Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Simulation of Metal Clusters and Nanostructures

verfasst von : Sergio Mejía-Rosales

Erschienen in: Metal Nanoparticles and Clusters

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computational simulations and numerical methods have become an essential tool in the study of metal nanostructures. Given the complexity of the energy landscape, finding the most energetically favorable configuration of even the smallest metal clusters is a task that requires the use of efficient search algorithms and robust interaction potentials, and the study of structural and dynamical properties of metal nanoparticles at finite temperature makes necessary an appropriate scan of the phase space, either by stochastic methods or by solving a large set of equations of motion, performed on a model system sophisticated enough to maintain the main features of the real systems being modeled. This chapter is aimed to present some examples in the use of these models and algorithms, making special emphasis in the use of molecular dynamics simulations to describe the behavior of metal nanoparticles on the melting transition, the sintering of nanoparticles, the proposal of phase diagrams, and the role of substrates and other forms of confinement. Connection with experimental results is also discussed, with several examples on the simulation of scanning transmission electron micrographs and the mechanical manipulation of metal nanowires.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.D. Jadzinsky, G. Calero, C.J. Ackerson, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007)CrossRef P.D. Jadzinsky, G. Calero, C.J. Ackerson, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007)CrossRef
2.
Zurück zum Zitat J. Akola, M. Walter, R.L. Whetten, H. Häkkinen, H. Grönbeck, On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 130, 3756–3757 (2008)CrossRef J. Akola, M. Walter, R.L. Whetten, H. Häkkinen, H. Grönbeck, On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 130, 3756–3757 (2008)CrossRef
3.
Zurück zum Zitat A. Tlahuice, Ligand effects on the optical and chiroptical properties of the thiolated Au18 cluster. Phys. Chem. Chem. Phys., 18, 27738–27744 (2016) A. Tlahuice, Ligand effects on the optical and chiroptical properties of the thiolated Au18 cluster. Phys. Chem. Chem. Phys., 18, 27738–27744 (2016)
4.
Zurück zum Zitat A. Tlahuice, I.L. Garzón, On the structure of the Au18(SR)14 cluster. Phys. Chem. Chem. Phys. 14, 3737–3734 (2012)CrossRef A. Tlahuice, I.L. Garzón, On the structure of the Au18(SR)14 cluster. Phys. Chem. Chem. Phys. 14, 3737–3734 (2012)CrossRef
5.
Zurück zum Zitat L.A. Girifalco, V.G. Weizer, Application of the Morse potential function to cubic metals. Phys. Rev. 114, 687–690 (1959)CrossRef L.A. Girifalco, V.G. Weizer, Application of the Morse potential function to cubic metals. Phys. Rev. 114, 687–690 (1959)CrossRef
6.
Zurück zum Zitat M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)CrossRef M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)CrossRef
7.
Zurück zum Zitat M.W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition metals. Phil. Mag. A. 50, 45–55 (1984)CrossRef M.W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition metals. Phil. Mag. A. 50, 45–55 (1984)CrossRef
8.
Zurück zum Zitat H. Rafii-Tabar, Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Phys. Rep. 325, 239–310 (2000)CrossRef H. Rafii-Tabar, Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Phys. Rep. 325, 239–310 (2000)CrossRef
9.
Zurück zum Zitat A.P. Sutton, J. Chen, Long-range Finnis–Sinclair potentials. Philos. Mag. Lett. 61, 139–146 (1990)CrossRef A.P. Sutton, J. Chen, Long-range Finnis–Sinclair potentials. Philos. Mag. Lett. 61, 139–146 (1990)CrossRef
10.
Zurück zum Zitat D.J. Tildesley, M.P. Allen, Computer Simulation of Liquids (Clarendon, Oxford, 1987) D.J. Tildesley, M.P. Allen, Computer Simulation of Liquids (Clarendon, Oxford, 1987)
11.
Zurück zum Zitat H. Rafii-Tabar, A.P. Sulton, Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys. Philos. Mag. Lett. 63, 217–224 (1991)CrossRef H. Rafii-Tabar, A.P. Sulton, Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys. Philos. Mag. Lett. 63, 217–224 (1991)CrossRef
12.
