Skip to main content
Erschienen in: Russian Journal of Nondestructive Testing 4/2023

01.04.2023 | X-RAY METHODS

Nondestructive Testing of an Aluminum Alloy Welded Joint Based on a Mathematical Model of the Thermal Welding Process and Computer Microtomography

verfasst von: V. I. Syryamkin, M. D. Khilchuk, S. A. Klestov

Erschienen in: Russian Journal of Nondestructive Testing | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Strength control of welded joints is used in many industries. X-ray microtomography as a method of nondestructive testing allows one not only to detect the presence of defects, but also to classify them and assess the size of cracks and noncrack-like defects (pores). This article discusses the nondestructive testing of welded joints of 6061 T6 aluminum alloy using computer micrototomography and a mathematical model of the thermal welding process implemented in ANSYS Workbench. Experimental results of the X-ray microtomograph are presented, and the size of defects in this sample is estimated. The mathematical model allowed us to obtain the thermal histories at which the flaws were formed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Heydari, M.A. and Panteleenko, A.F., Mathematical modeling of welding deformations in thin plates, Nauka Tekh., 2011, no. 5, pp. 18–25. Heydari, M.A. and Panteleenko, A.F., Mathematical modeling of welding deformations in thin plates, Nauka Tekh., 2011, no. 5, pp. 18–25.
2.
Zurück zum Zitat Peredelskii, V.A., Kharchenko, V.Ya., Chernogorov, A.L., and Tikhonov, S.V., On the detection of crack-like welding defects by existing quality control methods, Peredovie Inzh. Issled., 2021, vol. 21, no. 1, pp. 89–95. Peredelskii, V.A., Kharchenko, V.Ya., Chernogorov, A.L., and Tikhonov, S.V., On the detection of crack-like welding defects by existing quality control methods, Peredovie Inzh. Issled., 2021, vol. 21, no. 1, pp. 89–95.
3.
Zurück zum Zitat Murav’ev S.V. and Pogadaeva E.Yu., Computer-aided recognition of defects in welded joints during visual inspections based on geometric attributes, Russ. J. Nondestr. Test., 2020, vol. 56, no. 3, pp. 259–267. Murav’ev S.V. and Pogadaeva E.Yu., Computer-aided recognition of defects in welded joints during visual inspections based on geometric attributes, Russ. J. Nondestr. Test., 2020, vol. 56, no. 3, pp. 259–267.
4.
Zurück zum Zitat Trieb, K., Glinz, J., Reiter, M., Kastner, J., and Senck, S., Nondestructive testing of ceramic knee implants using micro-computed tomography, J. Arthroplasty, 2019, vol. 34, no. 9, pp. 2111–2117.CrossRef Trieb, K., Glinz, J., Reiter, M., Kastner, J., and Senck, S., Nondestructive testing of ceramic knee implants using micro-computed tomography, J. Arthroplasty, 2019, vol. 34, no. 9, pp. 2111–2117.CrossRef
5.
Zurück zum Zitat Syryamkin, V.I., Klestov, S.A., and Suntsov, S.B., Digital X-ray Tomography, London: Red Square Sci., 2020, 2nd ed. Syryamkin, V.I., Klestov, S.A., and Suntsov, S.B., Digital X-ray Tomography, London: Red Square Sci., 2020, 2nd ed.
6.
Zurück zum Zitat de Mendonça Filho, F.F., Copuroglu, O., Schlangen, E., and Šavija, B., Determination of loss of reinforcement due to corrosion through X-ray computer micro-tomography, Materials, 2021, vol. 14, no. 4, p. 893.CrossRef de Mendonça Filho, F.F., Copuroglu, O., Schlangen, E., and Šavija, B., Determination of loss of reinforcement due to corrosion through X-ray computer micro-tomography, Materials, 2021, vol. 14, no. 4, p. 893.CrossRef
7.
Zurück zum Zitat Syryamkin, V.I., Klestov, S.A., and Suntsov, S.B., RF Patent no. 2745304 C1, March 23, 2021. Syryamkin, V.I., Klestov, S.A., and Suntsov, S.B., RF Patent no. 2745304 C1, March 23, 2021.
8.
