Skip to main content

2018 | OriginalPaper | Buchkapitel

9. Gold and Silver Fluorescent Nanomaterials as Emerging Probes for Toxic and Biochemical Sensors

verfasst von : Nagamalai Vasimalai, Maria T. Fernandez-Argüelles

Erschienen in: Metal Nanoparticles and Clusters

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A high percentage of deaths per year worldwide are caused by environmental pollution. It is well known that excessive usage of toxic chemicals including heavy metal ions, pesticides, other food toxins, etc. leads to adverse effect to living organisms and contributing to biodiversity losses and severe damage to the environment. Thus, the detection of toxic compounds with high sensitivity and specificity in real time is essential nowadays. For the past few decades, the development of chemical sensors have received much attention due to the sensitivity and selectivity achieved, possibility of in situ monitorization with rapid response, low cost, simple instrumental setup, etc. Traditionally, the use of organic dyes such as cyanine, fluorescein, etc. or more recently the use of semiconductor quantum dots and upconverting nanoparticles has been employed as fluorophores in order to generate optical sensors. However, these fluorophores have certain limitations such as poor photostability, large particle size, or poor water solubility. On the other hand, metal nanoclusters (NCs) and nanodots (NDs) show strong luminescence with high photostability, large Stokes shifts, and good aqueous solubility and biocompatibility. It is well known that the size of metal nanoclusters is comparable to the Fermi wavelength of electrons (∼0.7 nm), giving rise to molecular-like properties and size-dependent fluorescence from visible to near-infrared range. These novel properties have been exploited in the field of chemical and biochemical sensing, bioimaging, electronic device fabrication, clean energy storage, etc.
In this chapter, we briefly summarize the most common synthesis procedures and recent progress of luminescent Ag/AuNCs and NDs. Their application for chemical and biochemical sensing is also collected, paying special attention to the detection of toxic heavy metals (including mercury, lead, copper, chromium, arsenic, etc.), toxic ions (such as cyanide, sulfide, etc.), biological compounds (cysteine, tyrosine, cysteamine, glutathione, glucose, H2O2, etc.), drugs (mercaptopurine, penicillamine, clioquinol, antibiotics, etc.) and some other interesting molecules (salicylaldehyde, poly diallyldimethyl ammonium chloride, sodium dodecyl sulfate), toxic contaminants (tea polyphenols, melamine, bisphenol A, etc.), and pathogenic bacteria.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012)CrossRef K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012)CrossRef
2.
Zurück zum Zitat D. Diamond, Principles of Chemical and Biological Sensors (Wiley, New York, 1998) D. Diamond, Principles of Chemical and Biological Sensors (Wiley, New York, 1998)
3.
Zurück zum Zitat O.A. Sadik, W.H. Land, J. Wang, Targeting chemical and biological warfare agents at the molecular level. J. Electroanal. 15, 1149–1159 (2003)CrossRef O.A. Sadik, W.H. Land, J. Wang, Targeting chemical and biological warfare agents at the molecular level. J. Electroanal. 15, 1149–1159 (2003)CrossRef
4.
Zurück zum Zitat M.R. Hormozi-Nezhad, E. Seyedhosseini, H. Robatjazi, C. Iranica, Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles. Sci. Iran. 19, 958–963 (2012)CrossRef M.R. Hormozi-Nezhad, E. Seyedhosseini, H. Robatjazi, C. Iranica, Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles. Sci. Iran. 19, 958–963 (2012)CrossRef
5.
Zurück zum Zitat X. Chen, C. Han, H. Cheng, Y. Wang, J. Liu, Z. Xu, L. Hu, Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry. J. Chromatogr. A 1314, 86–93 (2013)CrossRef X. Chen, C. Han, H. Cheng, Y. Wang, J. Liu, Z. Xu, L. Hu, Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry. J. Chromatogr. A 1314, 86–93 (2013)CrossRef
6.
Zurück zum Zitat H. Cheng, C. Wu, J. Liu, Z. Xu, Thiol-functionalized silica microspheres for online preconcentration and determination of mercury species in seawater by high performance liquid chromatography and inductively coupled plasma mass spectrometry. RSC Adv. 5, 19082–19090 (2015)CrossRef H. Cheng, C. Wu, J. Liu, Z. Xu, Thiol-functionalized silica microspheres for online preconcentration and determination of mercury species in seawater by high performance liquid chromatography and inductively coupled plasma mass spectrometry. RSC Adv. 5, 19082–19090 (2015)CrossRef
7.
Zurück zum Zitat A.L. Sanford, S.W. Morton, K.L. Whitehouse, H.M. Oara, L.Z. Lugo-Morales, J.G. Roberts, L.A. Sombers, Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal. Chem. 82(12), 5205–5210 (2010)CrossRef A.L. Sanford, S.W. Morton, K.L. Whitehouse, H.M. Oara, L.Z. Lugo-Morales, J.G. Roberts, L.A. Sombers, Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal. Chem. 82(12), 5205–5210 (2010)CrossRef
8.
Zurück zum Zitat Y. Ji, N. Leymarie, D.J. Haeussler, M.M. Bachschmid, C.E. Costello, C. Lin, Direct detection of S-palmitoylation by mass spectrometry. Anal. Chem. 85, 11952–11959 (2013)CrossRef Y. Ji, N. Leymarie, D.J. Haeussler, M.M. Bachschmid, C.E. Costello, C. Lin, Direct detection of S-palmitoylation by mass spectrometry. Anal. Chem. 85, 11952–11959 (2013)CrossRef
9.
Zurück zum Zitat V.A. Lemos, S. Novaes Gdos, A.L. de Carvalho, E.M. Gama, A.G. Santos, Determination of copper in biological samples by flame atomic absorption spectrometry after precipitation with Me-BTAP. Environ. Monit. Assess. 148, 245–253 (2009)CrossRef V.A. Lemos, S. Novaes Gdos, A.L. de Carvalho, E.M. Gama, A.G. Santos, Determination of copper in biological samples by flame atomic absorption spectrometry after precipitation with Me-BTAP. Environ. Monit. Assess. 148, 245–253 (2009)CrossRef
10.
Zurück zum Zitat N. Ding, Q. Cao, H. Zhao, Y. Yang, L. Zeng, Y. He, K. Xiang, G. Wang, Colorimetric assay for determination of lead(II) based on its incorporation into gold nanoparticles during their synthesis. Sensors 10, 11144–11155 (2010)CrossRef N. Ding, Q. Cao, H. Zhao, Y. Yang, L. Zeng, Y. He, K. Xiang, G. Wang, Colorimetric assay for determination of lead(II) based on its incorporation into gold nanoparticles during their synthesis. Sensors 10, 11144–11155 (2010)CrossRef
11.
Zurück zum Zitat J. Li, Y. Li, D. Xu, J. Zhang, Y. Wang, C. Luo, Determination of metrafenone in vegetables by matrix solid-phase dispersion and HPLC-UV method. Food Chem. 214, 77–81 (2017)CrossRef J. Li, Y. Li, D. Xu, J. Zhang, Y. Wang, C. Luo, Determination of metrafenone in vegetables by matrix solid-phase dispersion and HPLC-UV method. Food Chem. 214, 77–81 (2017)CrossRef
12.
Zurück zum Zitat X. Qu, Y. Li, L. Li, Y. Wang, J. Liang, J. Liang, Fluorescent gold nanoclusters: Synthesis and recent biological application. J. Nanomater. 2015, 784097 (2015) X. Qu, Y. Li, L. Li, Y. Wang, J. Liang, J. Liang, Fluorescent gold nanoclusters: Synthesis and recent biological application. J. Nanomater. 2015, 784097 (2015)
13.
Zurück zum Zitat J. Chena, X. Zhang, S. Cai, D. Wu, M. Chen, S. Wang, J. Zhang, A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens. Bioelectron. 57, 226–231 (2014)CrossRef J. Chena, X. Zhang, S. Cai, D. Wu, M. Chen, S. Wang, J. Zhang, A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens. Bioelectron. 57, 226–231 (2014)CrossRef
14.