Zurück zum Zitat F. Cleri, V. Rosato, Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22–33 (1993)CrossRef F. Cleri, V. Rosato, Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22–33 (1993)CrossRef
13.
Zurück zum Zitat F. Baletto, R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–423 (2005)CrossRef F. Baletto, R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–423 (2005)CrossRef
14.
Zurück zum Zitat G. Rossi, R. Ferrando, Searching for low-energy structures of nanoparticles: A comparison of different methods and algorithms. J. Phys. Condens. Matter 21, 084208–084212 (2009)CrossRef G. Rossi, R. Ferrando, Searching for low-energy structures of nanoparticles: A comparison of different methods and algorithms. J. Phys. Condens. Matter 21, 084208–084212 (2009)CrossRef
15.
Zurück zum Zitat D.J. Wales, Decoding the energy landscape: Extracting structure, dynamics and thermodynamics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 2877–2899 (2012)CrossRef D.J. Wales, Decoding the energy landscape: Extracting structure, dynamics and thermodynamics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 2877–2899 (2012)CrossRef
16.
Zurück zum Zitat D.J. Wales, T.V. Bogdan, Potential energy and free energy landscapes. J. Phys. Chem. B 110, 20765–20776 (2006)CrossRef D.J. Wales, T.V. Bogdan, Potential energy and free energy landscapes. J. Phys. Chem. B 110, 20765–20776 (2006)CrossRef
17.
Zurück zum Zitat I. Bytheway, D.L. Kepert, The mathematical modelling of cluster geometry. J. Math. Chem. 9, 161–180 (1992)CrossRef I. Bytheway, D.L. Kepert, The mathematical modelling of cluster geometry. J. Math. Chem. 9, 161–180 (1992)CrossRef
18.
Zurück zum Zitat J.P.K. Doye, D.J. Wales, R.S. Berry, The effect of the range of the potential on the structures of clusters. J. Chem. Phys. 103, 4234–4217 (1995)CrossRef J.P.K. Doye, D.J. Wales, R.S. Berry, The effect of the range of the potential on the structures of clusters. J. Chem. Phys. 103, 4234–4217 (1995)CrossRef
19.
Zurück zum Zitat I.L. Garzón, K. Michaelian, M.R. Beltrán, A. Posada Amarillas, P. Ordejón, E. Artacho, D. Sánchez-Portal, J.M. Soler, Lowest energy structures of gold nanoclusters. Phys. Rev. Lett. 81, 1600–1603 (1998)CrossRef I.L. Garzón, K. Michaelian, M.R. Beltrán, A. Posada Amarillas, P. Ordejón, E. Artacho, D. Sánchez-Portal, J.M. Soler, Lowest energy structures of gold nanoclusters. Phys. Rev. Lett. 81, 1600–1603 (1998)CrossRef
20.
Zurück zum Zitat E. Fernández, J. Soler, I. Garzón, L. Balbás, Trends in the structure and bonding of noble metal clusters. Phys. Rev. B 70, 165403–1–14 (2004) E. Fernández, J. Soler, I. Garzón, L. Balbás, Trends in the structure and bonding of noble metal clusters. Phys. Rev. B 70, 165403–1–14 (2004)
21.
Zurück zum Zitat H. Häkkinen, Atomic and electronic structure of gold clusters: Understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37, 1847–1814 (2008)CrossRef H. Häkkinen, Atomic and electronic structure of gold clusters: Understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37, 1847–1814 (2008)CrossRef
22.
Zurück zum Zitat M.J. Piotrowski, C.G. Ungureanu, P. Tereshchuk, K.E.A. Batista, A.S. Chaves, D. Guedes-Sobrinho, J.L.F. Da Silva, Theoretical study of the structural, energetic, and electronic properties of 55-atom metal nanoclusters: A DFT investigation within van der Waals corrections, spin–orbit coupling, and PBE+ U of 42 metal systems. J. Phys. Chem. C 120, 28844–28856 (2016)CrossRef M.J. Piotrowski, C.G. Ungureanu, P. Tereshchuk, K.E.A. Batista, A.S. Chaves, D. Guedes-Sobrinho, J.L.F. Da Silva, Theoretical study of the structural, energetic, and electronic properties of 55-atom metal nanoclusters: A DFT investigation within van der Waals corrections, spin–orbit coupling, and PBE+ U of 42 metal systems. J. Phys. Chem. C 120, 28844–28856 (2016)CrossRef
23.