Zurück zum Zitat Bekhtin, Yu.S., Klestov, S.A., Kutsov, M.S., Syryamkin, V.I., and Titov, D.V., Teoreticheskie osnovi tsifrovoi obrabotki izobrazhenii v vstraevimikh sistemakh tekhnicheskogo zreniya (Theoretical Foundations of Digital Image Processing in Embedded Vision Systems), Tomsk: STT, 2016. Bekhtin, Yu.S., Klestov, S.A., Kutsov, M.S., Syryamkin, V.I., and Titov, D.V., Teoreticheskie osnovi tsifrovoi obrabotki izobrazhenii v vstraevimikh sistemakh tekhnicheskogo zreniya (Theoretical Foundations of Digital Image Processing in Embedded Vision Systems), Tomsk: STT, 2016.
9.
Zurück zum Zitat Hanke, R., Fuchs, T., and Uhlmann, N., X-ray based methods for non-destructive testing and material characterization, Nucl. Instrum. Methods Phys. Res. Sect. A, 2008, vol. 591, no. 1, pp. 14–18.CrossRef Hanke, R., Fuchs, T., and Uhlmann, N., X-ray based methods for non-destructive testing and material characterization, Nucl. Instrum. Methods Phys. Res. Sect. A, 2008, vol. 591, no. 1, pp. 14–18.CrossRef
10.
Zurück zum Zitat De Samber, B., Renders, J., Elberfeld, T., Maris, Y., Sanctorum, J., Six, N., Liang, Z., De Beenhouwer, J., and Sijbers, J., FleXCT: a flexible X-ray CT scanner with 10 degrees of freedom, Opt. Express, 2021, vol. 29, no. 3, pp. 3438–3457.CrossRef De Samber, B., Renders, J., Elberfeld, T., Maris, Y., Sanctorum, J., Six, N., Liang, Z., De Beenhouwer, J., and Sijbers, J., FleXCT: a flexible X-ray CT scanner with 10 degrees of freedom, Opt. Express, 2021, vol. 29, no. 3, pp. 3438–3457.CrossRef
11.
Zurück zum Zitat Syryamkin, V.I., Digital X-ray 3D-microtomograph for testing materials and components used in electronics, Russ. J. Nondestr. Test., 2016, vol. 52, no. 9, pp. 504–511.CrossRef Syryamkin, V.I., Digital X-ray 3D-microtomograph for testing materials and components used in electronics, Russ. J. Nondestr. Test., 2016, vol. 52, no. 9, pp. 504–511.CrossRef
12.
Zurück zum Zitat Shaloo, M., Schnall, M., Klein, T., Huber, N., and Reitinger, B.A., Review of non-destructive testing (NDT) techniques for defect detection: application to fusion welding and future wire arc additive manufacturing processes, Materials, 2022, vol. 15, no. 10, p. 3697.CrossRef Shaloo, M., Schnall, M., Klein, T., Huber, N., and Reitinger, B.A., Review of non-destructive testing (NDT) techniques for defect detection: application to fusion welding and future wire arc additive manufacturing processes, Materials, 2022, vol. 15, no. 10, p. 3697.CrossRef
13.
Zurück zum Zitat Marusina, M. Ya. and Kaznacheeva, A.O., Sovremennye vidy tomografii. Uchebnoe posobie (Modern Methods of Tomography. A Textbook), St. Petersburg: SPbGU ITMO, 2006. Marusina, M. Ya. and Kaznacheeva, A.O., Sovremennye vidy tomografii. Uchebnoe posobie (Modern Methods of Tomography. A Textbook), St. Petersburg: SPbGU ITMO, 2006.
14.
Zurück zum Zitat Livieri, P. and Tovo, R., Actual weld profile fatigue performance by digital prototyping of defected and undefected joints, Fatigue & Fract. Eng. Mater. & Struct., 2022, vol. 45, no. 11, pp. 3436–3446.CrossRef Livieri, P. and Tovo, R., Actual weld profile fatigue performance by digital prototyping of defected and undefected joints, Fatigue & Fract. Eng. Mater. & Struct., 2022, vol. 45, no. 11, pp. 3436–3446.CrossRef
15.