Zurück zum Zitat C.A.J. Lin, C.H. Lee, J.T. Hsieh, H.H. Wang, J.K. Li, J.L. Shen, W.H. Chan, H.I. Yeh, W.H. Chang, Synthesis of fluorescent metallic nanoclusters toward biomedical application: Recent progress and present challenges. J. Med. Biol. Eng. 29(6), 276–283 (2009) C.A.J. Lin, C.H. Lee, J.T. Hsieh, H.H. Wang, J.K. Li, J.L. Shen, W.H. Chan, H.I. Yeh, W.H. Chang, Synthesis of fluorescent metallic nanoclusters toward biomedical application: Recent progress and present challenges. J. Med. Biol. Eng. 29(6), 276–283 (2009)
15.
Zurück zum Zitat P. Yu, X. Wen, Y.-R. Toh, X. Ma, J. Tang, Fluorescent metallic nanoclusters: Electron dynamics, structure, and application. Part. Part. Syst. Charact. 32, 142–163 (2015)CrossRef P. Yu, X. Wen, Y.-R. Toh, X. Ma, J. Tang, Fluorescent metallic nanoclusters: Electron dynamics, structure, and application. Part. Part. Syst. Charact. 32, 142–163 (2015)CrossRef
16.
Zurück zum Zitat R. Jin, Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2, 343–362 (2010)CrossRef R. Jin, Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2, 343–362 (2010)CrossRef
17.
Zurück zum Zitat Z. Wu, R. Jin, On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 10, 2568–2573 (2010)CrossRef Z. Wu, R. Jin, On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 10, 2568–2573 (2010)CrossRef
18.
Zurück zum Zitat C.M. Aikens, Electronic structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2, 99–104 (2011)CrossRef C.M. Aikens, Electronic structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2, 99–104 (2011)CrossRef
19.
Zurück zum Zitat P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 318, 430–433 (2007)CrossRef P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 318, 430–433 (2007)CrossRef
20.
Zurück zum Zitat M.W. Heaven, A. Dass, P.S. White, K.M. Holt, R.W.J. Murray, Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008)CrossRef M.W. Heaven, A. Dass, P.S. White, K.M. Holt, R.W.J. Murray, Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008)CrossRef
21.
Zurück zum Zitat C. Zeng, H. Qian, T. Li, G. Li, N.L. Rosi, B. Yoon, R.N. Barnett, R.L. Whetten, U. Landman, R. Jin, Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem. Int. Ed. 51, 13114–13118 (2012)CrossRef C. Zeng, H. Qian, T. Li, G. Li, N.L. Rosi, B. Yoon, R.N. Barnett, R.L. Whetten, U. Landman, R. Jin, Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem. Int. Ed. 51, 13114–13118 (2012)CrossRef
22.
Zurück zum Zitat Z. Luo, K. Zheng, J. Xie, Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 50, 5143–5155 (2014)CrossRef Z. Luo, K. Zheng, J. Xie, Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 50, 5143–5155 (2014)CrossRef
23.
Zurück zum Zitat R.W. Murray, Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008)CrossRef R.W. Murray, Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008)CrossRef
24.
Zurück zum Zitat C. Zeng, T. Li, A. Das, N.L. Rosi, R. Jin, Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 135, 10011–10013 (2013)CrossRef C. Zeng, T. Li, A. Das, N.L. Rosi, R. Jin, Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 135, 10011–10013 (2013)CrossRef
25.
Zurück zum Zitat M. Zhu, H. Qian, X. Meng, S. Jin, Z. Wu, R. Jin, Chiral Au25 nanospheres and nanorods: Synthesis and insight into the origin of chirality. Nano Lett. 11, 3963–3969 (2011)CrossRef M. Zhu, H. Qian, X. Meng, S. Jin, Z. Wu, R. Jin, Chiral Au25 nanospheres and nanorods: Synthesis and insight into the origin of chirality. Nano Lett. 11, 3963–3969 (2011)CrossRef
26.
Zurück zum Zitat P.-C. Chen, P. Roy, L.-Y. Chen, R. Ravindranth, H.-T. Chang, Gold and silver nanomaterials-based optical sensing systems. Part. Part. Syst. Charact. 31, 917–942 (2014)CrossRef P.-C. Chen, P. Roy, L.-Y. Chen, R. Ravindranth, H.-T. Chang, Gold and silver nanomaterials-based optical sensing systems. Part. Part. Syst. Charact. 31, 917–942 (2014)CrossRef
27.
Zurück zum Zitat J. Zheng, C. Zhou, M. Yu, J. Liu, Different sized luminescent gold nanoparticles. Nanoscale 4, 4073–4083 (2012)CrossRef J. Zheng, C. Zhou, M. Yu, J. Liu, Different sized luminescent gold nanoparticles. Nanoscale 4, 4073–4083 (2012)CrossRef
28.
Zurück zum Zitat A. Mooradian, Photoluminescence of metals. Phys. Rev. Lett. 22, 185–187 (1969)CrossRef A. Mooradian, Photoluminescence of metals. Phys. Rev. Lett. 22, 185–187 (1969)CrossRef
29.
Zurück zum Zitat D. Lee, R.L. Donkers, G. Wang, A.S. Harper, R.W. Murray, Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J. Am. Chem. Soc. 126, 6193–6199 (2004)CrossRef D. Lee, R.L. Donkers, G. Wang, A.S. Harper, R.W. Murray, Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J. Am. Chem. Soc. 126, 6193–6199 (2004)CrossRef
30.
Zurück zum Zitat J.P. Wilcoxon, B.L. Abrams, Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 35, 1162–1194 (2006)CrossRef J.P. Wilcoxon, B.L. Abrams, Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 35, 1162–1194 (2006)CrossRef
31.
Zurück zum Zitat Z. Yuan, Y. Du, Y.T. Tseng, M. Peng, N. Cai, Y. He, H.T. Chang, E.S. Yeung, Fluorescent gold nanodots based sensor array for proteins discrimination. Anal. Chem. 87, 4253–4259 (2015)CrossRef Z. Yuan, Y. Du, Y.T. Tseng, M. Peng, N. Cai, Y. He, H.T. Chang, E.S. Yeung, Fluorescent gold nanodots based sensor array for proteins discrimination. Anal. Chem. 87, 4253–4259 (2015)CrossRef
32.
Zurück zum Zitat M. Cui, Y. Zhao, Q. Song, Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. Trends Anal. Chem. 57, 73–82 (2014)CrossRef M. Cui, Y. Zhao, Q. Song, Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. Trends Anal. Chem. 57, 73–82 (2014)CrossRef
33.
Zurück zum Zitat S. Zhu, Y. Zhuo, H. Miao, D. Zhong, X. Yang, Detection of mercury(II) by DNA templated gold nanoclusters based on forming thymidine-Hg(2+)-thymidine duplexes. Luminescence 30, 631–636 (2015)CrossRef S. Zhu, Y. Zhuo, H. Miao, D. Zhong, X. Yang, Detection of mercury(II) by DNA templated gold nanoclusters based on forming thymidine-Hg(2+)-thymidine duplexes. Luminescence 30, 631–636 (2015)CrossRef
34.
Zurück zum Zitat V. Venkatesh, A. Shukla, S. Sivakumar, S. Verma, Purine-stabilized green fluorescent gold nanoclusters for cell nuclei imaging applications. ACS Appl. Mater. Interfaces 6(3), 2185–2191 (2014)CrossRef V. Venkatesh, A. Shukla, S. Sivakumar, S. Verma, Purine-stabilized green fluorescent gold nanoclusters for cell nuclei imaging applications. ACS Appl. Mater. Interfaces 6(3), 2185–2191 (2014)CrossRef
35.
Zurück zum Zitat H. Duan, S. Nie, Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 129(9), 2412–2413 (2007)CrossRef H. Duan, S. Nie, Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 129(9), 2412–2413 (2007)CrossRef
36.
Zurück zum Zitat T.-H. Chen, L. C-Y, W.-L. Tseng, One-pot synthesis of two-sized clusters for ratiometric sensing of Hg2+. Talanta 117, 258–262 (2013)CrossRef T.-H. Chen, L. C-Y, W.-L. Tseng, One-pot synthesis of two-sized clusters for ratiometric sensing of Hg2+. Talanta 117, 258–262 (2013)CrossRef
37.