Zurück zum Zitat S. Valkealahti, M. Manninen, Structural transitions and melting of copper clusters. Z. Phys. D. 26, 255–257 (1993)CrossRef S. Valkealahti, M. Manninen, Structural transitions and melting of copper clusters. Z. Phys. D. 26, 255–257 (1993)CrossRef
24.
Zurück zum Zitat M. Dessens-Félix, R. Pacheco-Contreras, G. Barcaro, L. Sementa, A. Fortunelli, A. Posada-Amarillas, Structural motifs of bimetallic Pt101– xAux nanoclusters. J. Phys. Chem. C 117, 20967–20974 (2013)CrossRef M. Dessens-Félix, R. Pacheco-Contreras, G. Barcaro, L. Sementa, A. Fortunelli, A. Posada-Amarillas, Structural motifs of bimetallic Pt101– xAux nanoclusters. J. Phys. Chem. C 117, 20967–20974 (2013)CrossRef
25.
Zurück zum Zitat A.S. Barnard, N.P. Young, A.I. Kirkland, M.A. van Huis, H. Xu, Nanogold: A quantitative phase map. ACS Nano 3, 1431–1436 (2009)CrossRef A.S. Barnard, N.P. Young, A.I. Kirkland, M.A. van Huis, H. Xu, Nanogold: A quantitative phase map. ACS Nano 3, 1431–1436 (2009)CrossRef
26.
Zurück zum Zitat R. Wang, O. Dmitrieva, M. Farle, G. Dumpich, M. Acet, S. Mejía-Rosales, E. Pérez-Tijerina, M.J. Yacamán, C. Kisielowski, FePt icosahedra with magnetic cores and catalytic shells. J. Phys. Chem. C 113, 4395–4400 (2009)CrossRef R. Wang, O. Dmitrieva, M. Farle, G. Dumpich, M. Acet, S. Mejía-Rosales, E. Pérez-Tijerina, M.J. Yacamán, C. Kisielowski, FePt icosahedra with magnetic cores and catalytic shells. J. Phys. Chem. C 113, 4395–4400 (2009)CrossRef
27.
Zurück zum Zitat Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnston, J. Jiang, J. Yuan, Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2007)CrossRef Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnston, J. Jiang, J. Yuan, Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2007)CrossRef
28.
Zurück zum Zitat M.M. Mariscal, J.J. Velázquez-Salazar, M.J. Yacamán, Growth mechanism of nanoparticles: Theoretical calculations and experimental results. CrystEngComm 14, 544–549 (2012)CrossRef M.M. Mariscal, J.J. Velázquez-Salazar, M.J. Yacamán, Growth mechanism of nanoparticles: Theoretical calculations and experimental results. CrystEngComm 14, 544–549 (2012)CrossRef
29.
Zurück zum Zitat M.R. Langille, J. Zhang, M.L. Personick, S. Li, Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 337, 954–957 (2012)CrossRef M.R. Langille, J. Zhang, M.L. Personick, S. Li, Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 337, 954–957 (2012)CrossRef
30.
Zurück zum Zitat T.G. Schaaff, R.L. Whetten, Giant gold−glutathione cluster compounds: Intense optical activity in metal-based transitions. J. Phys. Chem. B 104, 2630–2641 (2000)CrossRef T.G. Schaaff, R.L. Whetten, Giant gold−glutathione cluster compounds: Intense optical activity in metal-based transitions. J. Phys. Chem. B 104, 2630–2641 (2000)CrossRef
31.
Zurück zum Zitat I.L. Garzón, J.A. Reyes-Nava, J.I. Rodríguez-Hernández, I. Sigal, M.R. Beltrán, K. Michaelian, Chirality in bare and passivated gold nanoclusters. Phys. Rev. B 66, 073403–073404 (2002)CrossRef I.L. Garzón, J.A. Reyes-Nava, J.I. Rodríguez-Hernández, I. Sigal, M.R. Beltrán, K. Michaelian, Chirality in bare and passivated gold nanoclusters. Phys. Rev. B 66, 073403–073404 (2002)CrossRef
32.
