zum Zitat Y.N. Qiang, L. Ling, L.J. Mei, J.T. Tong, Z.L. Xin, X.X. Liang, Preparation of gold tetrananocages and their photothermal effect. Chin. Phys. B 22, 097502 (2013)CrossRef Y.N. Qiang, L. Ling, L.J. Mei, J.T. Tong, Z.L. Xin, X.X. Liang, Preparation of gold tetrananocages and their photothermal effect. Chin. Phys. B 22, 097502 (2013)CrossRef
62.
Zurück zum Zitat S. Huang, S. Duan, J. Wang, S. Bao, X. Qiu, C. Li, Y. Liu, L. Yan, Z. Zhang, Y. Hu, Folic-acid-mediated functionalized gold nanocages for targeted delivery of anti-miR-181b in combination of gene therapy and photothermal therapy against hepatocellular carcinoma. Adv. Funct. Mater. 26, 2532–2544 (2016)CrossRef S. Huang, S. Duan, J. Wang, S. Bao, X. Qiu, C. Li, Y. Liu, L. Yan, Z. Zhang, Y. Hu, Folic-acid-mediated functionalized gold nanocages for targeted delivery of anti-miR-181b in combination of gene therapy and photothermal therapy against hepatocellular carcinoma. Adv. Funct. Mater. 26, 2532–2544 (2016)CrossRef
63.
Zurück zum Zitat J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, X. Li, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7, 1318–1322 (2007)CrossRef J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, X. Li, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7, 1318–1322 (2007)CrossRef
64.
Zurück zum Zitat J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, Y. Xia, Gold nanocages as photothermal transducers for cancer treatment. Small 6, 811–817 (2010)CrossRef J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, Y. Xia, Gold nanocages as photothermal transducers for cancer treatment. Small 6, 811–817 (2010)CrossRef
65.
Zurück zum Zitat M.P. Melancon, M. Zhou, C. Li, Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 44(10), 947–956 (2011)CrossRef M.P. Melancon, M. Zhou, C. Li, Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 44(10), 947–956 (2011)CrossRef
66.
Zurück zum Zitat J. You, R. Shao, X. Wei, S. Gupta, C. Li, Near-infrared light triggers release of paclitaxel from biodegradable microspheres: Photothermal effect and enhanced antitumor activity. Small 6, 1022–1031 (2010)CrossRef J. You, R. Shao, X. Wei, S. Gupta, C. Li, Near-infrared light triggers release of paclitaxel from biodegradable microspheres: Photothermal effect and enhanced antitumor activity. Small 6, 1022–1031 (2010)CrossRef
67.
Zurück zum Zitat G. Wu, A. Mikhailovsky, H.A. Khant, C. Fu, W. Chiu, J.A. Zasadzinski, Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc. 130, 8175–8177 (2008)CrossRef G. Wu, A. Mikhailovsky, H.A. Khant, C. Fu, W. Chiu, J.A. Zasadzinski, Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc. 130, 8175–8177 (2008)CrossRef
68.
Zurück zum Zitat Y. Liang, J. Liu, T. Liu, Z. Chen, X. Yang, Anti-cMet antibody conjugated hollow gold nanospheres as a new nano-material for enhancing the effect of photothermal therapy. Mater. Lett. 143, 226–229 (2015)CrossRef Y. Liang, J. Liu, T. Liu, Z. Chen, X. Yang, Anti-cMet antibody conjugated hollow gold nanospheres as a new nano-material for enhancing the effect of photothermal therapy. Mater. Lett. 143, 226–229 (2015)CrossRef
69.
Zurück zum Zitat J. You, G. Zhang, C. Li, Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4, 1033–1041 (2010)CrossRef J. You, G. Zhang, C. Li, Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4, 1033–1041 (2010)CrossRef
70.
