Skip to main content

2020 | OriginalPaper | Buchkapitel

7. Nonequilibrium Energy Transfer in Nanostructures

verfasst von : Zhuomin M. Zhang

Erschienen in: Nano/Microscale Heat Transfer

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter begins with a description of the phenomenological theories in which the energy transport processes are represented by a single differential equation or a set of differential equations that can be solved with appropriate initial and boundary conditions. These equations are often called non-Fourier heat equations, which can be considered as extensions of the conventional heat diffusion equation based on Fourier’s law. The limitations of the phenomenological theories are discussed. While the BTE, Monte Carlo method, and MD simulations have been presented in previous chapters, this chapter stresses the application in solid nanostructures, including thermal boundary resistance (TBR) and multilayer structures. The equation of phonon radiative transfer (EPRT) is introduced and used to delineate the diffusive and ballistic heat conduction regimes in thin films. A heat conduction regime with respect to length and time scale is presented, followed by a summary of the contemporary methods for measuring thermal transport properties of solids, thin films, and nanostructures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1959)MATH H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1959)MATH
2.
Zurück zum Zitat M.N. Özişik, Heat Conduction, 2nd ed., Wiley, New York, 1993; also D.W. Hahn and M.N. Özişik, Heat Conduction, 3rd ed., Wiley, New York, 2012 M.N. Özişik, Heat Conduction, 2nd ed., Wiley, New York, 1993; also D.W. Hahn and M.N. Özişik, Heat Conduction, 3rd ed., Wiley, New York, 2012
3.
Zurück zum Zitat T.J. Bright, Z.M. Zhang, Common misperceptions of the hyperbolic heat equation. J. Thermophys. Heat Transfer 23, 601–607 (2009) T.J. Bright, Z.M. Zhang, Common misperceptions of the hyperbolic heat equation. J. Thermophys. Heat Transfer 23, 601–607 (2009)
4.
Zurück zum Zitat D. D. Joseph, L. Preziosi, Heat waves. Rev. Mod. Phys., 61, 41–73 (1989) D. D. Joseph, L. Preziosi, Heat waves. Rev. Mod. Phys., 61, 41–73 (1989)
5.
Zurück zum Zitat D.D. Joseph, L. Preziosi, Addendum to the paper ‘heat waves’. Rev. Mod. Phys. 62, 375–391 (1990) D.D. Joseph, L. Preziosi, Addendum to the paper ‘heat waves’. Rev. Mod. Phys. 62, 375–391 (1990)
6.
Zurück zum Zitat D.Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd edn. (Wiley, New York, 2015) D.Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd edn. (Wiley, New York, 2015)
7.
Zurück zum Zitat M.N. Özişik, D.Y. Tzou, On the wave theory in heat conduction. J. Heat Transfer 116, 526–535 (1994) M.N. Özişik, D.Y. Tzou, On the wave theory in heat conduction. J. Heat Transfer 116, 526–535 (1994)
8.
Zurück zum Zitat W.K. Yeung, T.T. Lam, A numerical scheme for non-Fourier heat conduction, Part I: one-dimensional problem formulation and applications. Numer. Heat Transfer B 33, 215–233 (1998) W.K. Yeung, T.T. Lam, A numerical scheme for non-Fourier heat conduction, Part I: one-dimensional problem formulation and applications. Numer. Heat Transfer B 33, 215–233 (1998)
9.
Zurück zum Zitat A. Haji-Sheikh, W.J. Minkowycz, E.M. Sparrow, Certain anomalies in the analysis of hyperbolic heat conduction. J. Heat Transfer 124, 307–319 (2002) A. Haji-Sheikh, W.J. Minkowycz, E.M. Sparrow, Certain anomalies in the analysis of hyperbolic heat conduction. J. Heat Transfer 124, 307–319 (2002)
10.
Zurück zum Zitat J. Gembarovic, J. Gembarovic Jr., Non-Fourier heat conduction modeling in a finite medium. Int. J. Thermophys. 25, 1261–1268 (2004)MATH J. Gembarovic, J. Gembarovic Jr., Non-Fourier heat conduction modeling in a finite medium. Int. J. Thermophys. 25, 1261–1268 (2004)MATH
11.
Zurück zum Zitat C.A. Bennett, R.R. Patty, Thermal wave interferometry: a potential application of the photoacoustic effect. Appl. Opt. 21, 49–54 (1982) C.A. Bennett, R.R. Patty, Thermal wave interferometry: a potential application of the photoacoustic effect. Appl. Opt. 21, 49–54 (1982)
12.
Zurück zum Zitat A. Mandelis (ed.), Photoacoustic and Thermal Wave Phenomena in Semiconductors (Elsevier, Amsterdam, 1987) A. Mandelis (ed.), Photoacoustic and Thermal Wave Phenomena in Semiconductors (Elsevier, Amsterdam, 1987)
13.
Zurück zum Zitat M.B. Rubin, Hyperbolic heat conduction and the second law. Int. J. Eng. Sci. 30, 1665–1676 (1992)MathSciNetMATH M.B. Rubin, Hyperbolic heat conduction and the second law. Int. J. Eng. Sci. 30, 1665–1676 (1992)MathSciNetMATH
14.
Zurück zum Zitat C. Bai, A.S. Lavine, On hyperbolic heat conduction and the second law of thermodynamics. J. Heat Transfer 117, 256–263 (1995) C. Bai, A.S. Lavine, On hyperbolic heat conduction and the second law of thermodynamics. J. Heat Transfer 117, 256–263 (1995)
15.
Zurück zum Zitat A. Barletta, E. Zanchini, Hyperbolic heat conduction and local equilibrium: a second law analysis. Int. J. Heat Mass Transfer 40, 1007–1016 (1997)MATH A. Barletta, E. Zanchini, Hyperbolic heat conduction and local equilibrium: a second law analysis. Int. J. Heat Mass Transfer 40, 1007–1016 (1997)MATH
16.
Zurück zum Zitat D. Jou, G. Lebon, J. Casas-Vázquez, Extended Irreversible Thermodynamics, 4th edn. (Springer, Berlin, 2010)MATH D. Jou, G. Lebon, J. Casas-Vázquez, Extended Irreversible Thermodynamics, 4th edn. (Springer, Berlin, 2010)MATH
17.
Zurück zum Zitat Z.M. Zhang, T.J. Bright, G.P. Peterson, Reexamination of the statistical derivations of Fourier’s law and Cattaneo’s equation. Nanoscale Microscale Thermophys. Eng. 15, 220–228 (2011) Z.M. Zhang, T.J. Bright, G.P. Peterson, Reexamination of the statistical derivations of Fourier’s law and Cattaneo’s equation. Nanoscale Microscale Thermophys. Eng. 15, 220–228 (2011)
18.
Zurück zum Zitat J. Tavernier, Sur l’équation de conduction de la chaleur. Comptes Rendus Acad. Sci. 254, 69–71 (1962)MathSciNet J. Tavernier, Sur l’équation de conduction de la chaleur. Comptes Rendus Acad. Sci. 254, 69–71 (1962)MathSciNet
19.