Zurück zum Zitat Foorginejad, A., Azargoman, M., Mollayi, N., and Taheri, M., Modeling of weld bead geometry using adaptive neuro-fuzzy inference system (ANFIS) in additive manufacturing, J. Appl. Comput. Mech., 2020, vol. 6, no. 1, pp. 160–170. Foorginejad, A., Azargoman, M., Mollayi, N., and Taheri, M., Modeling of weld bead geometry using adaptive neuro-fuzzy inference system (ANFIS) in additive manufacturing, J. Appl. Comput. Mech., 2020, vol. 6, no. 1, pp. 160–170.
16.
Zurück zum Zitat Bandi, B., Dinda, S.K., Kar, J., Roy, G.G., and Srirangam, P., Effect of weld parameters on porosity formation in electron beam welded Zircaloy-4 joints: X-ray tomography study, Vacuum, 2018, vol. 158, pp. 172–179.CrossRef Bandi, B., Dinda, S.K., Kar, J., Roy, G.G., and Srirangam, P., Effect of weld parameters on porosity formation in electron beam welded Zircaloy-4 joints: X-ray tomography study, Vacuum, 2018, vol. 158, pp. 172–179.CrossRef
17.
Zurück zum Zitat Galos, J., Ghaffari, B., Hetrick, E.T., Jones, M.H., Benoit, M.J., Wood, T., Sanders, P.G., Easton, M.A., and Mouritz, A.P., Novel non-destructive technique for detecting the weld fusion zone using a filler wire of high X-ray contrast, NDT & E Int., 2021, vol. 124, p. 102537.CrossRef Galos, J., Ghaffari, B., Hetrick, E.T., Jones, M.H., Benoit, M.J., Wood, T., Sanders, P.G., Easton, M.A., and Mouritz, A.P., Novel non-destructive technique for detecting the weld fusion zone using a filler wire of high X-ray contrast, NDT & E Int., 2021, vol. 124, p. 102537.CrossRef
18.
Zurück zum Zitat Han, S.C., Park, H.M., Uhm, S.H., Choi, D.Y., Jeong, H.C., Kim, Y.J., and Jun, T.S., Evaluation of liquid metal embrittlement crack in resistance spot welds under intensive welding condition using industrial X-ray computed tomography and machine learning, Weld. World, 2021, vol. 65, no. 10, pp. 1887–1897.CrossRef Han, S.C., Park, H.M., Uhm, S.H., Choi, D.Y., Jeong, H.C., Kim, Y.J., and Jun, T.S., Evaluation of liquid metal embrittlement crack in resistance spot welds under intensive welding condition using industrial X-ray computed tomography and machine learning, Weld. World, 2021, vol. 65, no. 10, pp. 1887–1897.CrossRef
19.
Zurück zum Zitat Bveupe, A.S. and Kaonde, B.M., Defects of welded joints, Int. Stud. Constr. Forum-2017 (2017), pp. 32–38. Bveupe, A.S. and Kaonde, B.M., Defects of welded joints, Int. Stud. Constr. Forum-2017 (2017), pp. 32–38.
20.
Zurück zum Zitat Stakyan, M.G., Pirumyan, N.V., and Martirosyan, A.V., Classification of damages and influencing factors for the development of optimal design schemes of gas pipeline welds, Vestn. Nats. Politekh. Univ. Arm. Mekh. Mashinoved. Mashinostr. 2021, no. 2, pp. 52–62. https://doi.org/10.53297/18293387-2021.2-52 Stakyan, M.G., Pirumyan, N.V., and Martirosyan, A.V., Classification of damages and influencing factors for the development of optimal design schemes of gas pipeline welds, Vestn. Nats. Politekh. Univ. Arm. Mekh. Mashinoved. Mashinostr. 2021, no. 2, pp. 52–62. https://​doi.​org/​10.​53297/​18293387-2021.​2-52
21.
Zurück zum Zitat Schneerson, V.Ya., Classifications of periodic structures of welds formed during welding of metals by melting, in Elektron.-Luchevaya Svarka Smezhnye Tekhnol. (2020), pp. 169–192. Schneerson, V.Ya., Classifications of periodic structures of welds formed during welding of metals by melting, in Elektron.-Luchevaya Svarka Smezhnye Tekhnol. (2020), pp. 169–192.
22.