Zurück zum Zitat J. You, R. Zhang, G. Zhang, M. Zhong, Y. Liu, C.S. Van Pelt, D. Liang, W. Wei, A.K. Sood, C. Li, Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release 158, 319–328 (2012)CrossRef J. You, R. Zhang, G. Zhang, M. Zhong, Y. Liu, C.S. Van Pelt, D. Liang, W. Wei, A.K. Sood, C. Li, Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release 158, 319–328 (2012)CrossRef
71.
Zurück zum Zitat M.P. Melancon, A.M. Elliott, A. Shetty, Q. Huang, R.J. Stafford, C. Li, Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery. J. Control. Release 156, 265–272 (2011)CrossRef M.P. Melancon, A.M. Elliott, A. Shetty, Q. Huang, R.J. Stafford, C. Li, Near-infrared light modulated photothermal effect increases vascular perfusion and enhances polymeric drug delivery. J. Control. Release 156, 265–272 (2011)CrossRef
72.
Zurück zum Zitat H. Yuan, A.M. Fales, T. Vo-Dinh, TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 134, 11358–11361 (2012)CrossRef H. Yuan, A.M. Fales, T. Vo-Dinh, TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 134, 11358–11361 (2012)CrossRef
73.
Zurück zum Zitat S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, X. Chen, Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 25, 3055–3061 (2013)CrossRef S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, X. Chen, Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 25, 3055–3061 (2013)CrossRef
74.
Zurück zum Zitat J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang, X. Shi, Hyaluronic acid-modified Fe3O4@au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38, 10–21 (2015)CrossRef J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang, X. Shi, Hyaluronic acid-modified Fe3O4@au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38, 10–21 (2015)CrossRef
75.
Zurück zum Zitat L. Wang, D. Meng, Y. Hao, Y. Hu, M. Niu, C. Zheng, Y. Yanyan, D. Li, P. Zhang, J. Chang, Z. Zhang, Y. Zhang, A gold nanostar based multi-functional tumor-targeting nanoplatform for tumor theranostic applications. J. Mater. Chem. B 4, 5895–5906 (2016)CrossRef L. Wang, D. Meng, Y. Hao, Y. Hu, M. Niu, C. Zheng, Y. Yanyan, D. Li, P. Zhang, J. Chang, Z. Zhang, Y. Zhang, A gold nanostar based multi-functional tumor-targeting nanoplatform for tumor theranostic applications. J. Mater. Chem. B 4, 5895–5906 (2016)CrossRef
76.
Zurück zum Zitat X. Wang, H. He, Y. Wang, J. Wang, X. Sun, H. Xu, Active tumor-targeting luminescent gold clusters with efficient urinary excretion. Chem. Commun. 52, 9232–9235 (2016)CrossRef X. Wang, H. He, Y. Wang, J. Wang, X. Sun, H. Xu, Active tumor-targeting luminescent gold clusters with efficient urinary excretion. Chem. Commun. 52, 9232–9235 (2016)CrossRef
77.
Zurück zum Zitat L.V. Nair, R.V. Nair, R.S. Jayasree, An insight into the optical properties of a sub nanosize glutathione stabilized gold cluster. Dalton Trans. 45, 11286–11291 (2016)CrossRef L.V. Nair, R.V. Nair, R.S. Jayasree, An insight into the optical properties of a sub nanosize glutathione stabilized gold cluster. Dalton Trans. 45, 11286–11291 (2016)CrossRef
78.
Zurück zum Zitat F. Zhou, B.H.Y. Feng, D. Wang, T. Wang, J. Liu, Q. Meng, S. Wang, P. Zhang, Z. Zhang, Y. Li, Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics 6(5), 679–687 (2016)CrossRef F. Zhou, B.H.Y. Feng, D. Wang, T. Wang, J. Liu, Q. Meng, S. Wang, P. Zhang, Z. Zhang, Y. Li, Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics 6(5), 679–687 (2016)CrossRef
79.