Zurück zum Zitat A. Majumdar, Microscale heat conduction in dielectric thin films. J. Heat Transfer 115, 7–16 (1993) A. Majumdar, Microscale heat conduction in dielectric thin films. J. Heat Transfer 115, 7–16 (1993)
20.
Zurück zum Zitat A.A. Joshi, A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74, 31–39 (1993) A.A. Joshi, A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74, 31–39 (1993)
21.
Zurück zum Zitat S. Volz, J.-B. Saulnier, M. Lallemand, B. Perrin, P. Depondt, M. Mareschal, Transient Fourier-law deviation by molecular dynamics in solid argon. Phys. Rev. B 54, 340–347 (1996) S. Volz, J.-B. Saulnier, M. Lallemand, B. Perrin, P. Depondt, M. Mareschal, Transient Fourier-law deviation by molecular dynamics in solid argon. Phys. Rev. B 54, 340–347 (1996)
22.
Zurück zum Zitat J. Xu, X.W. Wang, Simulation of ballistic and non-Fourier thermal transport in ultra-fast laser heating. Phys. B 351, 213–226 (2004) J. Xu, X.W. Wang, Simulation of ballistic and non-Fourier thermal transport in ultra-fast laser heating. Phys. B 351, 213–226 (2004)
23.
Zurück zum Zitat M. Chester, Second sound in solids. Phys. Rev. 131, 2013–2015 (1963) M. Chester, Second sound in solids. Phys. Rev. 131, 2013–2015 (1963)
24.
Zurück zum Zitat M.E. Gurtin, A.C. Pipkin, A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)MathSciNetMATH M.E. Gurtin, A.C. Pipkin, A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)MathSciNetMATH
25.
Zurück zum Zitat P.J. Antaki, Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. Int. J. Heat Mass Transfer 41, 2253–2258 (1998)MATH P.J. Antaki, Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. Int. J. Heat Mass Transfer 41, 2253–2258 (1998)MATH
26.
Zurück zum Zitat D.W. Tang, N. Araki, Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. Int. J. Heat Mass Transfer 42, 855–860 (1999)MATH D.W. Tang, N. Araki, Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. Int. J. Heat Mass Transfer 42, 855–860 (1999)MATH
27.
Zurück zum Zitat D.Y. Tzou, K.S. Chiu, Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transfer 44, 1725–1734 (2001)MATH D.Y. Tzou, K.S. Chiu, Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transfer 44, 1725–1734 (2001)MATH
28.
Zurück zum Zitat L.Q. Wang, X.S. Zhou, X.H. Wei, Heat Conduction: Mathematical Models and Analytical Solutions (Springer-Verlag, Berlin, 2008)MATH L.Q. Wang, X.S. Zhou, X.H. Wei, Heat Conduction: Mathematical Models and Analytical Solutions (Springer-Verlag, Berlin, 2008)MATH
29.
Zurück zum Zitat W.J. Minkowycz, A. Haji-Sheikh, K. Vafai, On departure from local thermal equilibrium in porous media due to a rapid changing heat source: the Sparrow number. Int. J. Heat Mass Transfer 42, 3373–3385 (1999)MATH W.J. Minkowycz, A. Haji-Sheikh, K. Vafai, On departure from local thermal equilibrium in porous media due to a rapid changing heat source: the Sparrow number. Int. J. Heat Mass Transfer 42, 3373–3385 (1999)MATH
30.
Zurück zum Zitat W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transfer 112, 555–560 (1990) W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transfer 112, 555–560 (1990)
31.
Zurück zum Zitat J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1951 (1959)MATH J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1951 (1959)MATH
32.
Zurück zum Zitat R. A. Guyer, J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966); Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966) R. A. Guyer, J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966); Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)
33.
Zurück zum Zitat J. Shiomi, S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations. Phys. Rev. B 73, 205420 (2006) J. Shiomi, S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations. Phys. Rev. B 73, 205420 (2006)
34.
Zurück zum Zitat D.H. Tsai, R.A. MacDonald, Molecular-dynamics study of second sound in a solid excited by a strong heat pulse. Phys. Rev. B 14, 4714–4723 (1976) D.H. Tsai, R.A. MacDonald, Molecular-dynamics study of second sound in a solid excited by a strong heat pulse. Phys. Rev. B 14, 4714–4723 (1976)
35.
Zurück zum Zitat X.W. Wang, X. Xu, Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 73, 107–114 (2001) X.W. Wang, X. Xu, Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 73, 107–114 (2001)
36.
Zurück zum Zitat X.W. Wang, Thermal and thermomechanical phenomena in picosecond laser copper interaction. J. Heat Transfer 126, 355–364 (2004) X.W. Wang, Thermal and thermomechanical phenomena in picosecond laser copper interaction. J. Heat Transfer 126, 355–364 (2004)
37.
Zurück zum Zitat S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974) S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974)
38.
Zurück zum Zitat J.G. Fujimoto, J.M. Liu, E.P. Ippen, N. Bloembergen, Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys. Rev. Lett. 53, 1837–1840 (1984) J.G. Fujimoto, J.M. Liu, E.P. Ippen, N. Bloembergen, Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys. Rev. Lett. 53, 1837–1840 (1984)
39.
Zurück zum Zitat S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold films. Phys. Rev. Lett. 59, 1962–1965 (1987) S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold films. Phys. Rev. Lett. 59, 1962–1965 (1987)
40.
Zurück zum Zitat T.Q. Qiu, C.L. Tien, Short-pulse laser heating on metals. Int. J. Heat Mass Transfer 35, 719–726 (1992) T.Q. Qiu, C.L. Tien, Short-pulse laser heating on metals. Int. J. Heat Mass Transfer 35, 719–726 (1992)
41.
Zurück zum Zitat T.Q. Qiu, C.L. Tien, Size effect on nonequilibrium laser heating of metal films. J. Heat Transfer 115, 842–847 (1993) T.Q. Qiu, C.L. Tien, Size effect on nonequilibrium laser heating of metal films. J. Heat Transfer 115, 842–847 (1993)
42.
Zurück zum Zitat T.Q. Qiu, T. Juhasz, C. Suarez, W.E. Bron, C.L. Tien, Femtosecond laser heating of multi-layer metals—II. Experiments. Int. J. Heat Mass Transfer 37, 2799–2808 (1994) T.Q. Qiu, T. Juhasz, C. Suarez, W.E. Bron, C.L. Tien, Femtosecond laser heating of multi-layer metals—II. Experiments. Int. J. Heat Mass Transfer 37, 2799–2808 (1994)
43.
Zurück zum Zitat J.L. Hostetler, A.N. Smith, D.M. Czajkowsky, P.M. Norris, Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al. Appl. Opt. 38, 3614–3620 (1999) J.L. Hostetler, A.N. Smith, D.M. Czajkowsky, P.M. Norris, Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al. Appl. Opt. 38, 3614–3620 (1999)
44.
