Skip to main content
Erschienen in: Microsystem Technologies 9/2016

01.09.2015 | Technical Paper

Nonlinear dynamics of nano-resonators: an analytical approach

verfasst von: Ehsan Maani Miandoab, Hossein Nejat Pishkenari, Aghil Yousefi-Koma

Erschienen in: Microsystem Technologies | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Prior to the design and fabrication of MEMS/NEMS devices, analysis of static and dynamic behaviors of these systems is necessary. In the present study, the nonlinear dynamic behavior of micro- and nano-mechanical resonators is investigated and classified based on the resonator’s physical parameters for first time. The Galerkin method is used to convert the distributed-parameter model to a nonlinear ordinary differential equation where mid-plane stretching, axial stress, DC electrostatic and AC harmonic voltages are taken into account. To obtain the analytical frequency response of the micro resonator near its primary resonance, the second order multiple scales method is applied to the general equation of motion with cubic, quadratic and parametric nonlinearities. It is demonstrated that variation of the micro resonator’s physical parameters strongly affects its dynamic behavior by changing equilibrium points and their stability properties and complex behaviors appear in its frequency and phase responses. The global dynamics of the resonator is classified into four different categories in terms of the system parameters in this paper. The dynamic characteristics and frequency response of each class are analyzed numerically as well as analytically. Comparison of the obtained closed-form solution with the numerical simulation results confirms its validity. A striking point of the obtained closed-form solution is that it predicts some complex nonlinear behaviors of the resonator. This paper presents a quick and efficient method for determining the global dynamics of the micro-resonators and can be useful in design and analyses of these devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Azgin K, Akin T, Valdevit L (2012) Ultrahigh-dynamic-range resonant MEMS load cells for micromechanical test frames. Microelectromech Syst J 21(6):1519–1529CrossRef Azgin K, Akin T, Valdevit L (2012) Ultrahigh-dynamic-range resonant MEMS load cells for micromechanical test frames. Microelectromech Syst J 21(6):1519–1529CrossRef
Zurück zum Zitat Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105CrossRefMathSciNet Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105CrossRefMathSciNet
Zurück zum Zitat Belardinelli P et al (2013) Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping. Int J Eng Sci 69:16–32CrossRefMathSciNet Belardinelli P et al (2013) Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping. Int J Eng Sci 69:16–32CrossRefMathSciNet
Zurück zum Zitat Dohn S et al (2005) Enhanced functionality of cantilever based mass sensors using higher modes. Appl Phys Lett 86(23):233501CrossRef Dohn S et al (2005) Enhanced functionality of cantilever based mass sensors using higher modes. Appl Phys Lett 86(23):233501CrossRef
Zurück zum Zitat Erbe A et al (2000) Mechanical mixing in nonlinear nanomechanical resonators. Appl Phys Lett 77(19):3102–3104CrossRef Erbe A et al (2000) Mechanical mixing in nonlinear nanomechanical resonators. Appl Phys Lett 77(19):3102–3104CrossRef
Zurück zum Zitat Fakhrabadi MMS, Rastgoo A, Ahmadian MT (2013) Dynamic behaviours of carbon nanotubes under dc voltage based on strain gradient theory. J Phys D Appl Phys 46(40):405101CrossRef Fakhrabadi MMS, Rastgoo A, Ahmadian MT (2013) Dynamic behaviours of carbon nanotubes under dc voltage based on strain gradient theory. J Phys D Appl Phys 46(40):405101CrossRef