Zurück zum Zitat A.B. Buda, K. Mislow, A Hausdorff chirality measure. J. Am. Chem. Soc. 114, 6006–6012 (1992)CrossRef A.B. Buda, K. Mislow, A Hausdorff chirality measure. J. Am. Chem. Soc. 114, 6006–6012 (1992)CrossRef
33.
Zurück zum Zitat I.L. Garzón, M.R. Beltrán, G. González, I. Gutiérrez-González, K. Michaelian, J.A. Reyes-Nava, J.I. Rodríguez-Hernández, Chirality, defects, and disorder in gold clusters. Eur. Phys. J. D. 24, 105–109 (2003)CrossRef I.L. Garzón, M.R. Beltrán, G. González, I. Gutiérrez-González, K. Michaelian, J.A. Reyes-Nava, J.I. Rodríguez-Hernández, Chirality, defects, and disorder in gold clusters. Eur. Phys. J. D. 24, 105–109 (2003)CrossRef
34.
Zurück zum Zitat J. Jellinek, E.B. Krissinel, NinAlm alloy clusters: Analysis of structural forms and their energy ordering. Chem. Phys. Lett. 258, 283–292 (1996)CrossRef J. Jellinek, E.B. Krissinel, NinAlm alloy clusters: Analysis of structural forms and their energy ordering. Chem. Phys. Lett. 258, 283–292 (1996)CrossRef
35.
Zurück zum Zitat R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008)CrossRef R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008)CrossRef
36.
Zurück zum Zitat D. Bochicchio, R. Ferrando, E. Panizon, G. Rossi, Structures and segregation patterns of Ag–Cu and Ag–Ni nanoalloys adsorbed on MgO(0 0 1). J. Phys. Condens. Matter, 28, 064005 (2016) D. Bochicchio, R. Ferrando, E. Panizon, G. Rossi, Structures and segregation patterns of Ag–Cu and Ag–Ni nanoalloys adsorbed on MgO(0 0 1). J. Phys. Condens. Matter, 28, 064005 (2016)
37.
Zurück zum Zitat R. Ferrando, A. Fortunelli, R.L. Johnston, Searching for the optimum structures of alloy nanoclusters. Phys. Chem. Chem. Phys. 10, 640–649 (2007)CrossRef R. Ferrando, A. Fortunelli, R.L. Johnston, Searching for the optimum structures of alloy nanoclusters. Phys. Chem. Chem. Phys. 10, 640–649 (2007)CrossRef
38.
Zurück zum Zitat L.O. Paz-Borbón, T.V. Mortimer-Jones, R.L. Johnston, A. Posada-Amarillas, G. Barcaro, A. Fortunelli, Structures and energetics of 98 atom Pd–Pt nanoalloys: Potential stability of the Leary tetrahedron for bimetallic nanoparticles. Phys. Chem. Chem. Phys. 9, 5202–5207 (2007)CrossRef L.O. Paz-Borbón, T.V. Mortimer-Jones, R.L. Johnston, A. Posada-Amarillas, G. Barcaro, A. Fortunelli, Structures and energetics of 98 atom Pd–Pt nanoalloys: Potential stability of the Leary tetrahedron for bimetallic nanoparticles. Phys. Chem. Chem. Phys. 9, 5202–5207 (2007)CrossRef
39.
Zurück zum Zitat U.H.E. Hansmann, L.T. Wille, Global optimization by energy landscape paving. Phys. Rev. Lett. 88, 068105–068104 (2002)CrossRef U.H.E. Hansmann, L.T. Wille, Global optimization by energy landscape paving. Phys. Rev. Lett. 88, 068105–068104 (2002)CrossRef
40.
Zurück zum Zitat G. Barcaro, A. Fortunelli, G. Rossi, F. Nita, R. Ferrando, Electronic and structural shell closure in AgCu and AuCu nanoclusters. J. Phys. Chem. B 110, 23197–23203 (2006)CrossRef G. Barcaro, A. Fortunelli, G. Rossi, F. Nita, R. Ferrando, Electronic and structural shell closure in AgCu and AuCu nanoclusters. J. Phys. Chem. B 110, 23197–23203 (2006)CrossRef
41.