Zurück zum Zitat S. Link, C. Burda, Z.L. Wang, M.A. El-Sayed, Electron dynamics in gold and gold-silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys. 111, 1255–1264 (1999) S. Link, C. Burda, Z.L. Wang, M.A. El-Sayed, Electron dynamics in gold and gold-silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys. 111, 1255–1264 (1999)
45.
Zurück zum Zitat A.N. Smith, P.M. Norris, Influence of intraband transition on the electron thermoreflectance response of metals. Appl. Phys. Lett. 78, 1240–1242 (2001) A.N. Smith, P.M. Norris, Influence of intraband transition on the electron thermoreflectance response of metals. Appl. Phys. Lett. 78, 1240–1242 (2001)
46.
Zurück zum Zitat R.J. Stevens, A.N. Smith, P.M. Norris, Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance techniques. J. Heat Transfer 127, 315–322 (2005) R.J. Stevens, A.N. Smith, P.M. Norris, Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance techniques. J. Heat Transfer 127, 315–322 (2005)
47.
Zurück zum Zitat D.G. Cahill, K.E. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transfer 124, 223–241 (2002) D.G. Cahill, K.E. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transfer 124, 223–241 (2002)
48.
Zurück zum Zitat D.G. Cahill, W.K. Ford, K.E. Goodson et al., Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003) D.G. Cahill, W.K. Ford, K.E. Goodson et al., Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)
49.
Zurück zum Zitat J. Zhu, D.W. Tang, W. Wang, J. Liu, K.W. Holub, R. Yang, Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films. J. Appl. Phys. 108, 094315 (2010) J. Zhu, D.W. Tang, W. Wang, J. Liu, K.W. Holub, R. Yang, Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films. J. Appl. Phys. 108, 094315 (2010)
50.
Zurück zum Zitat D.M. Riffe, X.Y. Wang, M.C. Downer et al., Femtosecond thermionic emission from metals in the space-charge-limited regime. J. Opt. Soc. Am. B 10, 1424–1435 (1993) D.M. Riffe, X.Y. Wang, M.C. Downer et al., Femtosecond thermionic emission from metals in the space-charge-limited regime. J. Opt. Soc. Am. B 10, 1424–1435 (1993)
51.
Zurück zum Zitat A.N. Smith, J.L. Hostetler, P.M. Norris, Nonequilibrium heating in metal films: An analytical and numerical analysis. Numer. Heat Transfer A 35, 859–874 (1999) A.N. Smith, J.L. Hostetler, P.M. Norris, Nonequilibrium heating in metal films: An analytical and numerical analysis. Numer. Heat Transfer A 35, 859–874 (1999)
52.
Zurück zum Zitat M. Li, S. Menon, J.P. Nibarger, G.N. Gibson, Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics. Phys. Rev. Lett. 82, 2394–2397 (1999) M. Li, S. Menon, J.P. Nibarger, G.N. Gibson, Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics. Phys. Rev. Lett. 82, 2394–2397 (1999)
53.
Zurück zum Zitat L. Jiang, H.-L. Tsai, Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains. J. Heat Transfer 128, 926–933 (2006) L. Jiang, H.-L. Tsai, Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains. J. Heat Transfer 128, 926–933 (2006)
54.
Zurück zum Zitat L. Jiang, H.-L. Tsai, Plasma modeling for ultrashort pulse laser ablation of dielectrics. J. Appl. Phys. 100, 023116 (2006) L. Jiang, H.-L. Tsai, Plasma modeling for ultrashort pulse laser ablation of dielectrics. J. Appl. Phys. 100, 023116 (2006)
55.
Zurück zum Zitat Y. Ma, A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments. J. Appl. Phys. 116, 243505 (2014); ibid, Hotspot size-dependent thermal boundary conductance in nondiffusive heat conduction. J. Heat Transfer 137, 082401 (2015) Y. Ma, A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments. J. Appl. Phys. 116, 243505 (2014); ibid, Hotspot size-dependent thermal boundary conductance in nondiffusive heat conduction. J. Heat Transfer 137, 082401 (2015)
56.
Zurück zum Zitat G. Chen, Ballistic-diffusion heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001); ibid, Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transfer 124, 320–328 (2002) G. Chen, Ballistic-diffusion heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001); ibid, Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transfer 124, 320–328 (2002)
57.
Zurück zum Zitat T. Klitsner, J.E. VanCleve, H.E. Fischer, R.O. Pohl, Phonon radiative heat transfer and surface scattering. Phys. Rev. B 38, 7576–7594 (1988) T. Klitsner, J.E. VanCleve, H.E. Fischer, R.O. Pohl, Phonon radiative heat transfer and surface scattering. Phys. Rev. B 38, 7576–7594 (1988)
58.
Zurück zum Zitat R.B. Peterson, Direct simulation of phonon-mediated heat transfer in a Debye crystal. J. Heat Transfer 116, 815–822 (1994) R.B. Peterson, Direct simulation of phonon-mediated heat transfer in a Debye crystal. J. Heat Transfer 116, 815–822 (1994)
59.
Zurück zum Zitat E.T. Swartz, P.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989) E.T. Swartz, P.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989)
60.
Zurück zum Zitat W.A. Little, The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334–349 (1959) W.A. Little, The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334–349 (1959)
61.
Zurück zum Zitat G. Chen and C.L. Tien, “Thermal conductivity of quantum well structures,” J. Thermophys. Heat Transfer, 7, 311–318, 1993 G. Chen and C.L. Tien, “Thermal conductivity of quantum well structures,” J. Thermophys. Heat Transfer, 7, 311–318, 1993
62.
Zurück zum Zitat G. Chen, Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transfer 119, 220–229 (1997) G. Chen, Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transfer 119, 220–229 (1997)
63.
Zurück zum Zitat G. Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998) G. Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998)
64.
Zurück zum Zitat G. Chen, T. Zeng, Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale Thermophys. Eng. 5, 71–88 (2001) G. Chen, T. Zeng, Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale Thermophys. Eng. 5, 71–88 (2001)
65.
Zurück zum Zitat T. Zeng, G. Chen, Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. J. Heat Transfer 123, 340–347 (2001) T. Zeng, G. Chen, Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. J. Heat Transfer 123, 340–347 (2001)
66.
Zurück zum Zitat S. Sinha, K.E. Goodson, Review: multiscale thermal modeling in nanoelectronics. Int. J. Multiscale Comp. Eng. 3, 107–133 (2005) S. Sinha, K.E. Goodson, Review: multiscale thermal modeling in nanoelectronics. Int. J. Multiscale Comp. Eng. 3, 107–133 (2005)
67.
Zurück zum Zitat R.A. Escobar, S.S. Ghai, M.S. Jhon, C.H. Amon, Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling. Int. J. Heat Mass Transfer 49, 97–107 (2006)MATH R.A. Escobar, S.S. Ghai, M.S. Jhon, C.H. Amon, Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling. Int. J. Heat Mass Transfer 49, 97–107 (2006)MATH
68.