Zurück zum Zitat Haghighi HS, Markazi AH (2010) Chaos prediction and control in MEMS resonators. Commun Nonlinear Sci Numer Simul 15(10):3091–3099CrossRef Haghighi HS, Markazi AH (2010) Chaos prediction and control in MEMS resonators. Commun Nonlinear Sci Numer Simul 15(10):3091–3099CrossRef
Zurück zum Zitat Hajjam A, Pourkamali S (2012) Fabrication and characterization of MEMS-based resonant organic gas sensors. Sens J IEEE 12(6):1958–1964CrossRef Hajjam A, Pourkamali S (2012) Fabrication and characterization of MEMS-based resonant organic gas sensors. Sens J IEEE 12(6):1958–1964CrossRef
Zurück zum Zitat Hassanpour PA et al (2010) Nonlinear vibration of micromachined asymmetric resonators. J Sound Vib 329(13):2547–2564CrossRef Hassanpour PA et al (2010) Nonlinear vibration of micromachined asymmetric resonators. J Sound Vib 329(13):2547–2564CrossRef
Zurück zum Zitat Hu Y, Yang J, Kitipornchai S (2010) Pull-in analysis of electrostatically actuated curved micro-beams with large deformation. Smart Mater Struct 19(6):065030CrossRef Hu Y, Yang J, Kitipornchai S (2010) Pull-in analysis of electrostatically actuated curved micro-beams with large deformation. Smart Mater Struct 19(6):065030CrossRef
Zurück zum Zitat Jia X et al (2012) Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation. J Sound Vib 331(14):3397–3411CrossRef Jia X et al (2012) Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation. J Sound Vib 331(14):3397–3411CrossRef
Zurück zum Zitat Joglekar M, Pawaskar D (2011) Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation. Microsyst Technol 17(1):35–45CrossRef Joglekar M, Pawaskar D (2011) Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation. Microsyst Technol 17(1):35–45CrossRef
Zurück zum Zitat Kacem N et al (2009) Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Nanotechnology 20(27):275501CrossRef Kacem N et al (2009) Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Nanotechnology 20(27):275501CrossRef
Zurück zum Zitat Lakrad F, Belhaq M (2010) Suppression of pull-in instability in MEMS using a high-frequency actuation. Commun Nonlinear Sci Numer Simul 15(11):3640–3646CrossRef Lakrad F, Belhaq M (2010) Suppression of pull-in instability in MEMS using a high-frequency actuation. Commun Nonlinear Sci Numer Simul 15(11):3640–3646CrossRef
Zurück zum Zitat Mestrom R et al (2008) Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens Actuators A 142(1):306–315CrossRef Mestrom R et al (2008) Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens Actuators A 142(1):306–315CrossRef
Zurück zum Zitat Miandoab EM et al (2014a) Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Physica E 63:223–228CrossRef Miandoab EM et al (2014a) Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Physica E 63:223–228CrossRef
Zurück zum Zitat Miandoab EM, Yousefi-Koma A, Pishkenari HN (2014b) Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst Technol 21(2):457–464CrossRef Miandoab EM, Yousefi-Koma A, Pishkenari HN (2014b) Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst Technol 21(2):457–464CrossRef
Zurück zum Zitat Miandoab EM, Pishkenari HN, Yousefi-Koma A (2014) Chaos predition in MEMS-NEMS resonators. Int J Eng Sci 82:74–83CrossRef Miandoab EM, Pishkenari HN, Yousefi-Koma A (2014) Chaos predition in MEMS-NEMS resonators. Int J Eng Sci 82:74–83CrossRef
Zurück zum Zitat Mojahedi M et al (2011) Analytic solutions to the oscillatory behavior and primary resonance of electrostatically actuated microbridges. Int J Struct Stab Dyn 11(06):1119–1137CrossRefMATHMathSciNet Mojahedi M et al (2011) Analytic solutions to the oscillatory behavior and primary resonance of electrostatically actuated microbridges. Int J Struct Stab Dyn 11(06):1119–1137CrossRefMATHMathSciNet
Zurück zum Zitat Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New YorkMATH Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, New YorkMATH