Zurück zum Zitat J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (U Michigan Press, Ann Arbor, MI, 1975) J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (U Michigan Press, Ann Arbor, MI, 1975)
42.
Zurück zum Zitat D.J. Wales, J. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 28, 5111–5116 (1997) D.J. Wales, J. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 28, 5111–5116 (1997)
43.
Zurück zum Zitat R.S. Berry, When the melting and freezing points are not the same. Sci. Am. 263, 68–74 (1990)CrossRef R.S. Berry, When the melting and freezing points are not the same. Sci. Am. 263, 68–74 (1990)CrossRef
44.
Zurück zum Zitat Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)CrossRef Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)CrossRef
45.
Zurück zum Zitat B.A. Berg, Multicanonical simulations step by step. Comput. Phys. Commun. 153, 397–406 (2003)CrossRef B.A. Berg, Multicanonical simulations step by step. Comput. Phys. Commun. 153, 397–406 (2003)CrossRef
46.
Zurück zum Zitat J.L. Rodrıíguez-López, J.M. Montejano-Carrizales, M. José-Yacamán, Molecular dynamics study of bimetallic nanoparticles: The case of AuxCuy alloy clusters. Appl. Surf. Sci. 219, 56–63 (2003)CrossRef J.L. Rodrıíguez-López, J.M. Montejano-Carrizales, M. José-Yacamán, Molecular dynamics study of bimetallic nanoparticles: The case of AuxCuy alloy clusters. Appl. Surf. Sci. 219, 56–63 (2003)CrossRef
47.
Zurück zum Zitat C.L. Cleveland, W.D. Luedtke, U. Landman, Melting of gold clusters: Icosahedral precursors. Phys. Rev. Lett. 81, 2036–2039 (1998)CrossRef C.L. Cleveland, W.D. Luedtke, U. Landman, Melting of gold clusters: Icosahedral precursors. Phys. Rev. Lett. 81, 2036–2039 (1998)CrossRef
48.
Zurück zum Zitat S.J. Mejía-Rosales, C. Fernández-Navarro, E. Pérez-Tijerina, J.M. Montejano-Carrizales, M. José-Yacamán, Two-stage melting of Au−Pd nanoparticles. J. Phys. Chem. B 110, 12884–12889 (2006)CrossRef S.J. Mejía-Rosales, C. Fernández-Navarro, E. Pérez-Tijerina, J.M. Montejano-Carrizales, M. José-Yacamán, Two-stage melting of Au−Pd nanoparticles. J. Phys. Chem. B 110, 12884–12889 (2006)CrossRef
49.
Zurück zum Zitat C. Cleveland, W. Luedtke, U. Landman, Melting of gold clusters. Phys. Rev. B 60, 5065–5077 (1999)CrossRef C. Cleveland, W. Luedtke, U. Landman, Melting of gold clusters. Phys. Rev. B 60, 5065–5077 (1999)CrossRef
50.
Zurück zum Zitat S.J. Mejía-Rosales, C. Fernández-Navarro, E. Pérez-Tijerina, D.A. Blom, L.F. Allard, M. José-Yacamán, On the structure of Au/Pd bimetallic nanoparticles. J. Phys. Chem. C 111, 1256–1260 (2007)CrossRef S.J. Mejía-Rosales, C. Fernández-Navarro, E. Pérez-Tijerina, D.A. Blom, L.F. Allard, M. José-Yacamán, On the structure of Au/Pd bimetallic nanoparticles. J. Phys. Chem. C 111, 1256–1260 (2007)CrossRef
51.
Zurück zum Zitat M. José Yacamán, E. Pérez-Tijerina, S.J. Mejía-Rosales, Defect structure in nanoalloys. J. Mater. Chem. 17, 1035 (2007)CrossRef M. José Yacamán, E. Pérez-Tijerina, S.J. Mejía-Rosales, Defect structure in nanoalloys. J. Mater. Chem. 17, 1035 (2007)CrossRef
52.
Zurück zum Zitat H.H. Kart, H. Yildirim, S. Ozdemir Kart, T. Çağin, Physical properties of Cu nanoparticles: A molecular dynamics study. Mater. Chem. Phys. 147, 204–212 (2014)CrossRef H.H. Kart, H. Yildirim, S. Ozdemir Kart, T. Çağin, Physical properties of Cu nanoparticles: A molecular dynamics study. Mater. Chem. Phys. 147, 204–212 (2014)CrossRef
53.