Zurück zum Zitat E.M. Sparrow, R.D. Cess, Radiation Heat Transfer, Augmented edn. (McGraw-Hill, New York, 1978) E.M. Sparrow, R.D. Cess, Radiation Heat Transfer, Augmented edn. (McGraw-Hill, New York, 1978)
69.
Zurück zum Zitat M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, New York, 2013) M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, New York, 2013)
70.
Zurück zum Zitat T.J. Bright, Z.M. Zhang, Entropy generation in thin films evaluated from phonon radiative transport. J. Heat Transfer 132, 101301 (2010) T.J. Bright, Z.M. Zhang, Entropy generation in thin films evaluated from phonon radiative transport. J. Heat Transfer 132, 101301 (2010)
71.
Zurück zum Zitat H.B.G. Casimir, Note on the conduction of heat in crystal. Physica 5, 495–500 (1938) H.B.G. Casimir, Note on the conduction of heat in crystal. Physica 5, 495–500 (1938)
72.
Zurück zum Zitat R.G. Deissler, Diffusion approximation for thermal radiation in gasses with jump boundary condition. J. Heat Transfer 86, 240–245 (1964) R.G. Deissler, Diffusion approximation for thermal radiation in gasses with jump boundary condition. J. Heat Transfer 86, 240–245 (1964)
73.
Zurück zum Zitat A. Malhotra, K. Kothari, M. Maldovan, Cross-plane thermal conduction in superlattices: Impact of multiple length scales on phonon transport. J. Appl. Phys. 125, 044304 (2019) A. Malhotra, K. Kothari, M. Maldovan, Cross-plane thermal conduction in superlattices: Impact of multiple length scales on phonon transport. J. Appl. Phys. 125, 044304 (2019)
74.
Zurück zum Zitat K. Kothari, A. Malhotra, M. Maldovan, Cross-plane heat conduction in III–V semiconductor superlattices. J. Phys. Condens. Matter 31, 345301 (2019) K. Kothari, A. Malhotra, M. Maldovan, Cross-plane heat conduction in III–V semiconductor superlattices. J. Phys. Condens. Matter 31, 345301 (2019)
75.
Zurück zum Zitat M.M. Yovanovich, Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans. Compon. Packag. Technol. 28, 182–206 (2005) M.M. Yovanovich, Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans. Compon. Packag. Technol. 28, 182–206 (2005)
76.
Zurück zum Zitat R.J. Stoner, H.J. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48, 16373–16387 (1993) R.J. Stoner, H.J. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48, 16373–16387 (1993)
77.
Zurück zum Zitat R.S. Prasher and P.E. Phelan, “Review of thermal boundary resistance of high-temperature superconductors,” J. Supercond., 10, 473–484, 1997 R.S. Prasher and P.E. Phelan, “Review of thermal boundary resistance of high-temperature superconductors,” J. Supercond., 10, 473–484, 1997
78.
Zurück zum Zitat P.E. Phelan, Application of diffuse mismatch theory to the prediction of thermal boundary resistance in thin-film high-Tc superconductors. J. Heat Transfer 120, 37–43 (1998) P.E. Phelan, Application of diffuse mismatch theory to the prediction of thermal boundary resistance in thin-film high-Tc superconductors. J. Heat Transfer 120, 37–43 (1998)
79.
Zurück zum Zitat L. De Bellis, P.E. Phelan, R.S. Prasher, Variations of acoustic and diffuse mismatch models in predicting thermal-boundary resistance. J. Thermophys. Heat Transfer 14, 144–150 (2000) L. De Bellis, P.E. Phelan, R.S. Prasher, Variations of acoustic and diffuse mismatch models in predicting thermal-boundary resistance. J. Thermophys. Heat Transfer 14, 144–150 (2000)
80.
Zurück zum Zitat A. Majumdar, Effect of interfacial roughness on phonon radiative heat conduction. J. Heat Transfer 113, 797–805 (1991) A. Majumdar, Effect of interfacial roughness on phonon radiative heat conduction. J. Heat Transfer 113, 797–805 (1991)
81.
Zurück zum Zitat A. Majumdar, P. Reddy, Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004) A. Majumdar, P. Reddy, Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004)
82.
Zurück zum Zitat A. Giri, P.E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Func. Mater. 2019, 1903857 (2019) A. Giri, P.E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Func. Mater. 2019, 1903857 (2019)
83.
Zurück zum Zitat S. Mazumdar, A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transfer 123, 749–759 (2001) S. Mazumdar, A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transfer 123, 749–759 (2001)
84.
Zurück zum Zitat Q. Hao, G. Chen, M.-S. Jeng, Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J. Appl. Phys. 106, 114321 (2009) Q. Hao, G. Chen, M.-S. Jeng, Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J. Appl. Phys. 106, 114321 (2009)
85.
Zurück zum Zitat J.-P.M. Péraud, C.D. Landon, N.G. Hadjiconstantinou, Monte Carlo methods for solving the Boltzmann transport equation. Annu. Rev. Heat Transfer 17, 205–265 (2014) J.-P.M. Péraud, C.D. Landon, N.G. Hadjiconstantinou, Monte Carlo methods for solving the Boltzmann transport equation. Annu. Rev. Heat Transfer 17, 205–265 (2014)
86.
Zurück zum Zitat A. Nabovati, D.P. Sellan, C.H. Amon, On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230, 5864–5876 (2011)MathSciNetMATH A. Nabovati, D.P. Sellan, C.H. Amon, On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230, 5864–5876 (2011)MathSciNetMATH
87.
Zurück zum Zitat S.R. Phillpot, P.K. Schelling, P. Keblinski, Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation. Appl. Phys. Lett. 80, 2484–2486 (2002); ibid, Interfacial thermal conductivity: Insights from atomic level simulation. J. Mater. Sci. 40, 3143–3148 (2005) S.R. Phillpot, P.K. Schelling, P. Keblinski, Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation. Appl. Phys. Lett. 80, 2484–2486 (2002); ibid, Interfacial thermal conductivity: Insights from atomic level simulation. J. Mater. Sci. 40, 3143–3148 (2005)
88.
Zurück zum Zitat C.-J. Twu, J.-R. Ho, Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films. Phys. Rev. B 67, 205422 (2003) C.-J. Twu, J.-R. Ho, Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films. Phys. Rev. B 67, 205422 (2003)
89.
Zurück zum Zitat H. Zhong, J.R. Lukes, Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74, 125403 (2006) H. Zhong, J.R. Lukes, Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74, 125403 (2006)
90.
Zurück zum Zitat R.J. Stevens, L.V. Zhigilei, P.M. Norris, Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: non-equilibrium molecular dynamics simulations. Int. J. Heat Mass Transfer 50, 3977–3989 (2007)MATH R.J. Stevens, L.V. Zhigilei, P.M. Norris, Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: non-equilibrium molecular dynamics simulations. Int. J. Heat Mass Transfer 50, 3977–3989 (2007)MATH
91.