Zurück zum Zitat S. Xu, H. Yang, K. Zhao, J. Li, L. Mei, Y. Xie, A. Deng, Simple and rapid preparation of orange-yellow fluorescent gold nanoclusters using DL-homocysteine as a reducing/stabilizing reagent and their application in cancer cell imaging. RSC Adv. 5, 11343–11348 (2015)CrossRef S. Xu, H. Yang, K. Zhao, J. Li, L. Mei, Y. Xie, A. Deng, Simple and rapid preparation of orange-yellow fluorescent gold nanoclusters using DL-homocysteine as a reducing/stabilizing reagent and their application in cancer cell imaging. RSC Adv. 5, 11343–11348 (2015)CrossRef
38.
Zurück zum Zitat T.U.B. Rao, T. Pradeep, Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed. 49, 3925–3929 (2010)CrossRef T.U.B. Rao, T. Pradeep, Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed. 49, 3925–3929 (2010)CrossRef
39.
Zurück zum Zitat J. Zheng, C. Zhang, R.M. Dickson, Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93, 77402 (2004)CrossRef J. Zheng, C. Zhang, R.M. Dickson, Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93, 77402 (2004)CrossRef
40.
Zurück zum Zitat Y. Lu, W. Chen, Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41, 3594–3623 (2012)CrossRef Y. Lu, W. Chen, Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41, 3594–3623 (2012)CrossRef
41.
Zurück zum Zitat X. Yuan, Z. Luo, Y. Yu, Q. Yao, J. Xie, Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 8, 858–871 (2013)CrossRef X. Yuan, Z. Luo, Y. Yu, Q. Yao, J. Xie, Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 8, 858–871 (2013)CrossRef
42.
Zurück zum Zitat X.-H. Zhang, T.-Y. Zhou, X. Chen, Applications of metal nanoclusters in environmental monitoring. Chinese J. Anal. Chem. 43(9), 1296–1305 (2015)CrossRef X.-H. Zhang, T.-Y. Zhou, X. Chen, Applications of metal nanoclusters in environmental monitoring. Chinese J. Anal. Chem. 43(9), 1296–1305 (2015)CrossRef
43.
Zurück zum Zitat L. Shang, S. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6(4), 401–418 (2011)CrossRef L. Shang, S. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6(4), 401–418 (2011)CrossRef
44.
Zurück zum Zitat L. Shang, R.M. Dörlich, S. Brandholt, R. Schneider, V. Trouillet, M. Bruns, D. Gerthsen, G.U. Nienhaus, Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 3(5), 2009–2014 (2011)CrossRef L. Shang, R.M. Dörlich, S. Brandholt, R. Schneider, V. Trouillet, M. Bruns, D. Gerthsen, G.U. Nienhaus, Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 3(5), 2009–2014 (2011)CrossRef
45.
Zurück zum Zitat A. Mathew, T. Pradeep, Noble metal clusters: Applications in energy, environment, and biology. Part. Part. Syst. Charact. 31(10), 1017–1053 (2014)CrossRef A. Mathew, T. Pradeep, Noble metal clusters: Applications in energy, environment, and biology. Part. Part. Syst. Charact. 31(10), 1017–1053 (2014)CrossRef
46.
Zurück zum Zitat J. Sun, Y. Jin, Fluorescent au nanoclusters: Recent progress and sensing applications. J. Mater. Chem. C 2, 8000–8011 (2014)CrossRef J. Sun, Y. Jin, Fluorescent au nanoclusters: Recent progress and sensing applications. J. Mater. Chem. C 2, 8000–8011 (2014)CrossRef
47.
Zurück zum Zitat L. Zhang, E. Wang, Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 9, 132–157 (2014)CrossRef L. Zhang, E. Wang, Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 9, 132–157 (2014)CrossRef
49.
Zurück zum Zitat Y. Qiao, Y. Zhang, C. Zhang, L. Shi, G. Zhang, S. Shuang, C. Dong, H. Ma, Water-soluble gold nanoclusters-based fluorescence probe for highly selective and sensitive detection of Hg2+. Sens. Actuators B Chem. 224, 458–464 (2016)CrossRef Y. Qiao, Y. Zhang, C. Zhang, L. Shi, G. Zhang, S. Shuang, C. Dong, H. Ma, Water-soluble gold nanoclusters-based fluorescence probe for highly selective and sensitive detection of Hg2+. Sens. Actuators B Chem. 224, 458–464 (2016)CrossRef
50.
Zurück zum Zitat S. Xu, X. Li, Y. Mao, T. Gao, X. Feng, X. Luo, Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg(2+) and oxytetracycline. Anal. Bioanal. Chem. 408, 2955–2962 (2016)CrossRef S. Xu, X. Li, Y. Mao, T. Gao, X. Feng, X. Luo, Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg(2+) and oxytetracycline. Anal. Bioanal. Chem. 408, 2955–2962 (2016)CrossRef
51.
Zurück zum Zitat Y. Yan, H. Yu, K. Zhang, M. Sun, Y. Zhang, X. Wang, S. Wang, Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res. 9(7), 2088–2096 (2016)CrossRef Y. Yan, H. Yu, K. Zhang, M. Sun, Y. Zhang, X. Wang, S. Wang, Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res. 9(7), 2088–2096 (2016)CrossRef
52.
Zurück zum Zitat N.-Y. Hsu, Y.-W. Lin, Microwave-assisted synthesis of bovine serum albumin–gold nanoclusters and their fluorescence-quenched sensing of Hg2+ ions. New J. Chem. 40, 1155–1161 (2016)CrossRef N.-Y. Hsu, Y.-W. Lin, Microwave-assisted synthesis of bovine serum albumin–gold nanoclusters and their fluorescence-quenched sensing of Hg2+ ions. New J. Chem. 40, 1155–1161 (2016)CrossRef
53.
Zurück zum Zitat Y. Wang, Y. Cui, R. Liu, F. Gao, L. Gao, X. Gao, Bio-inspired peptide-Au cluster applied for mercury(II) ions detection. Sci. China Chem. 58(5), 819–824 (2015)CrossRef Y. Wang, Y. Cui, R. Liu, F. Gao, L. Gao, X. Gao, Bio-inspired peptide-Au cluster applied for mercury(II) ions detection. Sci. China Chem. 58(5), 819–824 (2015)CrossRef
54.
Zurück zum Zitat C. Zhang, Z. Guo, G. Chen, G. Zeng, M. Yan, Q. Niu, L. Liu, Y. Zuo, Z. Huang, Q. Tan, Green-emitting fluorescence Ag clusters: Facile synthesis and sensors for Hg2+ detection. New J. Chem. 40, 1175–1181 (2016)CrossRef C. Zhang, Z. Guo, G. Chen, G. Zeng, M. Yan, Q. Niu, L. Liu, Y. Zuo, Z. Huang, Q. Tan, Green-emitting fluorescence Ag clusters: Facile synthesis and sensors for Hg2+ detection. New J. Chem. 40, 1175–1181 (2016)CrossRef
55.
Zurück zum Zitat D. Li, B. Li, G. Lee, S.I. Yang, Facile synthesis of fluorescent silver nanoclusters as simultaneous detection and remediation for Hg2+. Bull. Kor. Chem. Soc. 36, 1703–1706 (2015)CrossRef D. Li, B. Li, G. Lee, S.I. Yang, Facile synthesis of fluorescent silver nanoclusters as simultaneous detection and remediation for Hg2+. Bull. Kor. Chem. Soc. 36, 1703–1706 (2015)CrossRef
56.
Zurück zum Zitat J. Peng, J. Ling, X.Q. Zhang, H.P. Bai, L. Zheng, Q.E. Cao, Z. Ding, Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization. Spectrochim. Acta A 137, 1250–1257 (2015)CrossRef J. Peng, J. Ling, X.Q. Zhang, H.P. Bai, L. Zheng, Q.E. Cao, Z. Ding, Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization. Spectrochim. Acta A 137, 1250–1257 (2015)CrossRef
57.
Zurück zum Zitat X. Liu, L. Wang, N. Zhang, D. Shangguan, Ratiometric fluorescent silver nanoclusters for the determination of mercury and copper ions. Anal. Methods 7, 8019–8024 (2015)CrossRef X. Liu, L. Wang, N. Zhang, D. Shangguan, Ratiometric fluorescent silver nanoclusters for the determination of mercury and copper ions. Anal. Methods 7, 8019–8024 (2015)CrossRef
58.