Zurück zum Zitat J.G. Croissant, D. Zhang, S. Alsaiari, J. Lu, L. Deng, F. Tamanoi, Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J. Control. Release 229, 183–191 (2016)CrossRef J.G. Croissant, D. Zhang, S. Alsaiari, J. Lu, L. Deng, F. Tamanoi, Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J. Control. Release 229, 183–191 (2016)CrossRef
80.
Zurück zum Zitat L. Li, X. Liu, C. Fu, L. Tan, H. Liu, Biosynthesis of fluorescent gold nanoclusters for in vitro and in vivo tumor imaging. Opt. Commun. 355, 567–574 (2015)CrossRef L. Li, X. Liu, C. Fu, L. Tan, H. Liu, Biosynthesis of fluorescent gold nanoclusters for in vitro and in vivo tumor imaging. Opt. Commun. 355, 567–574 (2015)CrossRef
81.
Zurück zum Zitat X. Zhang, W. F-G, P. Liu, H.-Y. Wang, N. Gu, Z. Chen, Synthesis of ultrastable and multifunctional gold nanoclusters with enhanced fluorescence and potential anticancer drug delivery application. J. Colloid Interface Sci. 455, 6–15 (2015)CrossRef X. Zhang, W. F-G, P. Liu, H.-Y. Wang, N. Gu, Z. Chen, Synthesis of ultrastable and multifunctional gold nanoclusters with enhanced fluorescence and potential anticancer drug delivery application. J. Colloid Interface Sci. 455, 6–15 (2015)CrossRef
82.
Zurück zum Zitat W. Ge, Y. Zhang, J. Ye, D. Chen, F.U. Rehman, Q. Li, Y. Chen, H. Jiang, Facile synthesis of fluorescent au/Ce nanoclusters for high-sensitive bioimaging. J. Nanobiotechnol. 13, 8 (2015)CrossRef W. Ge, Y. Zhang, J. Ye, D. Chen, F.U. Rehman, Q. Li, Y. Chen, H. Jiang, Facile synthesis of fluorescent au/Ce nanoclusters for high-sensitive bioimaging. J. Nanobiotechnol. 13, 8 (2015)CrossRef
83.
Zurück zum Zitat S. Chattoraj, M.A. Amin, S. Mohapatra, S. Ghosh, K. Bhattacharyya, Cancer cell imaging using in situ generated gold nanoclusters. Chem. Phys. Chem. 17, 61–68 (2016)CrossRef S. Chattoraj, M.A. Amin, S. Mohapatra, S. Ghosh, K. Bhattacharyya, Cancer cell imaging using in situ generated gold nanoclusters. Chem. Phys. Chem. 17, 61–68 (2016)CrossRef
84.
Zurück zum Zitat L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012)CrossRef L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012)CrossRef
85.
Zurück zum Zitat H. Hleb, Y. Hu, R. Drezek, J. Hafner, D. Lapotko, Photothermal bubbles as optical scattering probes for imaging living cells. Nanomedicine 3, 797–812 (2008)CrossRef H. Hleb, Y. Hu, R. Drezek, J. Hafner, D. Lapotko, Photothermal bubbles as optical scattering probes for imaging living cells. Nanomedicine 3, 797–812 (2008)CrossRef
86.
Zurück zum Zitat G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, N. Khlebtsov, Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology 19, 015701 (2008)CrossRef G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, N. Khlebtsov, Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology 19, 015701 (2008)CrossRef
87.
Zurück zum Zitat E.Y. Hleb, D.O. Lapotko, Photothermal properties of gold nanoparticles under exposure to high optical energies. Nanotechnology 19, 355702 (2008)CrossRef E.Y. Hleb, D.O. Lapotko, Photothermal properties of gold nanoparticles under exposure to high optical energies. Nanotechnology 19, 355702 (2008)CrossRef
Metadaten
Titel
NIR Light-Sensitive Plasmonic Gold Nanomaterials for Cancer Photothermal and Chemotherapy Applications
verfasst von
Nagamalai Vasimalai
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68053-8_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.