Zurück zum Zitat E.S. Landry, A.J.H. McGaughey, Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B 80, 165304 (2009) E.S. Landry, A.J.H. McGaughey, Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B 80, 165304 (2009)
92.
Zurück zum Zitat Y. Chalopin, K. Esfarjani, A. Henry, S. Volz, G. Chen, Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics. Phys. Rev. B 85, 195302 (2012) Y. Chalopin, K. Esfarjani, A. Henry, S. Volz, G. Chen, Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics. Phys. Rev. B 85, 195302 (2012)
93.
Zurück zum Zitat S. Merabia, K. Termentzidis, Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics. Phys. Rev. B 86, 094303 (2012) S. Merabia, K. Termentzidis, Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics. Phys. Rev. B 86, 094303 (2012)
94.
Zurück zum Zitat Z. Liang, M. Hu, Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations. J. Appl. Phys. 123, 191101 (2018) Z. Liang, M. Hu, Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations. J. Appl. Phys. 123, 191101 (2018)
95.
Zurück zum Zitat F. VanGessel, J. Peng, P.W. Chung, A review of computational phononics: the bulk, interfaces, and surfaces. J. Mater. Sci. 53, 5641–5683 (2018) F. VanGessel, J. Peng, P.W. Chung, A review of computational phononics: the bulk, interfaces, and surfaces. J. Mater. Sci. 53, 5641–5683 (2018)
96.
Zurück zum Zitat S. Datta, Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000) S. Datta, Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000)
97.
Zurück zum Zitat N. Mingo, L. Yang, Phonon transport in nanowires coated with an amorphous material: an atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003) N. Mingo, L. Yang, Phonon transport in nanowires coated with an amorphous material: an atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003)
98.
Zurück zum Zitat W. Zhang, T.S. Fisher, N. Mingo, Simulation of interfacial phonon transport in Si–Ge heterostructures using an atomistic Green’s function method. J. Heat Transfer 129, 483–491 (2007); ibid, The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numerical Heat Transfer B 51, 333–349 (2007) W. Zhang, T.S. Fisher, N. Mingo, Simulation of interfacial phonon transport in Si–Ge heterostructures using an atomistic Green’s function method. J. Heat Transfer 129, 483–491 (2007); ibid, The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numerical Heat Transfer B 51, 333–349 (2007)
99.
Zurück zum Zitat S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, T.S. Fisher, The atomistic Green’s function method for interfacial phonon transport. Annu. Rev. Heat Transfer 17, 89–145 (2014) S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, T.S. Fisher, The atomistic Green’s function method for interfacial phonon transport. Annu. Rev. Heat Transfer 17, 89–145 (2014)
100.
Zurück zum Zitat A. Ozpineci, S. Ciraci, Quantum effects of thermal conductance through atomic chains. Phys. Rev. B 63, 125415 (2001) A. Ozpineci, S. Ciraci, Quantum effects of thermal conductance through atomic chains. Phys. Rev. B 63, 125415 (2001)
101.
Zurück zum Zitat Z.-Y. Ong, G. Zhang, Efficient approach for modeling phonon transmission probability in nanoscale interfacial thermal transport. Phys. Rev. B 91, 174302 (2015) Z.-Y. Ong, G. Zhang, Efficient approach for modeling phonon transmission probability in nanoscale interfacial thermal transport. Phys. Rev. B 91, 174302 (2015)
102.
Zurück zum Zitat L. Yang, B. Latour, A.J. Minnich, Phonon transmission at crystalline-amorphous interfaces studied using mode-resolved atomistic Green’s functions. Phys. Rev. B 97, 205306 (2018) L. Yang, B. Latour, A.J. Minnich, Phonon transmission at crystalline-amorphous interfaces studied using mode-resolved atomistic Green’s functions. Phys. Rev. B 97, 205306 (2018)
103.
Zurück zum Zitat D.A. Young, H.J. Maris, Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. Phys. Rev. B 40, 3685–3693 (1989) D.A. Young, H.J. Maris, Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. Phys. Rev. B 40, 3685–3693 (1989)
104.
Zurück zum Zitat H. Zhao, J.B. Freund, Lattice-dynamical calculation of phonon scattering at ideal Si–Ge interfaces. J. Appl. Phys. 97, 024903 (2005) H. Zhao, J.B. Freund, Lattice-dynamical calculation of phonon scattering at ideal Si–Ge interfaces. J. Appl. Phys. 97, 024903 (2005)
105.
Zurück zum Zitat S. Sadasivam, N. Ye, J.P. Feser, J. Charles, K. Miao, T. Kubis, T.S. Fisher, Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green’s function transport simulations. Phys. Rev. B 95, 085310 (2017) S. Sadasivam, N. Ye, J.P. Feser, J. Charles, K. Miao, T. Kubis, T.S. Fisher, Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green’s function transport simulations. Phys. Rev. B 95, 085310 (2017)
106.
Zurück zum Zitat Z. Tian, K. Esfarjani, G. Chen, Green’s function studies of phonon transport across Si/Ge superlattices. Phys. Rev. B 89, 235307 (2014) Z. Tian, K. Esfarjani, G. Chen, Green’s function studies of phonon transport across Si/Ge superlattices. Phys. Rev. B 89, 235307 (2014)
107.
Zurück zum Zitat Z. Yan, L. Chen, M. Yoon, S. Kumar, Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures. Nanoscale 8, 4037 (2016) Z. Yan, L. Chen, M. Yoon, S. Kumar, Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures. Nanoscale 8, 4037 (2016)
108.
Zurück zum Zitat J. Lai, A. Majumdar, Concurrent thermal and electrical modeling of sub-micrometer silicon devices. J. Appl. Phys. 79, 7353–7361 (1996) J. Lai, A. Majumdar, Concurrent thermal and electrical modeling of sub-micrometer silicon devices. J. Appl. Phys. 79, 7353–7361 (1996)
109.
Zurück zum Zitat P.G. Sverdrup, Y.S. Ju, K.E. Goodson, Sub-continuum simulation of heat conduction in silicon-on-insulator transistors. J. Heat Transfer 123, 130–137 (2001) P.G. Sverdrup, Y.S. Ju, K.E. Goodson, Sub-continuum simulation of heat conduction in silicon-on-insulator transistors. J. Heat Transfer 123, 130–137 (2001)
110.
Zurück zum Zitat S. Sinha, E. Pop, R.W. Dutton, K.E. Goodson, Non-equilibrium phonon distribution in sub-100 nm silicon transistors. J. Heat Transfer 128, 638–647 (2006) S. Sinha, E. Pop, R.W. Dutton, K.E. Goodson, Non-equilibrium phonon distribution in sub-100 nm silicon transistors. J. Heat Transfer 128, 638–647 (2006)
111.
Zurück zum Zitat C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millán, V.S. Amaral, F. Palacio, L.D. Carlos, Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012) C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millán, V.S. Amaral, F. Palacio, L.D. Carlos, Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012)
112.