Zurück zum Zitat D. Lu, Z. Chen, Y. Li, J. Yang, S. Shuang, C. Dong, Determination of mercury(II) by fluorescence using deoxyribonucleic acid stabilized silver nanoclusters. Anal. Lett. 48, 281–290 (2015)CrossRef D. Lu, Z. Chen, Y. Li, J. Yang, S. Shuang, C. Dong, Determination of mercury(II) by fluorescence using deoxyribonucleic acid stabilized silver nanoclusters. Anal. Lett. 48, 281–290 (2015)CrossRef
59.
Zurück zum Zitat M. Xu, Z. Gao, Q. Wei, G. Chen, D. Tang, Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification. Biosens. Bioelectron. 79, 411–415 (2016)CrossRef M. Xu, Z. Gao, Q. Wei, G. Chen, D. Tang, Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification. Biosens. Bioelectron. 79, 411–415 (2016)CrossRef
60.
Zurück zum Zitat X.-F. Wang, L.-P. Xiang, Y.-S. Wang, J.-H. Xue, Y.-F. Zhu, Y.-Q. Huang, S.-H. Chen, X. Tang, A “turn-on” fluorescence assay for lead(II) based on the suppression of the surface energy transfer between acridine orange and gold nanoparticles. Microchim. Acta 182, 695–701 (2015)CrossRef X.-F. Wang, L.-P. Xiang, Y.-S. Wang, J.-H. Xue, Y.-F. Zhu, Y.-Q. Huang, S.-H. Chen, X. Tang, A “turn-on” fluorescence assay for lead(II) based on the suppression of the surface energy transfer between acridine orange and gold nanoparticles. Microchim. Acta 182, 695–701 (2015)CrossRef
61.
Zurück zum Zitat Z. Yuan, M. Peng, Y. He, E.S. Yeung, Functionalized fluorescent gold nanodots: Synthesis and application for Pb2+ sensing. Chem. Commun. 47, 11981–11983 (2011)CrossRef Z. Yuan, M. Peng, Y. He, E.S. Yeung, Functionalized fluorescent gold nanodots: Synthesis and application for Pb2+ sensing. Chem. Commun. 47, 11981–11983 (2011)CrossRef
62.
Zurück zum Zitat F. Ma, S. Liang, Y. Peng, Y. Kuang, X. Zhang, S. Chen, Y. Long, R. Zeng, Copper ion detection using novel silver nanoclusters stabilized with amido black 10B. Anal. Bioanal. Chem. 408, 3239–3246 (2016)CrossRef F. Ma, S. Liang, Y. Peng, Y. Kuang, X. Zhang, S. Chen, Y. Long, R. Zeng, Copper ion detection using novel silver nanoclusters stabilized with amido black 10B. Anal. Bioanal. Chem. 408, 3239–3246 (2016)CrossRef
63.
Zurück zum Zitat J. Zhang, Y. Yuan, Y. Wang, F. Sun, G. Liang, Z. Jiang, Y. S-H, Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res. 8(7), 2329–2339 (2015)CrossRef J. Zhang, Y. Yuan, Y. Wang, F. Sun, G. Liang, Z. Jiang, Y. S-H, Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res. 8(7), 2329–2339 (2015)CrossRef
64.
Zurück zum Zitat H.H. Deng, L.N. Zhang, S.B. He, A.L. Liu, G.W. Li, X.H. Lin, X.H. Xia, W. Chen, Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu(2+) sensing. Biosens. Bioelectron. 65, 397–403 (2015)CrossRef H.H. Deng, L.N. Zhang, S.B. He, A.L. Liu, G.W. Li, X.H. Lin, X.H. Xia, W. Chen, Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu(2+) sensing. Biosens. Bioelectron. 65, 397–403 (2015)CrossRef
65.
Zurück zum Zitat M. Shamsipur, F. Molaabasi, M. Shanehsaz, A.A. Moosavi-Movahedi, Novel blue-emitting gold nanoclusters confined in human hemoglobin, and their use as fluorescent probes for copper(II) and histidine. Microchim. Acta 182, 1131–1141 (2015)CrossRef M. Shamsipur, F. Molaabasi, M. Shanehsaz, A.A. Moosavi-Movahedi, Novel blue-emitting gold nanoclusters confined in human hemoglobin, and their use as fluorescent probes for copper(II) and histidine. Microchim. Acta 182, 1131–1141 (2015)CrossRef
66.
Zurück zum Zitat Y. Chang, Z. Zhang, J. Hao, W. Yang, J. Tang, BSA-stabilized au clusters as peroxidase mimetic for colorimetric detection of Ag+. Sens. Actuators B Chem. 232, 692–697 (2016)CrossRef Y. Chang, Z. Zhang, J. Hao, W. Yang, J. Tang, BSA-stabilized au clusters as peroxidase mimetic for colorimetric detection of Ag+. Sens. Actuators B Chem. 232, 692–697 (2016)CrossRef
67.
Zurück zum Zitat Y. Yue, T.Y. Liu, H.W. Li, Z. Liu, Y. Wu, Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 4, 2251–2254 (2012)CrossRef Y. Yue, T.Y. Liu, H.W. Li, Z. Liu, Y. Wu, Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 4, 2251–2254 (2012)CrossRef
68.
Zurück zum Zitat M.A.E. Francos, R. Badía-Laíño, M.E. Díaz-García, Fluorescence sensitization of gold-glutathione nanoclusters by aqueous solutions of sodium and potassium ions. Microchim. Acta 182, 1591–1598 (2015)CrossRef M.A.E. Francos, R. Badía-Laíño, M.E. Díaz-García, Fluorescence sensitization of gold-glutathione nanoclusters by aqueous solutions of sodium and potassium ions. Microchim. Acta 182, 1591–1598 (2015)CrossRef
69.
Zurück zum Zitat P. Brissot, M. Ropert, C.L. Lan, O. Loreal, Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochim. Biophys. Acta 1820, 403–410 (2012)CrossRef P. Brissot, M. Ropert, C.L. Lan, O. Loreal, Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochim. Biophys. Acta 1820, 403–410 (2012)CrossRef
70.
Zurück zum Zitat T. Chen, Y. Hu, Y. Cen, X. Chu, Y. Lu, A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J. Am. Chem. Soc. 135, 11595–11602 (2013)CrossRef T. Chen, Y. Hu, Y. Cen, X. Chu, Y. Lu, A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J. Am. Chem. Soc. 135, 11595–11602 (2013)CrossRef
71.
Zurück zum Zitat S. Yang, Z. Jiang, Z. Chen, L. Tong, J. Lu, J. Wang, Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchim. Acta 182, 1911–1916 (2015)CrossRef S. Yang, Z. Jiang, Z. Chen, L. Tong, J. Lu, J. Wang, Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchim. Acta 182, 1911–1916 (2015)CrossRef
72.
Zurück zum Zitat X. Mu, L. Qi, P. Dong, J. Qiao, J. Hou, Z. Nie, H. Ma, Facile one-pot synthesis of L-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens. Bioelectron. 49, 249–255 (2013)CrossRef X. Mu, L. Qi, P. Dong, J. Qiao, J. Hou, Z. Nie, H. Ma, Facile one-pot synthesis of L-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens. Bioelectron. 49, 249–255 (2013)CrossRef
73.
Zurück zum Zitat J.A. Ho, H.C. Chang, W.T. Su, DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal. Chem. 84, 3246–3253 (2012)CrossRef J.A. Ho, H.C. Chang, W.T. Su, DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal. Chem. 84, 3246–3253 (2012)CrossRef
74.
Zurück zum Zitat S. Roy, G. Palui, A. Banerjee, The as-prepared gold cluster-based fluorescent sensor for the selective detection of As(III) ions in aqueous solution. Nanoscale 4, 2734–2740 (2012)CrossRef S. Roy, G. Palui, A. Banerjee, The as-prepared gold cluster-based fluorescent sensor for the selective detection of As(III) ions in aqueous solution. Nanoscale 4, 2734–2740 (2012)CrossRef
75.