Zurück zum Zitat Nazarov, R.M. and Gizatullin, Z.M., Review of methods for analyzing weld defects on X-ray images, Yunost’ Znaniya Garantiya Uspekha-2020 (Kursk, 2020), pp. 223–227. Nazarov, R.M. and Gizatullin, Z.M., Review of methods for analyzing weld defects on X-ray images, Yunost’ Znaniya Garantiya Uspekha-2020 (Kursk, 2020), pp. 223–227.
23.
Zurück zum Zitat Hesse, A.C., Nitschke-Pagel, T., and Dilger, K., On the effect of weld defects on the fatigue strength of beam welded butt joints, Proc. Struct. Integr., 2018, vol. 13, pp. 2053–2058. Hesse, A.C., Nitschke-Pagel, T., and Dilger, K., On the effect of weld defects on the fatigue strength of beam welded butt joints, Proc. Struct. Integr., 2018, vol. 13, pp. 2053–2058.
24.
Zurück zum Zitat Gosavi, P.D., Sarkar, K.K., Khunte, S.K., Pawar, V.R., and Basu, B., Microstructure and mechanical properties correlation of weld joints of a high strength naval grade steel, Proc. Struct. Integr., 2019, vol. 14, pp. 304–313. Gosavi, P.D., Sarkar, K.K., Khunte, S.K., Pawar, V.R., and Basu, B., Microstructure and mechanical properties correlation of weld joints of a high strength naval grade steel, Proc. Struct. Integr., 2019, vol. 14, pp. 304–313.
25.
Zurück zum Zitat Karkhin, V.A., Khomich, P.N., and Ivanov, S.Yu., Models of heat sources for predicting thermal fields during fusion welding, Izv. Tul’skogo Gos. Univ., 2010, no. 4-1, pp. 241–254. Karkhin, V.A., Khomich, P.N., and Ivanov, S.Yu., Models of heat sources for predicting thermal fields during fusion welding, Izv. Tul’skogo Gos. Univ., 2010, no. 4-1, pp. 241–254.
26.
Zurück zum Zitat Milyardi, I. and Baskoro, A.S., Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 348, no. 1, p. 012021. Milyardi, I. and Baskoro, A.S., Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 348, no. 1, p. 012021.
27.
Zurück zum Zitat Slivinskii, A.A., Prepiyalo, A.A., Bondarenko, V.L., and Slyuta, V.P., Computational and experimental analysis of thermal welding processes, Tekhnol. Sist., 2014, no. 1 (66), pp. 76–83. Slivinskii, A.A., Prepiyalo, A.A., Bondarenko, V.L., and Slyuta, V.P., Computational and experimental analysis of thermal welding processes, Tekhnol. Sist., 2014, no. 1 (66), pp. 76–83.
28.
Zurück zum Zitat Matuszewski, M., Modeling of 3D temperature field in butt welded joint of 6060 alloy sheets using the ANSYS program, IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 659, no. 1, p. 012034. Matuszewski, M., Modeling of 3D temperature field in butt welded joint of 6060 alloy sheets using the ANSYS program, IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 659, no. 1, p. 012034.
29.
Zurück zum Zitat Capriccioli, A. and Frosi, P., Multipurpose ANSYS FE procedure for welding processes simulation, Fusion Eng. Des., 2009, vol. 84, nos. 2–6, pp. 546–553.CrossRef Capriccioli, A. and Frosi, P., Multipurpose ANSYS FE procedure for welding processes simulation, Fusion Eng. Des., 2009, vol. 84, nos. 2–6, pp. 546–553.CrossRef
30.
Zurück zum Zitat Samad, Z., Nor, N.M., and Fauzi, E.R.I., Thermo-mechanical simulation of temperature distribution and prediction of heat-affected zone size in MIG welding process on aluminium alloy EN AW 6082-T6, IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 530, no. 1, p. 012016. Samad, Z., Nor, N.M., and Fauzi, E.R.I., Thermo-mechanical simulation of temperature distribution and prediction of heat-affected zone size in MIG welding process on aluminium alloy EN AW 6082-T6, IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 530, no. 1, p. 012016.
31.
Zurück zum Zitat Deng, D. and Murakawa, H., Prediction of welding distortion and residual stress in a thin plate butt-welded joint, Comput. Mater. Sci., 2008, vol. 43, no. 2, pp. 353–365.CrossRef Deng, D. and Murakawa, H., Prediction of welding distortion and residual stress in a thin plate butt-welded joint, Comput. Mater. Sci., 2008, vol. 43, no. 2, pp. 353–365.CrossRef
32.