Zurück zum Zitat X.W. Wang, Experimental Micro/Nanoscale Thermal Transport (Wiley, New York, 2012) X.W. Wang, Experimental Micro/Nanoscale Thermal Transport (Wiley, New York, 2012)
113.
Zurück zum Zitat A.J. McNamara, Y. Joshi, Z.M. Zhang, Characterization of nanostructured thermal interface materials—a review. Int. J. Thermal Sci. 62, 2–11 (2012) A.J. McNamara, Y. Joshi, Z.M. Zhang, Characterization of nanostructured thermal interface materials—a review. Int. J. Thermal Sci. 62, 2–11 (2012)
114.
Zurück zum Zitat G. Chen, Probing nanoscale heat transfer phenomena. Annu. Rev. Heat Transfer 16, 1–8 (2013) G. Chen, Probing nanoscale heat transfer phenomena. Annu. Rev. Heat Transfer 16, 1–8 (2013)
115.
Zurück zum Zitat D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Package 138, 040802 (2016) D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Package 138, 040802 (2016)
116.
Zurück zum Zitat Z.M. Zhang, Surface temperature measurement using optical techniques. Annu. Rev. Heat Transfer 11, 351–411 (2000) Z.M. Zhang, Surface temperature measurement using optical techniques. Annu. Rev. Heat Transfer 11, 351–411 (2000)
117.
Zurück zum Zitat B. Abad, D.-A. Borca-Tasciuc, M.S. Martin-Gonzalez, Non-contact methods for thermal properties measurement. Renew. Sustain. Energy Rev. 76, 1348–1370 (2017) B. Abad, D.-A. Borca-Tasciuc, M.S. Martin-Gonzalez, Non-contact methods for thermal properties measurement. Renew. Sustain. Energy Rev. 76, 1348–1370 (2017)
118.
Zurück zum Zitat A.C. Jones, B.T. O’Callahan, H.U. Yang, M.B. Raschke, The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces. Prog. Sur. Sci. 88, 349–392 (2013) A.C. Jones, B.T. O’Callahan, H.U. Yang, M.B. Raschke, The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces. Prog. Sur. Sci. 88, 349–392 (2013)
119.
Zurück zum Zitat K.E. Goodson, Y.S. Ju, Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29, 261–293 (1999) K.E. Goodson, Y.S. Ju, Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29, 261–293 (1999)
120.
Zurück zum Zitat K. Park, G.L.W. Cross, Z.M. Zhang, W.P. King, Experimental investigation on the heat transfer between a heated microcantilever and a substrate. J. Heat Transfer 130, 102401 (2008) K. Park, G.L.W. Cross, Z.M. Zhang, W.P. King, Experimental investigation on the heat transfer between a heated microcantilever and a substrate. J. Heat Transfer 130, 102401 (2008)
121.
Zurück zum Zitat D. G. Cahill and R. O. Pohl, “Thermal conductivity of amorphous solids above the plateau,” Phys. Rev. B, 35, 4067–4073, 1987 D. G. Cahill and R. O. Pohl, “Thermal conductivity of amorphous solids above the plateau,” Phys. Rev. B, 35, 4067–4073, 1987
122.
Zurück zum Zitat D.G. Cahill, H.E. Fischer, T. Klitsner, E.T. Swartz, R.O. Pohl, Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Technol. A 7, 1259–1266 (1989) D.G. Cahill, H.E. Fischer, T. Klitsner, E.T. Swartz, R.O. Pohl, Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Technol. A 7, 1259–1266 (1989)
123.
Zurück zum Zitat D.G. Cahill, Thermal conductivity measurement from 30 K to 750 K: the 3-omega method. Rev. Sci. Instrum. 61, 802–808 (1990) D.G. Cahill, Thermal conductivity measurement from 30 K to 750 K: the 3-omega method. Rev. Sci. Instrum. 61, 802–808 (1990)
124.
Zurück zum Zitat C. Dames, Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat Transfer 16, 7–49 (2013) C. Dames, Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat Transfer 16, 7–49 (2013)
125.
Zurück zum Zitat S. Kommandur, S.K. Yee, A suspended 3-omega technique to measure the anisotropic thermal conductivity of semiconducting polymers. Rev. Sci. Instrum. 89, 114905 (2018) S. Kommandur, S.K. Yee, A suspended 3-omega technique to measure the anisotropic thermal conductivity of semiconducting polymers. Rev. Sci. Instrum. 89, 114905 (2018)
126.
Zurück zum Zitat L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar, Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881–888 (2003) L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar, Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881–888 (2003)
127.
Zurück zum Zitat P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001) P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)
128.
Zurück zum Zitat C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005) C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005)
129.
Zurück zum Zitat A. Mavrokefalos, M.T. Pettes, F. Zhou, L. Shi, Four-probe measurements of the in-plane thermoelectric properties of nanofilms. Rev. Sci. Instrum. 78, 034901 (2007) A. Mavrokefalos, M.T. Pettes, F. Zhou, L. Shi, Four-probe measurements of the in-plane thermoelectric properties of nanofilms. Rev. Sci. Instrum. 78, 034901 (2007)
130.
Zurück zum Zitat A. Weathers, L. Shi, Thermal transport measurement techniques for nanowires and nanotubes. Annu. Rev. Heat Transfer 16, 101–134 (2013) A. Weathers, L. Shi, Thermal transport measurement techniques for nanowires and nanotubes. Annu. Rev. Heat Transfer 16, 101–134 (2013)
131.
Zurück zum Zitat M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005) M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005)
132.
Zurück zum Zitat J. Kim, E. Ou, D.P. Sellan, L. Shi, A four-probe thermal transport measurement method for nanostructures. Rev. Sci. Instrum. 86, 044901 (2015) J. Kim, E. Ou, D.P. Sellan, L. Shi, A four-probe thermal transport measurement method for nanostructures. Rev. Sci. Instrum. 86, 044901 (2015)
133.
Zurück zum Zitat J. Kim, D.A. Evans, D.P. Sellan, O.M. Williams, E. Ou, A.H. Cowley, L. Shi, Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure. Appl. Phys. Lett. 108, 201905 (2016) J. Kim, D.A. Evans, D.P. Sellan, O.M. Williams, E. Ou, A.H. Cowley, L. Shi, Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure. Appl. Phys. Lett. 108, 201905 (2016)
134.
Zurück zum Zitat A. Majumdar, Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999) A. Majumdar, Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999)
135.
Zurück zum Zitat A. Majumdar, J. P. Carrejo, J. Lai, Thermal imaging using the atomic force microscope. Appl. Phys. Lett. 62, 2501–2503 (1993) A. Majumdar, J. P. Carrejo, J. Lai, Thermal imaging using the atomic force microscope. Appl. Phys. Lett. 62, 2501–2503 (1993)
136.