Zurück zum Zitat J. Sun, J. Zhang, Y. Jin, 11-Mercaptoundecanoic acid directed one-pot synthesis of water-soluble fluorescent gold nanoclusters and their use as probes for sensitive and selective detection of Cr3+ and Cr6+. J. Mater. Chem. C 1, 138–143 (2013)CrossRef J. Sun, J. Zhang, Y. Jin, 11-Mercaptoundecanoic acid directed one-pot synthesis of water-soluble fluorescent gold nanoclusters and their use as probes for sensitive and selective detection of Cr3+ and Cr6+. J. Mater. Chem. C 1, 138–143 (2013)CrossRef
76.
Zurück zum Zitat C.W. Wang, Y.N. Chen, B.Y. Wu, C.K. Lee, Y.C. Chen, Y.H. Huang, H.T. Chang, Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal. Bioanal. Chem. 408, 287–294 (2016)CrossRef C.W. Wang, Y.N. Chen, B.Y. Wu, C.K. Lee, Y.C. Chen, Y.H. Huang, H.T. Chang, Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal. Bioanal. Chem. 408, 287–294 (2016)CrossRef
77.
Zurück zum Zitat N. Vasimalai, M.T. Fernandez-Arguelles, Novel one-pot and facile room temperature synthesis of gold nanodots and application as highly sensitive and selective probes for cyanide detection. Nanotechnology 27, 475505 (2016)CrossRef N. Vasimalai, M.T. Fernandez-Arguelles, Novel one-pot and facile room temperature synthesis of gold nanodots and application as highly sensitive and selective probes for cyanide detection. Nanotechnology 27, 475505 (2016)CrossRef
78.
Zurück zum Zitat H. Sun, D. Lu, M. Xian, C. Dong, S. Shuang, A lysozyme-stabilized silver nanocluster fluorescent probe for the detection of sulfide ions. Anal. Methods 8, 4328–4333 (2016)CrossRef H. Sun, D. Lu, M. Xian, C. Dong, S. Shuang, A lysozyme-stabilized silver nanocluster fluorescent probe for the detection of sulfide ions. Anal. Methods 8, 4328–4333 (2016)CrossRef
79.
Zurück zum Zitat L. Wang, G. Chen, G. Zeng, J. Liang, H. Dong, M. Yan, Z. Li, Z. Guo, W. Tao, L. Peng, Fluorescent sensing of sulfide ions based on papain-directed gold nanoclusters. New J. Chem. 39, 9306–9312 (2015)CrossRef L. Wang, G. Chen, G. Zeng, J. Liang, H. Dong, M. Yan, Z. Li, Z. Guo, W. Tao, L. Peng, Fluorescent sensing of sulfide ions based on papain-directed gold nanoclusters. New J. Chem. 39, 9306–9312 (2015)CrossRef
80.
Zurück zum Zitat R. Li, P. Xu, Y. Tu, J. Yan, Albumin-stabilized gold nanoclusters as viable fluorescent probes in non-titrimetric iodometry for the detection of oxidizing analytes. Microchim. Acta 183, 497–502 (2016)CrossRef R. Li, P. Xu, Y. Tu, J. Yan, Albumin-stabilized gold nanoclusters as viable fluorescent probes in non-titrimetric iodometry for the detection of oxidizing analytes. Microchim. Acta 183, 497–502 (2016)CrossRef
81.
Zurück zum Zitat R. Li, P. Xu, J. Fan, J. Di, Y. Tu, J. Yan, Sensitive iodate sensor based on fluorescence quenching of gold nanocluster. Anal. Chim. Acta 827, 80–85 (2014)CrossRef R. Li, P. Xu, J. Fan, J. Di, Y. Tu, J. Yan, Sensitive iodate sensor based on fluorescence quenching of gold nanocluster. Anal. Chim. Acta 827, 80–85 (2014)CrossRef
82.
Zurück zum Zitat F. Qu, N.B. Li, H.Q. Luo, Polyethyleneimine-templated ag nanoclusters: A new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal. Chem. 84(23), 10373–10379 (2012)CrossRef F. Qu, N.B. Li, H.Q. Luo, Polyethyleneimine-templated ag nanoclusters: A new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal. Chem. 84(23), 10373–10379 (2012)CrossRef
83.
Zurück zum Zitat B. Unnikrishnan, S.C. Wei, W.J. Chiu, J. Cang, P.H. Hsu, C.C. Huang, Nitrite ion-induced fluorescence quenching of luminescent BSA-Au(25) nanoclusters: Mechanism and application. Analyst 139, 2221–2228 (2014)CrossRef B. Unnikrishnan, S.C. Wei, W.J. Chiu, J. Cang, P.H. Hsu, C.C. Huang, Nitrite ion-induced fluorescence quenching of luminescent BSA-Au(25) nanoclusters: Mechanism and application. Analyst 139, 2221–2228 (2014)CrossRef
84.
Zurück zum Zitat X. Wang, P. Wu, X. Hou, Y. Lv, An ascorbic acid sensor based on protein-modified Au nanoclusters. Analyst 138, 229–233 (2013)CrossRef X. Wang, P. Wu, X. Hou, Y. Lv, An ascorbic acid sensor based on protein-modified Au nanoclusters. Analyst 138, 229–233 (2013)CrossRef
85.
Zurück zum Zitat C.-W. Chen, C.-H. Wang, C.-M. Wei, C.-Y. Hsieh, Y.-T. Chen, Y.-F. Chen, C.-W. Lai, C.-L. Liu, C.-C. Hsieh, P.-T. Chou, Highly sensitive emission sensor based on surface plasmon enhanced energy transfer between gold nanoclusters and silver nanoparticles. J. Phys. Chem. C 114, 799–802 (2010)CrossRef C.-W. Chen, C.-H. Wang, C.-M. Wei, C.-Y. Hsieh, Y.-T. Chen, Y.-F. Chen, C.-W. Lai, C.-L. Liu, C.-C. Hsieh, P.-T. Chou, Highly sensitive emission sensor based on surface plasmon enhanced energy transfer between gold nanoclusters and silver nanoparticles. J. Phys. Chem. C 114, 799–802 (2010)CrossRef
86.
Zurück zum Zitat J.M. Liu, J.T. Chen, X.P. Yan, Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem. 85, 3238–3245 (2013)CrossRef J.M. Liu, J.T. Chen, X.P. Yan, Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem. 85, 3238–3245 (2013)CrossRef
87.
Zurück zum Zitat X. Yan, H. Li, B. Cao, Z. Ding, X. Su, A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection. Microchim. Acta 182, 1281–1288 (2015)CrossRef X. Yan, H. Li, B. Cao, Z. Ding, X. Su, A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection. Microchim. Acta 182, 1281–1288 (2015)CrossRef
88.
Zurück zum Zitat H. Li, Y. Cheng, Y. Liu, B. Chen, Fabrication of folic acid-sensitive gold nanoclusters for turn-on fluorescent imaging of overexpression of folate receptor in tumor cells. Talanta 158, 118–124 (2016)CrossRef H. Li, Y. Cheng, Y. Liu, B. Chen, Fabrication of folic acid-sensitive gold nanoclusters for turn-on fluorescent imaging of overexpression of folate receptor in tumor cells. Talanta 158, 118–124 (2016)CrossRef
89.
Zurück zum Zitat T. Shu, L. Su, J. Wang, C. Li, X. Zhang, Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free detection of cysteamine. Biosens. Bioelectron. 66, 155–161 (2015)CrossRef T. Shu, L. Su, J. Wang, C. Li, X. Zhang, Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free detection of cysteamine. Biosens. Bioelectron. 66, 155–161 (2015)CrossRef
90.
Zurück zum Zitat X. Xu, J. Qiao, N. Li, L. Qi, S. Zhang, Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs. Anal. Chim. Acta 879, 97–103 (2015)CrossRef X. Xu, J. Qiao, N. Li, L. Qi, S. Zhang, Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs. Anal. Chim. Acta 879, 97–103 (2015)CrossRef
91.
Zurück zum Zitat Z.-X. Wang, S.-N. Ding, E.Y.J. Narjh, Determination of thiols by fluorescence using au@ag nanoclusters as probes. Anal. Lett. 48, 647–658 (2015)CrossRef Z.-X. Wang, S.-N. Ding, E.Y.J. Narjh, Determination of thiols by fluorescence using au@ag nanoclusters as probes. Anal. Lett. 48, 647–658 (2015)CrossRef
92.