Zurück zum Zitat K.K. Nanda, Size-dependent melting of nanoparticles: Hundred years of thermodynamic model. Pramana 72, 617–628 (2009)CrossRef K.K. Nanda, Size-dependent melting of nanoparticles: Hundred years of thermodynamic model. Pramana 72, 617–628 (2009)CrossRef
54.
Zurück zum Zitat Q. Shu, Y. Yang, Y.-T. Zhai, D.Y. Sun, H.J. Xiang, X.G. Gong, Size-dependent melting behavior of iron nanoparticles by replica exchange molecular dynamics. Nanoscale 4, 6307–6305 (2012)CrossRef Q. Shu, Y. Yang, Y.-T. Zhai, D.Y. Sun, H.J. Xiang, X.G. Gong, Size-dependent melting behavior of iron nanoparticles by replica exchange molecular dynamics. Nanoscale 4, 6307–6305 (2012)CrossRef
55.
Zurück zum Zitat T. Shen, W. Meng, Y. Wu, X. Lu, Size dependence and phase transition during melting of fcc-Fe nanoparticles: A molecular dynamics simulation. Appl. Surf. Sci. 277, 7–14 (2013)CrossRef T. Shen, W. Meng, Y. Wu, X. Lu, Size dependence and phase transition during melting of fcc-Fe nanoparticles: A molecular dynamics simulation. Appl. Surf. Sci. 277, 7–14 (2013)CrossRef
56.
Zurück zum Zitat J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)CrossRef J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)CrossRef
57.
Zurück zum Zitat A. Rapallo, J.A. Olmos-Asar, O.A. Oviedo, M. Ludueña, R. Ferrando, M.M. Mariscal, Thermal properties of Co/Au nanoalloys and comparison of different computer simulation techniques. J. Phys. Chem. C 116, 17210–17218 (2012)CrossRef A. Rapallo, J.A. Olmos-Asar, O.A. Oviedo, M. Ludueña, R. Ferrando, M.M. Mariscal, Thermal properties of Co/Au nanoalloys and comparison of different computer simulation techniques. J. Phys. Chem. C 116, 17210–17218 (2012)CrossRef
58.
Zurück zum Zitat H.A. Alarifi, M. Atis, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles. Mater. Trans. 54, 884–889 (2013)CrossRef H.A. Alarifi, M. Atis, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles. Mater. Trans. 54, 884–889 (2013)CrossRef
59.
Zurück zum Zitat J.B. Baxter, C.A. Schmuttenmaer, Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 110, 25229–25239 (2006)CrossRef J.B. Baxter, C.A. Schmuttenmaer, Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 110, 25229–25239 (2006)CrossRef
60.
Zurück zum Zitat H.A. Alarifi, M. Atiş, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J. Phys. Chem. C 117, 12289–12298 (2013)CrossRef H.A. Alarifi, M. Atiş, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J. Phys. Chem. C 117, 12289–12298 (2013)CrossRef
61.
Zurück zum Zitat K.K. Nanda, S.N. Sahu, S.N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208–013208 (2002)CrossRef K.K. Nanda, S.N. Sahu, S.N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208–013208 (2002)CrossRef
62.
Zurück zum Zitat F.G. Shi, Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9, 1307–1314 (2011)CrossRef F.G. Shi, Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9, 1307–1314 (2011)CrossRef
63.
Zurück zum Zitat A.P. Chernyshev, Effect of nanoparticle size on the onset temperature of surface melting. Mater. Lett. 63, 1525–1527 (2009)CrossRef A.P. Chernyshev, Effect of nanoparticle size on the onset temperature of surface melting. Mater. Lett. 63, 1525–1527 (2009)CrossRef
64.
Zurück zum Zitat B. Buesser, S.E. Pratsinis, Morphology and crystallinity of coalescing nanosilver by molecular dynamics. J. Phys. Chem. C 119, 10116–10122 (2015)CrossRef B. Buesser, S.E. Pratsinis, Morphology and crystallinity of coalescing nanosilver by molecular dynamics. J. Phys. Chem. C 119, 10116–10122 (2015)CrossRef
65.