Zurück zum Zitat A. Majumdar, J. Lai, M. Chandrachood, O. Nakabeppu, Y. Wu, J. Shi, Thermal imaging by atomic force microscopy using thermocouple cantilever probes. Rev. Sci. Instrum. 66, 3584–3592 (1995) A. Majumdar, J. Lai, M. Chandrachood, O. Nakabeppu, Y. Wu, J. Shi, Thermal imaging by atomic force microscopy using thermocouple cantilever probes. Rev. Sci. Instrum. 66, 3584–3592 (1995)
137.
Zurück zum Zitat C.C. Williams, H.K. Wickramasinghe, Scanning thermal profiler. Appl. Phys. Lett. 49, 1587–1589 (1986) C.C. Williams, H.K. Wickramasinghe, Scanning thermal profiler. Appl. Phys. Lett. 49, 1587–1589 (1986)
138.
Zurück zum Zitat A. Majumdar, J. Varesi, Nanoscale temperature distribution measured by scanning Joule expansion microscopy. J. Heat Transfer 120, 297–305 (1998) A. Majumdar, J. Varesi, Nanoscale temperature distribution measured by scanning Joule expansion microscopy. J. Heat Transfer 120, 297–305 (1998)
139.
Zurück zum Zitat S.P. Gurrum, W.P. King, Y.K. Joshi, K. Ramakrishna, Size effect on the thermal conductivity of thin metallic films investigated by scanning Joule expansion microscopy. J. Heat Transfer 130, 082403 (2008) S.P. Gurrum, W.P. King, Y.K. Joshi, K. Ramakrishna, Size effect on the thermal conductivity of thin metallic films investigated by scanning Joule expansion microscopy. J. Heat Transfer 130, 082403 (2008)
140.
Zurück zum Zitat K.L. Grosse, M.-H. Bae, F. Lian, E. Pop, W.P. King, Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotech. 6, 287–290 (2011) K.L. Grosse, M.-H. Bae, F. Lian, E. Pop, W.P. King, Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotech. 6, 287–290 (2011)
141.
Zurück zum Zitat T. Borca-Tasciuc, Scanning probe methods for thermal and thermoelectric property measurements. Annu. Rev. Heat Transfer 16, 211–258 (2013) T. Borca-Tasciuc, Scanning probe methods for thermal and thermoelectric property measurements. Annu. Rev. Heat Transfer 16, 211–258 (2013)
142.
Zurück zum Zitat S. Gomès, A. Assy, P.-O. Chapuis, Scanning thermal microscopy: a review. Phys. Status Solidi A 212, 477–494 (2015) S. Gomès, A. Assy, P.-O. Chapuis, Scanning thermal microscopy: a review. Phys. Status Solidi A 212, 477–494 (2015)
143.
Zurück zum Zitat K. Kim, J. Chung, G. Hwang, O. Kwon, J.S. Lee, Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air. ACS Nano 11, 8700–8709 (2011) K. Kim, J. Chung, G. Hwang, O. Kwon, J.S. Lee, Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air. ACS Nano 11, 8700–8709 (2011)
144.
Zurück zum Zitat H.F. Hamann, Y.C. Martin, H.K. Wickramasinghe, Thermally assisted recording beyond traditional limits. Appl. Phys. Lett. 84, 810–812 (2004) H.F. Hamann, Y.C. Martin, H.K. Wickramasinghe, Thermally assisted recording beyond traditional limits. Appl. Phys. Lett. 84, 810–812 (2004)
145.
Zurück zum Zitat W.P. King, T.W. Kenny, K.E. Goodson et al., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001) W.P. King, T.W. Kenny, K.E. Goodson et al., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001)
146.
Zurück zum Zitat J. Lee, T. Beechem, T. L. Wright, B. A. Nelson, S. Graham, W. P. King, Electrical, thermal, and, mechanical characterization of silicon microcantilever heaters. J. Microelectromech. Syst. 15, 1644 (2007) J. Lee, T. Beechem, T. L. Wright, B. A. Nelson, S. Graham, W. P. King, Electrical, thermal, and, mechanical characterization of silicon microcantilever heaters. J. Microelectromech. Syst. 15, 1644 (2007)
147.
Zurück zum Zitat J. Lee, T.L. Wright, M.R. Abel et al., Thermal conduction from microcantilever heaters in partial vacuum. J. Appl. Phys. 101, 014906 (2007) J. Lee, T.L. Wright, M.R. Abel et al., Thermal conduction from microcantilever heaters in partial vacuum. J. Appl. Phys. 101, 014906 (2007)
148.
Zurück zum Zitat K. Park, J. Lee, Z.M. Zhang, W.P. King, Frequency-dependent electrical and thermal response of heated atomic force microscope cantilevers. J. Microelectromech. Syst. 16, 213–222 (2007) K. Park, J. Lee, Z.M. Zhang, W.P. King, Frequency-dependent electrical and thermal response of heated atomic force microscope cantilevers. J. Microelectromech. Syst. 16, 213–222 (2007)
149.
Zurück zum Zitat K. Park, A. Marchenkov, Z.M. Zhang, W.P. King, Low temperature characterization of heated microcantilevers. J. Appl. Phys. 101, 094504 (2007) K. Park, A. Marchenkov, Z.M. Zhang, W.P. King, Low temperature characterization of heated microcantilevers. J. Appl. Phys. 101, 094504 (2007)
150.
Zurück zum Zitat W.P. King, B. Bhatia, J.R. Felts, H.J. Kim, B. Kwon, B. Lee, S. Somnath, M. Rosenberger, Heated atomic force microscope cantilevers and their applications. Annu. Rev. Heat Transfer 16, 287–326 (2013) W.P. King, B. Bhatia, J.R. Felts, H.J. Kim, B. Kwon, B. Lee, S. Somnath, M. Rosenberger, Heated atomic force microscope cantilevers and their applications. Annu. Rev. Heat Transfer 16, 287–326 (2013)
151.
Zurück zum Zitat A.J. Schmidt, X. Chen, G. Chen, Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114802 (2008) A.J. Schmidt, X. Chen, G. Chen, Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114802 (2008)
152.
Zurück zum Zitat A.J. Minnich, Measuring phonon mean free paths using thermal conductivity spectroscopy. Annu. Rev. Heat Transfer 16, 183–210 (2013) A.J. Minnich, Measuring phonon mean free paths using thermal conductivity spectroscopy. Annu. Rev. Heat Transfer 16, 183–210 (2013)
153.
Zurück zum Zitat J. Zhu, H. Park, J.-Y. Chen et al., Revealing the origins of 3D anisotropic thermal conductivities of black phosphorus. Adv. Electron. Mater. 2, 1600040 (2016) J. Zhu, H. Park, J.-Y. Chen et al., Revealing the origins of 3D anisotropic thermal conductivities of black phosphorus. Adv. Electron. Mater. 2, 1600040 (2016)
154.
Zurück zum Zitat P. Jiang, X. Qian, R. Yang, Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018) P. Jiang, X. Qian, R. Yang, Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018)
155.