Zurück zum Zitat S. Xu, T. Gao, X. Feng, Y. Mao, P. Liu, X. Yu, X. Luo, Dual ligand co-functionalized fluorescent gold nanoclusters for the “turn on” sensing of glutathione in tumor cells. J. Mater. Chem. B 4, 1270–1275 (2016)CrossRef S. Xu, T. Gao, X. Feng, Y. Mao, P. Liu, X. Yu, X. Luo, Dual ligand co-functionalized fluorescent gold nanoclusters for the “turn on” sensing of glutathione in tumor cells. J. Mater. Chem. B 4, 1270–1275 (2016)CrossRef
93.
Zurück zum Zitat D. Tian, Z. Qian, Y. Xia, C. Zhu, Gold nanocluster-based fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells. Langmuir 28, 3945–3951 (2012)CrossRef D. Tian, Z. Qian, Y. Xia, C. Zhu, Gold nanocluster-based fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells. Langmuir 28, 3945–3951 (2012)CrossRef
94.
Zurück zum Zitat L. Hu, S. Han, S. Parveen, Y. Yuan, L. Zhang, G. Xu, Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens. Bioelectron. 32, 297–299 (2012)CrossRef L. Hu, S. Han, S. Parveen, Y. Yuan, L. Zhang, G. Xu, Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens. Bioelectron. 32, 297–299 (2012)CrossRef
95.
Zurück zum Zitat G.L. Wang, L.Y. Jin, Y.M. Dong, X.M. Wu, Z.J. Li, Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosens. Bioelectron. 64, 523–529 (2015)CrossRef G.L. Wang, L.Y. Jin, Y.M. Dong, X.M. Wu, Z.J. Li, Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosens. Bioelectron. 64, 523–529 (2015)CrossRef
96.
Zurück zum Zitat X. Jiang, D.-Q. Feng, G. Liu, D. Fan, W. Wang, A fluorescent switch sensor for detection of anticancer drug and ctDNA based on the glutathione stabilized gold nanoclusters. Sens. Actuators B Chem. 232, 276–282 (2016)CrossRef X. Jiang, D.-Q. Feng, G. Liu, D. Fan, W. Wang, A fluorescent switch sensor for detection of anticancer drug and ctDNA based on the glutathione stabilized gold nanoclusters. Sens. Actuators B Chem. 232, 276–282 (2016)CrossRef
97.
Zurück zum Zitat Y. Zhu, X.C. Hu, S. Shi, R.R. Gao, H.L. Huang, Y.Y. Zhu, X.Y. Lv, T.M. Yao, Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens. Bioelectron. 79, 205–212 (2016)CrossRef Y. Zhu, X.C. Hu, S. Shi, R.R. Gao, H.L. Huang, Y.Y. Zhu, X.Y. Lv, T.M. Yao, Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens. Bioelectron. 79, 205–212 (2016)CrossRef
98.
Zurück zum Zitat P.H. Li, J.Y. Lin, C.T. Chen, W.R. Ciou, P.H. Chan, L. Luo, H.Y. Hsu, E.W. Diau, Y.C. Chen, Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites. Anal. Chem. 84, 5484–5488 (2012)CrossRef P.H. Li, J.Y. Lin, C.T. Chen, W.R. Ciou, P.H. Chan, L. Luo, H.Y. Hsu, E.W. Diau, Y.C. Chen, Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites. Anal. Chem. 84, 5484–5488 (2012)CrossRef
99.
Zurück zum Zitat S. Liu, H. Wang, Z. Cheng, H. Liu, Facile synthesis of near infrared fluorescent trypsin-stabilized Ag nanoclusters with tunable emission for 1,4-dihydronicotinamide adenine dinucleotide and ethanol sensing. Anal. Chim. Acta 886, 151–156 (2015)CrossRef S. Liu, H. Wang, Z. Cheng, H. Liu, Facile synthesis of near infrared fluorescent trypsin-stabilized Ag nanoclusters with tunable emission for 1,4-dihydronicotinamide adenine dinucleotide and ethanol sensing. Anal. Chim. Acta 886, 151–156 (2015)CrossRef
100.
Zurück zum Zitat L.Y. Chen, C.C. Huang, W.Y. Chen, H.J. Lin, H.T. Chang, Using photoluminescent gold nanodots to detect hemoglobin in diluted blood samples. Biosens. Bioelectron. 43, 38–44 (2013)CrossRef L.Y. Chen, C.C. Huang, W.Y. Chen, H.J. Lin, H.T. Chang, Using photoluminescent gold nanodots to detect hemoglobin in diluted blood samples. Biosens. Bioelectron. 43, 38–44 (2013)CrossRef
101.
Zurück zum Zitat X. Chen, G.A. Baker, Cholesterol determination using protein-templated fluorescent gold nanocluster probes. Analyst 138, 7299–7302 (2013)CrossRef X. Chen, G.A. Baker, Cholesterol determination using protein-templated fluorescent gold nanocluster probes. Analyst 138, 7299–7302 (2013)CrossRef
102.
Zurück zum Zitat J. Wang, Y. Chang, W.B. Wu, P. Zhang, S.Q. Lie, C.Z. Huang, Label-free and selective sensing of uric acid with gold nanoclusters as optical probe. Talanta 152, 314–320 (2016)CrossRef J. Wang, Y. Chang, W.B. Wu, P. Zhang, S.Q. Lie, C.Z. Huang, Label-free and selective sensing of uric acid with gold nanoclusters as optical probe. Talanta 152, 314–320 (2016)CrossRef
103.
Zurück zum Zitat P. Xu, R. Li, Y. Tu, J. Yan, A gold nanocluster-based sensor for sensitive uric acid detection. Talanta 144, 704–709 (2015)CrossRef P. Xu, R. Li, Y. Tu, J. Yan, A gold nanocluster-based sensor for sensitive uric acid detection. Talanta 144, 704–709 (2015)CrossRef
104.
Zurück zum Zitat Y. Tao, Y. Lin, J. Ren, X. Qu, A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 42, 41–46 (2013)CrossRef Y. Tao, Y. Lin, J. Ren, X. Qu, A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 42, 41–46 (2013)CrossRef
105.
Zurück zum Zitat Y. Teng, X. Jia, J. Li, E. Wang, Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal. Chem. 87, 4897–4902 (2015)CrossRef Y. Teng, X. Jia, J. Li, E. Wang, Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal. Chem. 87, 4897–4902 (2015)CrossRef
106.
Zurück zum Zitat J. Sun, F. Yang, X. Yang, Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing. Nanoscale 7, 16372–16380 (2015)CrossRef J. Sun, F. Yang, X. Yang, Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing. Nanoscale 7, 16372–16380 (2015)CrossRef
107.
Zurück zum Zitat Y. Xu, P.E. Pehrsson, L. Chen, R. Zhang, W. Zhao, Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J. Phys. Chem. C 111, 8638–8643 (2007)CrossRef Y. Xu, P.E. Pehrsson, L. Chen, R. Zhang, W. Zhao, Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J. Phys. Chem. C 111, 8638–8643 (2007)CrossRef
108.
Zurück zum Zitat J. Lu, R.F. Bu, Z.L. Sun, Q.S. Lu, H. Jin, Y. Wang, S.H. Wang, L. Li, Z.L. Xie, B.Q. Yang, Comparable efficacy of self-monitoring of quantitative urine glucose with self-monitoring of blood glucose on glycaemic control in non-insulin-treated type 2 diabetes. Diabetes Res. Clin. Pract. 93, 179–186 (2011)CrossRef J. Lu, R.F. Bu, Z.L. Sun, Q.S. Lu, H. Jin, Y. Wang, S.H. Wang, L. Li, Z.L. Xie, B.Q. Yang, Comparable efficacy of self-monitoring of quantitative urine glucose with self-monitoring of blood glucose on glycaemic control in non-insulin-treated type 2 diabetes. Diabetes Res. Clin. Pract. 93, 179–186 (2011)CrossRef
109.
Zurück zum Zitat X. Jiang, C. Sun, Y. Guo, G. Nie, L. Xu, Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens. Bioelectron. 64, 165–170 (2015)CrossRef X. Jiang, C. Sun, Y. Guo, G. Nie, L. Xu, Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens. Bioelectron. 64, 165–170 (2015)CrossRef
110.