Zurück zum Zitat Panteleenko, F.I., Increasing the strength of welded joints during arc welding, Vestn. Polotskogo Gos. Univ. Ser. B, 2017, no. 11, pp. 34–37. Panteleenko, F.I., Increasing the strength of welded joints during arc welding, Vestn. Polotskogo Gos. Univ. Ser. B, 2017, no. 11, pp. 34–37.
33.
Zurück zum Zitat Bajpai, T., Gupta, P.K., and Malik, A., Thermomechanical analysis of pulsed laser welded thin aluminium alloy sheets, Optim. Ind. Syst., 2022, pp. 439–446. Bajpai, T., Gupta, P.K., and Malik, A., Thermomechanical analysis of pulsed laser welded thin aluminium alloy sheets, Optim. Ind. Syst., 2022, pp. 439–446.
34.
Zurück zum Zitat Braun, R., Donne, C.D., and Staniek, G., Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet, Materialwissenschaft Werkstofftech.: Mater. Sci. Eng. Technol., 2000, vol. 31, no. 12, pp. 1017–1026.CrossRef Braun, R., Donne, C.D., and Staniek, G., Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet, Materialwissenschaft Werkstofftech.: Mater. Sci. Eng. Technol., 2000, vol. 31, no. 12, pp. 1017–1026.CrossRef
35.
Zurück zum Zitat Goyal, A., Kapoor, H., Jayahari, L., and Saxena, K., Experimental investigation to analyze the mechanical and microstructure properties of 310 SS performed by TIG welding, Adv. Mater. Sci. Eng., 2022, vol. 2022. Goyal, A., Kapoor, H., Jayahari, L., and Saxena, K., Experimental investigation to analyze the mechanical and microstructure properties of 310 SS performed by TIG welding, Adv. Mater. Sci. Eng., 2022, vol. 2022.
36.
Zurück zum Zitat Syryamkin, V.I., Klestov, S.A., and Suntsov, S.B., Desing of 3D X-ray microtomograph based on its digital twin, Russ. J. Nondestr. Test., 2022, vol. 58, no. 11, pp. 1041–1049.CrossRef Syryamkin, V.I., Klestov, S.A., and Suntsov, S.B., Desing of 3D X-ray microtomograph based on its digital twin, Russ. J. Nondestr. Test., 2022, vol. 58, no. 11, pp. 1041–1049.CrossRef
37.
Zurück zum Zitat Martinussen, M., Numerical modelling and model reduction of heat flow in robotic welding, Norwegian University of Science and Technology Department of Engineering Cybernetics, Trondheim. Norway 11.3. Electronic sources Volvo Group. Martinussen, M., Numerical modelling and model reduction of heat flow in robotic welding, Norwegian University of Science and Technology Department of Engineering Cybernetics, Trondheim. Norway 11.3. Electronic sources Volvo Group.
38.
Zurück zum Zitat Baus, S.S., Syryamkin, V.I., and Klestov, S.A., RF Certificate of State Reg. Comput. Progr. no. 2015618555, CAD 3D RMT. Software for computer-aided design of X-ray 3D microtomographs, June 25, 2015. Baus, S.S., Syryamkin, V.I., and Klestov, S.A., RF Certificate of State Reg. Comput. Progr. no. 2015618555, CAD 3D RMT. Software for computer-aided design of X-ray 3D microtomographs, June 25, 2015.
Metadaten
Titel
Nondestructive Testing of an Aluminum Alloy Welded Joint Based on a Mathematical Model of the Thermal Welding Process and Computer Microtomography
verfasst von
V. I. Syryamkin
M. D. Khilchuk
S. A. Klestov
Publikationsdatum
01.04.2023
Verlag
Pleiades Publishing
Erschienen in
Russian Journal of Nondestructive Testing / Ausgabe 4/2023
Print ISSN: 1061-8309
Elektronische ISSN: 1608-3385
DOI
https://doi.org/10.1134/S1061830923700341

Weitere Artikel der Ausgabe 4/2023

Russian Journal of Nondestructive Testing 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.