Zurück zum Zitat S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)CrossRef S.M. Foiles, M.I. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)CrossRef
66.
Zurück zum Zitat P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983)CrossRef P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983)CrossRef
67.
Zurück zum Zitat C.-L. Kuo, P. Clancy, Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters. J. Phys. Chem. B 109, 13743–13754 (2005)CrossRef C.-L. Kuo, P. Clancy, Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters. J. Phys. Chem. B 109, 13743–13754 (2005)CrossRef
68.
Zurück zum Zitat S.C. Yeo, D.H. Kim, K. Shin, H.M. Lee, Phase diagram and structural evolution of Ag–Au bimetallic nanoparticles: Molecular dynamics simulations. Phys. Chem. Chem. Phys. 14, 2791–2796 (2012)CrossRef S.C. Yeo, D.H. Kim, K. Shin, H.M. Lee, Phase diagram and structural evolution of Ag–Au bimetallic nanoparticles: Molecular dynamics simulations. Phys. Chem. Chem. Phys. 14, 2791–2796 (2012)CrossRef
69.
Zurück zum Zitat C. Fernández-Navarro, S. Mejía-Rosales, Molecular dynamics of free and graphite-supported Pt-Pd nanoparticles. Adv. Nanopart. 02, 323–328 (2013)CrossRef C. Fernández-Navarro, S. Mejía-Rosales, Molecular dynamics of free and graphite-supported Pt-Pd nanoparticles. Adv. Nanopart. 02, 323–328 (2013)CrossRef
70.
Zurück zum Zitat G. Wang, N. Wu, J. Chen, J. Wang, J. Shao, X. Zhu, X. Lu, L. Guo, Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets. J. Phys. Chem. Solids. 98, 183–189 (2016)CrossRef G. Wang, N. Wu, J. Chen, J. Wang, J. Shao, X. Zhu, X. Lu, L. Guo, Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets. J. Phys. Chem. Solids. 98, 183–189 (2016)CrossRef
71.
Zurück zum Zitat H. Akbarzadeh, A.N. Shamkhali, Melting behavior of (PdxPt1−x)n nanoclusters confined in single-walled carbon nanotubes: A molecular dynamics investigation on the effects of chirality and diameter of nanotubes, and size and composition of nanoclusters. RSC Adv. 5, 23160–23173 (2015)CrossRef H. Akbarzadeh, A.N. Shamkhali, Melting behavior of (PdxPt1−x)n nanoclusters confined in single-walled carbon nanotubes: A molecular dynamics investigation on the effects of chirality and diameter of nanotubes, and size and composition of nanoclusters. RSC Adv. 5, 23160–23173 (2015)CrossRef
72.
Zurück zum Zitat P. Rodríguez-Zamora, F. Yin, R.E. Palmer, Enhanced immobilization of gold nanoclusters on graphite. J. Phys. Chem. A 118, 8182–8187 (2014)CrossRef P. Rodríguez-Zamora, F. Yin, R.E. Palmer, Enhanced immobilization of gold nanoclusters on graphite. J. Phys. Chem. A 118, 8182–8187 (2014)CrossRef
73.
Zurück zum Zitat l. Rosa-Abad, J.A. de, G.J. Soldano, S.J. Mejía-Rosales, M.M. Mariscal, Immobilization of Au nanoparticles on graphite tunnels through nanocapillarity. RSC Adv. 6, 77195–77200 (2016)CrossRef l. Rosa-Abad, J.A. de, G.J. Soldano, S.J. Mejía-Rosales, M.M. Mariscal, Immobilization of Au nanoparticles on graphite tunnels through nanocapillarity. RSC Adv. 6, 77195–77200 (2016)CrossRef
74.
Zurück zum Zitat S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6416 (2000)CrossRef S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6416 (2000)CrossRef
75.
Zurück zum Zitat U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (CRC Press, Boca Raton, FL, 2016) U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (CRC Press, Boca Raton, FL, 2016)
76.
Zurück zum Zitat D. Bochicchio, R. Ferrando, Morphological instability of core-shell metallic nanoparticles. Phys. Rev. B 87 (2013) D. Bochicchio, R. Ferrando, Morphological instability of core-shell metallic nanoparticles. Phys. Rev. B 87 (2013)
77.