Zurück zum Zitat L. Jin, L. Shang, S. Guo, Y. Fang, D. Wen, L. Wang, J. Yin, S. Dong, Biomolecule-stabilized au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens. Bioelectron. 26, 1965–1969 (2011)CrossRef L. Jin, L. Shang, S. Guo, Y. Fang, D. Wen, L. Wang, J. Yin, S. Dong, Biomolecule-stabilized au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens. Bioelectron. 26, 1965–1969 (2011)CrossRef
111.
Zurück zum Zitat L.-L. Wang, J. Qiao, L. Qi, X.-Z. Xu, D. Li, Construction of OVA-stabilized fluorescent gold nanoclusters for sensing glucose. Sci. China Chem. 58(9), 1508–1514 (2015)CrossRef L.-L. Wang, J. Qiao, L. Qi, X.-Z. Xu, D. Li, Construction of OVA-stabilized fluorescent gold nanoclusters for sensing glucose. Sci. China Chem. 58(9), 1508–1514 (2015)CrossRef
112.
Zurück zum Zitat X. Xia, Y. Long, J. Wang, Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Anal. Chim. Acta 772, 81–86 (2013)CrossRef X. Xia, Y. Long, J. Wang, Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Anal. Chim. Acta 772, 81–86 (2013)CrossRef
113.
Zurück zum Zitat F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang, X. Zhang, Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 83, 1193–1196 (2011)CrossRef F. Wen, Y. Dong, L. Feng, S. Wang, S. Zhang, X. Zhang, Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 83, 1193–1196 (2011)CrossRef
114.
Zurück zum Zitat M. Dasog, R.W.J. Scott, Understanding the oxidative stability of gold monolayer-protected clusters in the presence of halide ions under ambient conditions. Langmuir 23, 3381–3387 (2007)CrossRef M. Dasog, R.W.J. Scott, Understanding the oxidative stability of gold monolayer-protected clusters in the presence of halide ions under ambient conditions. Langmuir 23, 3381–3387 (2007)CrossRef
115.
Zurück zum Zitat Y.C. Shiang, C.C. Huang, H.T. Chang, Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem. Commun. 23, 3437–3439 (2009) Y.C. Shiang, C.C. Huang, H.T. Chang, Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem. Commun. 23, 3437–3439 (2009)
116.
Zurück zum Zitat T. Das, D.K. Poria, P. Purkayastha, NIR-emitting chiral gold nanoclusters coated with γ-cyclodextrin are pH sensitive: Application as biomarker. Nanomed. Nanotech. Biol. Med. 12, 1105–1112 (2016) T. Das, D.K. Poria, P. Purkayastha, NIR-emitting chiral gold nanoclusters coated with γ-cyclodextrin are pH sensitive: Application as biomarker. Nanomed. Nanotech. Biol. Med. 12, 1105–1112 (2016)
117.
Zurück zum Zitat C. Ding, Y. Tian, Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens. Bioelectron. 65, 183–190 (2015)CrossRef C. Ding, Y. Tian, Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens. Bioelectron. 65, 183–190 (2015)CrossRef
118.
Zurück zum Zitat C.Y. Ke, Y.T. Wu, W.L. Tseng, Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme-substrate system. Biosens. Bioelectron. 69, 46–53 (2015)CrossRef C.Y. Ke, Y.T. Wu, W.L. Tseng, Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme-substrate system. Biosens. Bioelectron. 69, 46–53 (2015)CrossRef
119.
Zurück zum Zitat W. Song, Y. Wang, R.-P. Liang, L. Zhang, J.-D. Qiu, Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosens. Bioelectron. 64, 234–240 (2015)CrossRef W. Song, Y. Wang, R.-P. Liang, L. Zhang, J.-D. Qiu, Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosens. Bioelectron. 64, 234–240 (2015)CrossRef
120.
Zurück zum Zitat L. Qin, X. He, L. Chen, Y. Zhang, Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods. ACS Appl. Mater. Interfaces 7(10), 5965–5971 (2015)CrossRef L. Qin, X. He, L. Chen, Y. Zhang, Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods. ACS Appl. Mater. Interfaces 7(10), 5965–5971 (2015)CrossRef
121.
Zurück zum Zitat H. Li, Y. Guo, L. Xiao, B. Chen, Selective and sensitive detection of acetylcholinesterase activity using denatured protein-protected gold nanoclusters as a label-free probe. Analyst 139, 285–289 (2014)CrossRef H. Li, Y. Guo, L. Xiao, B. Chen, Selective and sensitive detection of acetylcholinesterase activity using denatured protein-protected gold nanoclusters as a label-free probe. Analyst 139, 285–289 (2014)CrossRef
122.
Zurück zum Zitat W.Y. Chen, L.Y. Chen, C.M. Ou, C.C. Huang, S.C. Wei, H.T. Chang, Synthesis of fluorescent gold nanodot-liposome hybrids for detection of phospholipase C and its inhibitor. Anal. Chem. 85, 8834–8840 (2013)CrossRef W.Y. Chen, L.Y. Chen, C.M. Ou, C.C. Huang, S.C. Wei, H.T. Chang, Synthesis of fluorescent gold nanodot-liposome hybrids for detection of phospholipase C and its inhibitor. Anal. Chem. 85, 8834–8840 (2013)CrossRef
123.
Zurück zum Zitat Y. Chen, H. Zhou, Y. Wang, W. Li, J. Chen, Q. Lin, C. Yu, Substrate hydrolysis triggered formation of fluorescent gold nanoclusters-A new platform for the sensing of enzyme activity. Chem. Commun. 49, 9821–9823 (2013)CrossRef Y. Chen, H. Zhou, Y. Wang, W. Li, J. Chen, Q. Lin, C. Yu, Substrate hydrolysis triggered formation of fluorescent gold nanoclusters-A new platform for the sensing of enzyme activity. Chem. Commun. 49, 9821–9823 (2013)CrossRef
124.
Zurück zum Zitat Y. Chen, W. Li, Y. Wang, X. Yang, J. Chen, Y. Jiang, C. Yu, Q. Lin, Cysteine-directed fluorescent gold nanoclusters for the sensing of pyrophosphate and alkaline phosphatase. J. Mater. Chem. C 2, 4080–4085 (2014)CrossRef Y. Chen, W. Li, Y. Wang, X. Yang, J. Chen, Y. Jiang, C. Yu, Q. Lin, Cysteine-directed fluorescent gold nanoclusters for the sensing of pyrophosphate and alkaline phosphatase. J. Mater. Chem. C 2, 4080–4085 (2014)CrossRef
125.
Zurück zum Zitat Y. Wang, Y. Wang, F. Zhou, P. Kim, Y. Xia, Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8(24), 3769–3773 (2012)CrossRef Y. Wang, Y. Wang, F. Zhou, P. Kim, Y. Xia, Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 8(24), 3769–3773 (2012)CrossRef
126.
Zurück zum Zitat Z. Tan, H. Xu, G. Li, X. Yang, M.M. Choi, Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters. Spectrochim. Acta A 149, 615–620 (2015)CrossRef Z. Tan, H. Xu, G. Li, X. Yang, M.M. Choi, Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters. Spectrochim. Acta A 149, 615–620 (2015)CrossRef
128.
Zurück zum Zitat Z. Li, Y. Wang, Y. Ni, S. Kokot, Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4─SiO2 nanoparticles. Biosens. Bioelectron. 70, 246–253 (2015)CrossRef Z. Li, Y. Wang, Y. Ni, S. Kokot, Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4─SiO2 nanoparticles. Biosens. Bioelectron. 70, 246–253 (2015)CrossRef
129.
Zurück zum Zitat P. Wang, B.L. Li, N.B. Li, H.Q. Luo, A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters. Spectrochim. Acta A 135, 198–202 (2015)CrossRef P. Wang, B.L. Li, N.B. Li, H.Q. Luo, A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters. Spectrochim. Acta A 135, 198–202 (2015)CrossRef
130.
Zurück zum Zitat J. Wang, Y. Chang, P. Zhang, S.Q. Lie, P.F. Gao, C.Z. Huang, Cu(2+)-mediated fluorescence switching of gold nanoclusters for the selective detection of clioquinol. Analyst 140, 8194–8200 (2015)CrossRef J. Wang, Y. Chang, P. Zhang, S.Q. Lie, P.F. Gao, C.Z. Huang, Cu(2+)-mediated fluorescence switching of gold nanoclusters for the selective detection of clioquinol. Analyst 140, 8194–8200 (2015)CrossRef
131.