Zurück zum Zitat Palaniapan M, Khine L (2008) Nonlinear behavior of SOI free-free micromechanical beam resonator. Sens Actuators A 142(1):203–210CrossRef Palaniapan M, Khine L (2008) Nonlinear behavior of SOI free-free micromechanical beam resonator. Sens Actuators A 142(1):203–210CrossRef
Zurück zum Zitat Rocha LA et al (2011) Auto-calibration of capacitive MEMS accelerometers based on pull-in voltage. Microsyst Technol 17(3):429–436CrossRef Rocha LA et al (2011) Auto-calibration of capacitive MEMS accelerometers based on pull-in voltage. Microsyst Technol 17(3):429–436CrossRef
Zurück zum Zitat Sharma M et al (2012) Parametric resonance: Amplification and damping in MEMS gyroscopes. Sens Actuators A 177:79–86CrossRef Sharma M et al (2012) Parametric resonance: Amplification and damping in MEMS gyroscopes. Sens Actuators A 177:79–86CrossRef
Zurück zum Zitat Timurdogan E et al (2011) MEMS biosensor for detection of Hepatitis A and C viruses in serum. Biosens Bioelectron 28(1):189–194CrossRef Timurdogan E et al (2011) MEMS biosensor for detection of Hepatitis A and C viruses in serum. Biosens Bioelectron 28(1):189–194CrossRef
Zurück zum Zitat Tocchio A, Caspani A, Langfelder G (2012) Mechanical and electronic amplitude-limiting techniques in a MEMS resonant accelerometer. Sens J IEEE 12(6):1719–1725CrossRef Tocchio A, Caspani A, Langfelder G (2012) Mechanical and electronic amplitude-limiting techniques in a MEMS resonant accelerometer. Sens J IEEE 12(6):1719–1725CrossRef
Zurück zum Zitat Wen-Hui L, Ya-Pu Z (2003) Dynamic behaviour of nanoscale electrostatic actuators. Chin Phys Lett 20(11):2070CrossRef Wen-Hui L, Ya-Pu Z (2003) Dynamic behaviour of nanoscale electrostatic actuators. Chin Phys Lett 20(11):2070CrossRef
Zurück zum Zitat Younis MI (2011) MEMS linear and nonlinear statics and dynamics, vol 20. Springer Science and Business Media, Berlin Younis MI (2011) MEMS linear and nonlinear statics and dynamics, vol 20. Springer Science and Business Media, Berlin
Zurück zum Zitat Younis M, Nayfeh A (2003) A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn 31(1):91–117CrossRefMATHMathSciNet Younis M, Nayfeh A (2003) A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn 31(1):91–117CrossRefMATHMathSciNet
Zurück zum Zitat Younis M et al (2010) Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. Microelectromech Syst J 19(3):647–656CrossRef Younis M et al (2010) Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. Microelectromech Syst J 19(3):647–656CrossRef
Zurück zum Zitat Zhang L, Zhao Y-P (2003) Electromechanical model of RF MEMS switches. Microsyst Technol 9(6–7):420–426CrossRef Zhang L, Zhao Y-P (2003) Electromechanical model of RF MEMS switches. Microsyst Technol 9(6–7):420–426CrossRef
Zurück zum Zitat Zhang Y, Zhao Y-P (2006) Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sens Actuators A 127(2):366–380CrossRef Zhang Y, Zhao Y-P (2006) Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sens Actuators A 127(2):366–380CrossRef
Zurück zum Zitat Zhang Y, Liu Y, Murphy KD (2012) Nonlinear dynamic response of beam and its application in nanomechanical resonator. Acta Mech Sin 28(1):190–200CrossRefMATHMathSciNet Zhang Y, Liu Y, Murphy KD (2012) Nonlinear dynamic response of beam and its application in nanomechanical resonator. Acta Mech Sin 28(1):190–200CrossRefMATHMathSciNet
Metadaten
Titel
Nonlinear dynamics of nano-resonators: an analytical approach
verfasst von
Ehsan Maani Miandoab
Hossein Nejat Pishkenari
Aghil Yousefi-Koma
Publikationsdatum
01.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 9/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2657-6

Weitere Artikel der Ausgabe 9/2016

Microsystem Technologies 9/2016 Zur Ausgabe

Neuer Inhalt