Zurück zum Zitat V. Rosato, M. Guillope, B. Legrand, Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Philos. Mag. A. 59, 321–336 (1989)CrossRef V. Rosato, M. Guillope, B. Legrand, Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model. Philos. Mag. A. 59, 321–336 (1989)CrossRef
78.
Zurück zum Zitat J. Yang, W. Hu, J. Tang, X. Dai, The formation of FecoreAlshell and FeshellAlcore nanoparticles, a molecular dynamics simulation. Comput. Mater. Sci. 74, 160–164 (2013)CrossRef J. Yang, W. Hu, J. Tang, X. Dai, The formation of FecoreAlshell and FeshellAlcore nanoparticles, a molecular dynamics simulation. Comput. Mater. Sci. 74, 160–164 (2013)CrossRef
79.
Zurück zum Zitat S. Khanal, A. Spitale, N. Bhattarai, D. Bahena, J.J. Velázquez-Salazar, S. Mejía-Rosales, M.M. Mariscal, M. José-Yacamán, Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters. Beilstein J. Nanotechnol. 5, 1371–1379 (2014)CrossRef S. Khanal, A. Spitale, N. Bhattarai, D. Bahena, J.J. Velázquez-Salazar, S. Mejía-Rosales, M.M. Mariscal, M. José-Yacamán, Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters. Beilstein J. Nanotechnol. 5, 1371–1379 (2014)CrossRef
80.
Zurück zum Zitat A. Mayoral, S. Mejía-Rosales, M.M. Mariscal, E. Pérez-Tijerina, M. José-Yacamán, The Co–Au interface in bimetallic nanoparticles: A high resolution STEM study. Nanoscale 2, 2647–2645 (2010)CrossRef A. Mayoral, S. Mejía-Rosales, M.M. Mariscal, E. Pérez-Tijerina, M. José-Yacamán, The Co–Au interface in bimetallic nanoparticles: A high resolution STEM study. Nanoscale 2, 2647–2645 (2010)CrossRef
81.
Zurück zum Zitat N.I. Kovtyukhova, T.E. Mallouk, Nanowires as building blocks for self-assembling logic and memory circuits. Chem. Eur. J. 8, 4354–4363 (2002)CrossRef N.I. Kovtyukhova, T.E. Mallouk, Nanowires as building blocks for self-assembling logic and memory circuits. Chem. Eur. J. 8, 4354–4363 (2002)CrossRef
82.
Zurück zum Zitat N. Agraït, G. Rubio, S. Vieira, Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995–3998 (1995)CrossRef N. Agraït, G. Rubio, S. Vieira, Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995–3998 (1995)CrossRef
83.
Zurück zum Zitat B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)CrossRef B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)CrossRef
84.
Zurück zum Zitat S.J.A. Koh, H.P. Lee, C. Lu, Q.H. Cheng, Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B 72, 085414–085411 (2005)CrossRef S.J.A. Koh, H.P. Lee, C. Lu, Q.H. Cheng, Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B 72, 085414–085411 (2005)CrossRef
85.
Zurück zum Zitat S. Mejía-Rosales, C. Fernández-Navarro, Simulation of mechanical elongation and compression of nanostructures. MRS Online Proceedings Library Archive 1817 (2016) S. Mejía-Rosales, C. Fernández-Navarro, Simulation of mechanical elongation and compression of nanostructures. MRS Online Proceedings Library Archive 1817 (2016)
86.
Zurück zum Zitat J.J. Velázquez-Salazar, R. Esparza, S.J. Mejía-Rosales, R. Estrada-Salas, A. Ponce, F.L. Deepak, C. Castro-Guerrero, M. José-Yacamán, Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures. ACS Nano 5, 6272–6278 (2011)CrossRef J.J. Velázquez-Salazar, R. Esparza, S.J. Mejía-Rosales, R. Estrada-Salas, A. Ponce, F.L. Deepak, C. Castro-Guerrero, M. José-Yacamán, Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures. ACS Nano 5, 6272–6278 (2011)CrossRef
Metadaten
Titel
Simulation of Metal Clusters and Nanostructures
verfasst von
Sergio Mejía-Rosales
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68053-8_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.