Zurück zum Zitat X. Wang, P. Wu, Y. Lv, X. Hou, Ultrasensitive fluorescence detection of glutaraldehyde in water samples with bovine serum albumin-Au nanoclusters. Microchem. J. 99, 327–331 (2011)CrossRef X. Wang, P. Wu, Y. Lv, X. Hou, Ultrasensitive fluorescence detection of glutaraldehyde in water samples with bovine serum albumin-Au nanoclusters. Microchem. J. 99, 327–331 (2011)CrossRef
132.
Zurück zum Zitat Z. Chen, S. Qian, X. Chen, W. Gao, Y. Lin, Protein-templated gold nanoclusters as fluorescence probes for the detection of methotrexate. Analyst 137, 4356–4361 (2012)CrossRef Z. Chen, S. Qian, X. Chen, W. Gao, Y. Lin, Protein-templated gold nanoclusters as fluorescence probes for the detection of methotrexate. Analyst 137, 4356–4361 (2012)CrossRef
133.
Zurück zum Zitat T. Zhao, Z.-Q. Xuan, A. Wan, R. Gui, Bovine serum albumin template synthesis of fluorescent gold nanoclusters for nitric oxide detection in vitro. Mater. Technol. 31(6), 342–347 (2016) T. Zhao, Z.-Q. Xuan, A. Wan, R. Gui, Bovine serum albumin template synthesis of fluorescent gold nanoclusters for nitric oxide detection in vitro. Mater. Technol. 31(6), 342–347 (2016)
134.
Zurück zum Zitat X. Liu, C. Fu, X. Ren, H. Liu, L. Li, X. Meng, Fluorescence switching method for cascade detection of salicylaldehyde and Zinc(II) ion using protein protected gold nanoclusters. Biosens. Bioelectron. 74, 322–328 (2015)CrossRef X. Liu, C. Fu, X. Ren, H. Liu, L. Li, X. Meng, Fluorescence switching method for cascade detection of salicylaldehyde and Zinc(II) ion using protein protected gold nanoclusters. Biosens. Bioelectron. 74, 322–328 (2015)CrossRef
135.
Zurück zum Zitat L.V. Nair, D. Philips, R. Jayasree, A. Ajayaghosh, A near-infrared fluorescent nanosensor (AuC@Urease) for the selective detection of blood urea. Small 9(16), 2673–2677 (2013)CrossRef L.V. Nair, D. Philips, R. Jayasree, A. Ajayaghosh, A near-infrared fluorescent nanosensor (AuC@Urease) for the selective detection of blood urea. Small 9(16), 2673–2677 (2013)CrossRef
136.
Zurück zum Zitat C.L. Zheng, Z.X. Ji, J. Zhang, S.N. Ding, A fluorescent sensor to detect sodium dodecyl sulfate based on the glutathione-stabilized gold nanoclusters/poly diallyldimethylammonium chloride system. Analyst 139, 3476–3480 (2014)CrossRef C.L. Zheng, Z.X. Ji, J. Zhang, S.N. Ding, A fluorescent sensor to detect sodium dodecyl sulfate based on the glutathione-stabilized gold nanoclusters/poly diallyldimethylammonium chloride system. Analyst 139, 3476–3480 (2014)CrossRef
137.
Zurück zum Zitat S. Wanga, P. Liua, Y. Qinb, Z. Chena, J. Shen, Rapid synthesis of protein conjugated gold nanoclusters and their application in tea polyphenol sensing. Sens. Actuators B Chem. 223, 178–185 (2016)CrossRef S. Wanga, P. Liua, Y. Qinb, Z. Chena, J. Shen, Rapid synthesis of protein conjugated gold nanoclusters and their application in tea polyphenol sensing. Sens. Actuators B Chem. 223, 178–185 (2016)CrossRef
138.
Zurück zum Zitat C.L. Gopu, A.S. Krishna, K. Sreenivasan, Fluorimetric detection of hypochlorite using albumin stabilized gold nanoclusters. Sens. Actuators B Chem. 209, 798–802 (2015)CrossRef C.L. Gopu, A.S. Krishna, K. Sreenivasan, Fluorimetric detection of hypochlorite using albumin stabilized gold nanoclusters. Sens. Actuators B Chem. 209, 798–802 (2015)CrossRef
139.
Zurück zum Zitat H. Dai, Y. Shi, Y. Wang, Y. Sun, J. Hu, P. Ni, Z. Li, Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg2+ to gold nanoclusters. Biosens. Bioelectron. 53, 76–81 (2014)CrossRef H. Dai, Y. Shi, Y. Wang, Y. Sun, J. Hu, P. Ni, Z. Li, Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg2+ to gold nanoclusters. Biosens. Bioelectron. 53, 76–81 (2014)CrossRef
140.
Zurück zum Zitat X. Yang, J. Wang, D. Su, Q. Xia, F. Chai, C. Wang, F. Qu, Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Dalton Trans. 43, 10057–10063 (2014)CrossRef X. Yang, J. Wang, D. Su, Q. Xia, F. Chai, C. Wang, F. Qu, Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Dalton Trans. 43, 10057–10063 (2014)CrossRef
141.
Zurück zum Zitat X. Wu, Z. Zhang, J. Li, H. You, Y. Li, L. Chen, Molecularly imprinted polymers-coated gold nanoclusters for fluorescent detection of bisphenol A. Sens. Actuators B Chem. 211, 507–514 (2015)CrossRef X. Wu, Z. Zhang, J. Li, H. You, Y. Li, L. Chen, Molecularly imprinted polymers-coated gold nanoclusters for fluorescent detection of bisphenol A. Sens. Actuators B Chem. 211, 507–514 (2015)CrossRef
142.
Zurück zum Zitat D. Cheng, M. Yu, F. Fu, W. Han, G. Li, J. Xie, Y. Song, M.T. Swihart, E. Song, Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal. Chem. 88, 820–825 (2016)CrossRef D. Cheng, M. Yu, F. Fu, W. Han, G. Li, J. Xie, Y. Song, M.T. Swihart, E. Song, Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal. Chem. 88, 820–825 (2016)CrossRef
143.
Zurück zum Zitat J. Liu, L. Lu, S. Xu, L. Wang, One-pot synthesis of gold nanoclusters with bright red fluorescence and good biorecognition abilities for visualization fluorescence enhancement detection of E. coli. Talanta 134, 54–59 (2015)CrossRef J. Liu, L. Lu, S. Xu, L. Wang, One-pot synthesis of gold nanoclusters with bright red fluorescence and good biorecognition abilities for visualization fluorescence enhancement detection of E. coli. Talanta 134, 54–59 (2015)CrossRef
144.
Zurück zum Zitat P.H. Chan, Y.C. Chen, Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Anal. Chem. 84, 8952–8956 (2012)CrossRef P.H. Chan, Y.C. Chen, Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Anal. Chem. 84, 8952–8956 (2012)CrossRef
145.
Zurück zum Zitat C.C. Huang, C.T. Chen, Y.C. Shiang, Z.H. Lin, H.T. Chang, Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. Anal. Chem. 81, 875–882 (2009)CrossRef C.C. Huang, C.T. Chen, Y.C. Shiang, Z.H. Lin, H.T. Chang, Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. Anal. Chem. 81, 875–882 (2009)CrossRef
146.
Zurück zum Zitat Y.-T. Tseng, R. Cherng, Z. Yuan, C.-W. Wu, H.-T. Chang, C.-C. Huang, Ultrasound-mediated modulation of the emission of gold nanodots. Nanoscale 8, 5162–5169 (2016)CrossRef Y.-T. Tseng, R. Cherng, Z. Yuan, C.-W. Wu, H.-T. Chang, C.-C. Huang, Ultrasound-mediated modulation of the emission of gold nanodots. Nanoscale 8, 5162–5169 (2016)CrossRef
Metadaten
Titel
Gold and Silver Fluorescent Nanomaterials as Emerging Probes for Toxic and Biochemical Sensors
verfasst von
Nagamalai Vasimalai
Maria T. Fernandez-Argüelles
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68053-8_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.