Zurück zum Zitat Z. Cheng, T. Bougher, T. Bai et al., Probing growth-induced anisotropic thermal transport in high-quality CVD diamond membranes by multifrequency and multiple-spot-size time-domain thermoreflectance. ACS Appl. Mater. Interfaces. 10, 4808–4815 (2018) Z. Cheng, T. Bougher, T. Bai et al., Probing growth-induced anisotropic thermal transport in high-quality CVD diamond membranes by multifrequency and multiple-spot-size time-domain thermoreflectance. ACS Appl. Mater. Interfaces. 10, 4808–4815 (2018)
156.
Zurück zum Zitat S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, J.-C. Zhao, Thermal conductivity imaging at micrometrescale resolution for combinatorial studies of materials. Nat. Mater. 3, 298–301 (2004) S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, J.-C. Zhao, Thermal conductivity imaging at micrometrescale resolution for combinatorial studies of materials. Nat. Mater. 3, 298–301 (2004)
157.
Zurück zum Zitat D.G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004) D.G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004)
158.
Zurück zum Zitat J. Jeong, X. Meng, A. K. Rockwell et al., Picosecond transient thermoreflectance for thermal conductivity characterization. Nanoscale Microscale Thermophys. Eng. 23, 211−221 (2019) J. Jeong, X. Meng, A. K. Rockwell et al., Picosecond transient thermoreflectance for thermal conductivity characterization. Nanoscale Microscale Thermophys. Eng. 23, 211−221 (2019)
159.
Zurück zum Zitat P.M. Norris, A.P. Caffrey, R.J. Stevens, J.M. Klopf, J.T. McLeskey, A.N. Smith, Femtosecond pump–probe nondestructive examination of materials. Rev. Sci. Instrum. 74, 400–406 (2003) P.M. Norris, A.P. Caffrey, R.J. Stevens, J.M. Klopf, J.T. McLeskey, A.N. Smith, Femtosecond pump–probe nondestructive examination of materials. Rev. Sci. Instrum. 74, 400–406 (2003)
160.
Zurück zum Zitat K.E. Goodson, M. Asheghi, Near-field optical thermometry. Microscale Thermophys. Eng. 1, 225–235 (1997) K.E. Goodson, M. Asheghi, Near-field optical thermometry. Microscale Thermophys. Eng. 1, 225–235 (1997)
161.
Zurück zum Zitat D. Seto, R. Nikka, S. Nishio, Y. Taguchi, T. Saiki, Y. Nagasaka, Nanoscale optical thermometry using a time-correlated single-photon counting in an illumination-collection mode. Appl. Phys. Lett. 110, 033109 (2017) D. Seto, R. Nikka, S. Nishio, Y. Taguchi, T. Saiki, Y. Nagasaka, Nanoscale optical thermometry using a time-correlated single-photon counting in an illumination-collection mode. Appl. Phys. Lett. 110, 033109 (2017)
162.
Zurück zum Zitat M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, H.C. Kapteyn, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010) M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, H.C. Kapteyn, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010)
163.
Zurück zum Zitat T. Favaloro, J.-H. Bahk, A. Shakouri, Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum. 86, 024903 (2015) T. Favaloro, J.-H. Bahk, A. Shakouri, Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum. 86, 024903 (2015)
164.
Zurück zum Zitat C. Wei, X. Zheng, D.G. Cahill, J.-C. Zhao, Invited article: Micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. Rev. Sci. Instrum. 84, 071301 (2013) C. Wei, X. Zheng, D.G. Cahill, J.-C. Zhao, Invited article: Micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. Rev. Sci. Instrum. 84, 071301 (2013)
165.
Zurück zum Zitat P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I. El-Kady, Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11, 107–112 (2011) P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I. El-Kady, Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11, 107–112 (2011)
166.
Zurück zum Zitat M.R. Wagner, B. Graczykowski, J.S. Reparaz et al., Two-dimensional photonic crystals: Disorder matters. Nano Lett. 16, 5661–5668 (2016) M.R. Wagner, B. Graczykowski, J.S. Reparaz et al., Two-dimensional photonic crystals: Disorder matters. Nano Lett. 16, 5661–5668 (2016)
167.
Zurück zum Zitat X. Wang, T. Mori, I. Kuzmych-Ianchuk, Y. Michiue, K. Yubuta, T. Shishido, Y. Grin, S. Okada, D.G. Cahill, Thermal conductivity of layered borides: The effect of building defects on the thermal conductivity of TmAlB4 and the anisotropic thermal conductivity of AlB2. APL Mater. 2, 046113 (2014) X. Wang, T. Mori, I. Kuzmych-Ianchuk, Y. Michiue, K. Yubuta, T. Shishido, Y. Grin, S. Okada, D.G. Cahill, Thermal conductivity of layered borides: The effect of building defects on the thermal conductivity of TmAlB4 and the anisotropic thermal conductivity of AlB2. APL Mater. 2, 046113 (2014)
168.
Zurück zum Zitat J. Liu, G.-M. Choi, D.G. Cahill, Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 116, 233107 (2014) J. Liu, G.-M. Choi, D.G. Cahill, Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 116, 233107 (2014)
169.
Zurück zum Zitat A. J. Schmidt, R. Cheaito, M. Chiesa, A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009); ibid, Characterization of thin metal films via frequency-domain thermoreflectance. J. Appl. Phys. 107, 024908 (2010) A. J. Schmidt, R. Cheaito, M. Chiesa, A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009); ibid, Characterization of thin metal films via frequency-domain thermoreflectance. J. Appl. Phys. 107, 024908 (2010)
170.
Zurück zum Zitat K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. McGaughey, J.A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013) K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. McGaughey, J.A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013)
171.
Zurück zum Zitat D. Rodin, S.K. Yee, Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance. Rev. Sci. Instrum. 88, 014902 (2017) D. Rodin, S.K. Yee, Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance. Rev. Sci. Instrum. 88, 014902 (2017)
172.
Zurück zum Zitat J. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J. Minnich, T. Kehoe, C. M. Sotomayor Torres, G. Chen, K. A. Nelson, Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013) J. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J. Minnich, T. Kehoe, C. M. Sotomayor Torres, G. Chen, K. A. Nelson, Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013)
173.
Zurück zum Zitat J. Cuffe, J.K. Eliason, A.A. Maznev et al., Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes. Phys. Rev. B 91, 245423 (2015) J. Cuffe, J.K. Eliason, A.A. Maznev et al., Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes. Phys. Rev. B 91, 245423 (2015)
174.
Zurück zum Zitat A. Vega-Flick, R.A. Duncan, J.K. Eliason et al., Thermal transport in suspended silicon membranes measured by laser-induced transient gratings. AIP Adv. 6, 120903 (2016) A. Vega-Flick, R.A. Duncan, J.K. Eliason et al., Thermal transport in suspended silicon membranes measured by laser-induced transient gratings. AIP Adv. 6, 120903 (2016)
Metadaten
Titel
Nonequilibrium Energy Transfer in Nanostructures
verfasst von
Zhuomin M. Zhang
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-45039-7_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.